JPH0367845B2 - - Google Patents

Info

Publication number
JPH0367845B2
JPH0367845B2 JP58234950A JP23495083A JPH0367845B2 JP H0367845 B2 JPH0367845 B2 JP H0367845B2 JP 58234950 A JP58234950 A JP 58234950A JP 23495083 A JP23495083 A JP 23495083A JP H0367845 B2 JPH0367845 B2 JP H0367845B2
Authority
JP
Japan
Prior art keywords
sheet
molding
die
compression
biaxially oriented
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Expired - Lifetime
Application number
JP58234950A
Other languages
Japanese (ja)
Other versions
JPS60149420A (en
Inventor
Hiroshi Kataoka
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Asahi Chemical Industry Co Ltd
Original Assignee
Asahi Chemical Industry Co Ltd
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Asahi Chemical Industry Co Ltd filed Critical Asahi Chemical Industry Co Ltd
Priority to JP58234950A priority Critical patent/JPS60149420A/en
Priority to US06/681,791 priority patent/US4668729A/en
Publication of JPS60149420A publication Critical patent/JPS60149420A/en
Publication of JPH0367845B2 publication Critical patent/JPH0367845B2/ja
Granted legal-status Critical Current

Links

Description

【発明の詳細な説明】[Detailed description of the invention]

本発明は熱可塑性樹脂素地を圧縮ダイ内で圧縮
して配向成形品を成形する方法に係る。 本発明の目的は熱可塑性樹脂の薄肉配向シート
を圧縮成形する方法の改良、該配向シートを経済
的に成形する方法である。 従来、圧縮成形で配向成形品を成形する方法と
して、あらかじめ離型剤や潤滑剤を塗布して重ね
た素地を、ガラス転移温度以上融点以下では圧縮
型で圧縮して配向させ、一度に2以上の配向成形
品を得る方法が知られている(特開昭57−144728
号)。 上記従来の方法において、素地に塗布される離
型剤や潤滑剤は、素地を圧縮型間の潤滑化と成形
品相互の剥離の容易化を図るものであるが、離型
剤や潤滑剤を各素地間に塗布すると、圧縮成形時
に、重ねられた素地間で滑りを生じ、各素地がバ
ラバラに延伸されてしまつて各素地を均一にプラ
グフローさせられなくなつたり、素地の積層状態
が崩れてプラグフローさせられなくなる。従つて
各素地間で配向状態がバラついてしまつたり、良
好な配向成形品が得られなくなる問題がある。ま
た、離型剤や潤滑剤は、十分な量を均一に塗布す
る手間が大変であると共に、成形後、成形品から
除去する手間がかかるという問題もある。 本発明は、上記従来の圧縮配向成形法を改良し
たもので、均一な配向状態の薄肉配向シートを、
一度に複数枚、簡便な作業にて製造できるように
するものである。 すなわち、本発明は、熱可塑性樹脂素地を圧縮
ダイ内で圧縮して配向成形品を成形する方法に於
て、 2層以上の熱可塑性樹脂素地を重ね、 且つ、各素地の間に、素地と非接接着性で、
成形時における粘度が素地の粘度の1/30〜30倍
となる樹脂フイルムあるいはシートを置くこと
により、素地を互いに非接着状態にし、 重ね合わせた素地全体を真空包装してダイ内
に置き、 ダイ内表面と上記真空包装体表面との界面を
潤滑状態にし、 該樹脂素地のガラス転移温度以上、融点以下
で圧縮して樹脂脂素地を配向させ、 冷却後ダイ内より取り出し、各素地より成形
された配向成形品を互いに剥離して2個以上の
成形品を得る配向成形品の圧縮成形法である。 上記本発明において、成形時に特定の粘度とな
る非接着性樹脂フイルム又はシートは、成形品の
剥離を容易にするだけでなく、圧縮成形時に、重
ねた各素地に均一なプラグフローを生じさせるも
ので上記非接着性樹脂フイルム又はシートの粘度
が高過ぎても低過ぎても素地積層体の延伸安定性
が損なわれ、均一なプラグフロー状態が得られな
くなる。又、離型剤や潤滑剤ではなく、非接着性
樹脂フイルム又はシートを用いているのは、上記
粘度を得ると共に、十分な量の離型剤や潤滑剤を
均一に塗布する手間、及び、成形品から離型剤や
潤滑剤を除去する手間を無くすものである。 本発明においてププラグフロー状態を得ようと
しているのは、本願発明が、一般に行われている
引張成形とは全く相違する圧縮成形を対象として
いることにほかならない。即ち、引張成形におい
ては、その引張方向を制御することによつて配向
方向を直接制御することができるが、圧縮成形に
おいては、圧縮方向で配向方向を制御することが
できず、圧縮に伴つて生じる素地の流れから間接
的に制御する以外に配向方向の制御ができないた
めである。 特に本発明は、素地を重ねて一度に圧縮成形す
るものである。この場合、素地積層体の内層側
は、外側の素地を介して圧縮力が加わることにな
り、直接圧縮力が加わる外側の素地と延伸状態が
相違しやすい。 そこで本発明では前述した特定粘度の非接着性
樹脂フイルム又はシートを用い、素地積層体をあ
たかも均一な一体物であるかのように圧縮延伸で
きるようにし、これによつて各素地を均一にプラ
グフローさせて、各素地から均一で良好な配向状
態の成形品が得られるようにしているものであ
る。 また、本発明において、非接着性フイルム又は
シートを介在させて重ねた素地成体を、真空包装
してダイ内に置いているのは、脱気下で圧縮成形
できるようにするためのもので、これにより、重
ねた素地間に空気がトラツプされたまま圧縮成形
し、成形品に気泡痕が付いてしまうことが防止さ
れる。特に、別々に製造された素地を非接着性フ
イルム又はシートを重ねる場合、層間に空気がト
ラツプされやすく、本発明の真空包装は、不良製
品の発生率を押える上で極めて有効である。 本発明に述べる熱可晴性樹脂とは一般に圧縮成
形できる熱可塑性樹脂であり、例えばポリスチレ
ン、スチレン−アクリロニトリル共重合体、
ABS樹脂、ポリ塩化ビニル、ポリメチルメタク
リレート、ポリカーボネート、ポリエステル、ナ
イロン、ポリフエニレンエーテル、ポリエーテル
イミド、ポリオキシメチレン、ポリエチレン、ポ
リプロピレン等のポリオレフイン、各種フツ素樹
脂、及びこれ等樹脂のブレンド、共重合体等であ
る。 特にメチルメタクリレート(以後MMAと略
称)を主体としたアクリル樹脂の成形に適してお
り、ポリメチルメタクリレート(以後PMMAと
略称)、MMAとアルキルアクリレート共重合体
んCo(MMA−AA))、MMA−無水マレイン酸
−スチレン三元系共重合体(Co(MMA−MAH
−St))、MMA−メタアクリルアミド共重合体
(Co(MMA−MAAmide))、等は良好に使用でき
る。これ等アクリル樹脂の超高分子量体、若干の
架橋が行われたゲル化体も良好に使用できる。 MMAの超高分子量体は耐化学薬品性に優れ、
良好なシートが得られる。これ等熱可塑性樹脂に
は、必要に応じて着色剤、紫外線吸収剤、赤外線
吸収剤、熱線反射剤、難燃剤、熱安定剤、帯電防
止剤等を添加することができる。アクリル樹脂は
耐候性、透明性に優れ、紫外線吸収剤、赤外線吸
収剤、熱線反射剤等を配合したアクリル樹脂を本
発明で成形した薄肉22軸配向シートはグレージン
グ剤の部品として良好に使用できる。 さらに本発明に良好に使用できる熱可塑性樹脂
としては、超高分子量ポリマーのような高粘度の
ため成形が困難な樹脂、軟化温度と分解温度が近
いため高粘度で成形することが好ましいポリフエ
ニレンエーテル、ナイロン46〔−NH−(CH24
NH−CO−(CH24−CO−〕o等、結晶速度が速い
ため形成される球晶を高粘度状態で押し潰しなが
ら延伸することが好ましいポリアセタール樹脂
等々がある。 本発明に述べる熱可塑性樹脂素地とは上記熱可
塑性樹脂の0.5〜50mm厚の板状素地であり、好ま
しくは1〜20mm厚の板状素地である。 本発明に述べる2層以上の熱可塑性樹脂素地を
互いに非接着状態にして重ねて置くとは、重ね合
わせて圧縮成形後、各素地から成形された配向成
形品が互いに容易に剥離できる程度の非接着状態
に置くことである。容易に剥離できるとは、一般
には2Kg/25mm以下(200mm/min)、即ち25mm巾
の成形品を200mm/minの速度で引つ張つた場合の
剥離強度が2Kg以下が好ましく、さらに好ましく
は1Kg以下である。各素地を互いに非接着状態に
重ねわ置くために、各素地の間に素地と非接着性
の樹脂フイルムあるいはシートを置く。この場
合、非接着性の樹脂フイルムあるいはシートは、
成形時において、樹脂素地と粘度が近いことが好
ましく、粘度が1/30〜30倍の範囲にある。樹脂素
地と非接着性樹脂フイルムあるいはシートの粘度
差が小さいと、圧縮成形が樹脂素地が延伸される
時に、該非接着性樹脂フイルムあるいはシートも
一緒に安定に延伸され、均一な配向成形品が得ら
れる。最も好ましい非接着性樹脂フイルムあるい
はシートは、成形時に樹脂素地の粘度の1〜20倍
であり、且つ平滑表面を有するフイルムあるいは
シートである。樹脂素地より粘度が大きく、且つ
平滑表面を有するフイルムあるいはシートを用い
ると、該フイルムあるいはシートの表面が成形品
表面に転写され、平滑表面の成形品が得られる。 非接着性樹脂フイルムあるいはシートの厚さは
成形後に成形品から容易に取り去ることができる
厚さが必要である。好ましい厚みは配向成形後
で、5〜500μm、さらに好ましくは10〜100μm
の厚みであり、これ以上の厚みは不経済であり、
これ以下の厚みでは剥離が困難になる。 樹脂素地にアクリル樹脂を用いた場合には、ア
クリル樹脂と非接着性で、アクリル樹脂の配向成
形温度130〜170℃に於て粘度が近いポリオレフイ
ン、ナイロン等が良好に使用でき、例えばポリプ
ロピレンホモポリマー、微少のエチレンを共重合
させたポリプロピレン、ナイロン11、ナイロン
12、ナイロン6等は良好に使用できる。 ダイ内表面と樹脂素地を真空包装した真空包装
体の表面の界面を潤滑状態にするには、ダイ内表
面に潤滑剤を塗布するか、あるいは及びダイ内表
面と上記真空包装体との界面に潤滑剤を練り込ん
だシートを存在させることにより潤滑状態にする
ことができる。 本発明に述べる潤滑剤とは、成形時に於ける粘
度が5000ポイズ以下、好ましくは1000ポイズ以下
の流体であり、例えば流動パラフイン、ポリジメ
チルシロキサン等の各種シリコーン油、ステアリ
ン酸、ステアリン酸金属塩等の各種脂肪酸及びそ
の金属塩、各種界面活性剤、グリセリン、ポリエ
チレングリコール、低分子量ポリエチレン、これ
等の各流体の混合物等の他、一般に使用されてい
る潤滑剤が使用できる。 樹脂素地のガラス転移温度以上、溶融点以下で
圧縮して配向させるには、重ね合わせた素地がダ
イ内で圧縮力により均一にプラグフローすること
により達成できる。ダイ内表面と真空包装体表面
の界面を良い潤滑状態にすることにより均一なプ
ラグフロー成形ができる。本発明で1軸配向、2
軸配向のいずれもできるが、特に2軸配向成形に
適した方法であり、特に、複屈折のない均一な2
軸配向シートが良好に成形できる。本発明では延
伸倍率は必要に応じて選択できるが、好ましくは
面積比で2〜10倍、さらに好ましくは3〜7倍で
ある。 特に本発明で良好に成形できるのは、重量平均
分子量が100万以上のPMMA、あるいはMMAを
主体とした超高分子量の2軸延伸薄肉シートであ
る。超高分子量PMMAは2軸延伸による性能向
上が特に著しく、即ち耐衝撃性、耐化学薬品性が
著しく改良される。 本発明を図面により説明する。 第1図は圧縮成形により2軸配向シートを成形
する経過を示す。 第2図はCo(MMA−AA)を第1図の方法で
2軸配向シートにした時の2軸配向シート厚みと
必要な圧縮力の関係を示す。 第3図は本発明の圧縮成形法により2軸配向シ
ートを成形する経過を示す。 第4図は本発明の4層の樹脂素地を互いに非接
着状態にして重ねて置く各種方法を示す。 第1図に於て、圧縮ダイ1の内表面2に潤滑剤
を塗布し、熱可塑性樹脂の板状素地3を置き(1
−1)、該素地3のガラス転移温度以上、溶融点
以下に加熱した後圧縮して素地3をプラグフロー
させて2軸配向させ(1−2)、そのまま冷却し
て2軸配向シート4を得る。2軸配向シート4を
成形するに必要な圧縮力は、樹脂の種類、延伸温
度、延伸倍率、2軸配向シートの厚み等により異
なる。 第2図は、第1図に示した方法でメチルアクリ
レート5重量%のCo(MMA−AA)を140℃で面
積比で5倍に延伸した場合の2軸配向シート厚さ
と必要圧縮力の関係を示したものである。2軸配
向シート厚さが薄くなる程、高圧縮力が必要にな
る。圧縮成形装置は圧縮力に比例してその製作費
は大きくなり、従つて薄肉シート程、その成形費
は高くなる。 本発明は、このように成形費が高くなる薄肉シ
ートの改良された成形法を提供するものである。
さらに第1図に示すように1度に1枚の成形しか
できなかつた方法を1度に2枚以上の成形を行
い、生産性を向上させるものである。 第3図は本発明を説明するものである。圧縮ダ
イ5の内表面6に潤滑剤を塗布した後、4枚の熱
可塑性樹脂素地7の各界面に該素地と非接着性の
フイルム8を置き、重ね合わせた素地全体を非接
着性樹脂フイルム14で真空包装して圧縮ダイ内
に置く(3−1)。素地7のガラス転移温度以上、
溶融点以下に加熱した後、圧縮して素地7をプラ
グフローませて4枚の2軸配向シート9を成形し
(3−2)、そのまま冷却して真空包装された4枚
の2軸配向シート9を圧縮ダイ5より取り出し
(3−3)、次いで非接着性樹脂フイルム14を取
り外し、各2軸配向シートを剥離してさらに非接
着性のフイルムを配向シートから剥離して、薄肉
の2軸配向シート10を得る(3−4)。また、
本発明においては、非接着性樹脂フイルム14を
取り外す前の状態で輸送、保管し、必要に応じて
各シートを剥離することにより、積載時の手間や
シートの汚損を減らすことができる。 第4図は2層以上の熱可塑性樹脂素地を互いに
非接着状態に重ね合わせて置く各種方法を示すも
のである。(4−1)は樹脂素地11の各界面及
び表面に非接着性樹脂フイルム13を置く方法、
(4−2)は互いに非接着性の2種の樹脂15,
16を交互に重ねる方法、(4−3)は樹脂素地
が表層17と内核18からなる3層であり、3層
の2軸配向シートを成形する場合を示したもので
あり、3層の樹脂素地を2個重ね、その界面と両
表面に非接着性フイルム19を置く方法である。
本発明では樹脂素地を真空包装することにより、
重ね合わせた界面に空気が残留して、成形品表面
が悪くなるのを防ぐことができる。表面が鏡面平
滑な樹脂素地を用い、表面が鏡面平滑な非接着性
樹脂フイルムあるいはシートを用い、に示した真
空包装した後、圧縮成形して2軸配向すると、表
面が平滑な2軸配向成形品が得られる。 真空包装するフイルムあるいはシートは、各樹
脂素地界面に置くフイルムあるいはシートと同じ
ものでも異なつても良い。ダイ内表面との滑りが
良いシートを最表面に使用することが安定なプラ
グフロー圧縮成形に好ましい。 本発明は、特に薄肉の2軸延伸シートの成形に
適した圧縮成形法であり、本発明の成形法により
10μmから1mm厚程度の薄肉2軸延伸シートが良
好に成形できる。薄肉2軸延伸シートは圧縮成形
で1枚ずつ成形することは効率が悪いが、本発明
では、2枚以上、必要に応じて10枚以上重ねて成
形できる。 本発明により、一般に成形が困難な超高分子量
重合体、軟化温度の高い樹脂、易熱分解性銃樹脂
等の2軸軸延伸シートの薄肉シートが良好に成形
できる。 本発明の成形法により、従来成形が困難であつ
た薄肉配向シートが成形可能となり、1度の圧縮
成形で複数枚の配向シートが成形でき、その経済
効果は大きい。 本発明の成形法により、各種熱可塑性樹脂の薄
肉配向シートが経済的に成形できるが、該シート
の用途の例を挙げれば、アクリル樹脂の薄肉2軸
配向シートでは液晶表示、液晶テレビ等の前面
板、各種事務機器の銘板、自動車の銘板、各種グ
レージング剤の部品等に使用できる。 実施例 1 セルキヤスト法で重合した4mm厚の表面平滑な
重量平均分子量150万の超高分子量PMMAシート
を樹脂素地とし、該素地を5枚重ね、その各素地
の界面にポリプロピレンの100μm厚の鏡面シー
トを置き、該6枚重ねの厚肉素地を上記ポリププ
ロピレンシートで真空包装して圧縮2軸配向成形
の素地とした。第3図に示したように、圧縮ダイ
内表面にポリジメチルシロキサンを塗布し、圧縮
ダイ及び樹脂素地を150℃に加熱し圧縮してプラ
グフローさせ、面積比で4倍に2軸配向した。圧
縮ダイを冷却して2軸配向成形品を冷却した後、
圧縮ダイより成形品を取り出し、各成形品を互い
に剥離し、さらにポリプロピレンを剥離すると表
面が平滑な1mm厚のPMMA2軸配向シートが5枚
得られた。 上記圧縮成形の必要圧縮力は、2軸配向シート
当り90Kg/cm2であつた。 本発明の成形法で成形された1mm厚PMMA2軸
配向シートと、無配向PMMAシートの引張特性
は次の値であつた。
The present invention relates to a method of compressing a thermoplastic resin base in a compression die to form an oriented molded product. The object of the present invention is to improve a method for compression molding a thin oriented sheet of thermoplastic resin, and to provide a method for economically molding the oriented sheet. Conventionally, the method of forming oriented molded products by compression molding is to apply a mold release agent or lubricant in advance and layer them, then compress and orient them with a compression mold at a temperature above the glass transition temperature and below the melting point. A method of obtaining an oriented molded product is known (Japanese Patent Laid-Open No. 144728/1983).
issue). In the conventional method described above, the mold release agent or lubricant applied to the base material is intended to lubricate the base material between the compression molds and to facilitate peeling of the molded products from each other. If it is applied between each substrate, slippage will occur between the stacked substrates during compression molding, and each substrate will be stretched separately, making it impossible to plug each substrate uniformly, and the laminated state of the substrates will collapse. and the plug will not flow. Therefore, there is a problem that the orientation state varies among the substrates and that a good oriented molded product cannot be obtained. Furthermore, there are also problems in that it takes a lot of effort to uniformly apply a mold release agent or a lubricant in a sufficient amount, and it takes time and effort to remove it from a molded product after molding. The present invention is an improvement on the conventional compression orientation molding method described above, and produces a thin oriented sheet with a uniform orientation.
This makes it possible to manufacture multiple sheets at once with simple operations. That is, the present invention provides a method for forming an oriented molded product by compressing a thermoplastic resin base in a compression die, in which two or more layers of thermoplastic resin bases are stacked, and between each base, the base and Non-adhesive,
By placing a resin film or sheet whose viscosity during molding is 1/30 to 30 times the viscosity of the substrate, the substrates are made non-adhesive to each other, and the entire stacked substrate is vacuum-packed and placed in the die, and the die is The interface between the inner surface and the surface of the vacuum packaging body is lubricated, and the resin base is compressed at a temperature above the glass transition temperature and below the melting point to orient the resin base, and after cooling, it is taken out from the die and molded from each base. This is a compression molding method for oriented molded products in which two or more molded products are obtained by peeling oriented molded products from each other. In the present invention, the non-adhesive resin film or sheet that has a specific viscosity during molding not only facilitates the peeling of the molded product but also causes uniform plug flow on each stacked substrate during compression molding. If the viscosity of the non-adhesive resin film or sheet is too high or too low, the stretching stability of the base laminate will be impaired, making it impossible to obtain a uniform plug flow state. Also, the reason why a non-adhesive resin film or sheet is used instead of a mold release agent or lubricant is that it is difficult to obtain the above-mentioned viscosity, and it takes time and effort to uniformly apply a sufficient amount of mold release agent or lubricant. This eliminates the need to remove mold release agents and lubricants from molded products. The reason why the present invention attempts to obtain a plug-flow state is that the present invention is aimed at compression molding, which is completely different from the commonly used tension molding. That is, in tension molding, the orientation direction can be directly controlled by controlling the tension direction, but in compression molding, the orientation direction cannot be controlled by the compression direction, and as a result of compression, This is because the orientation direction cannot be controlled other than indirectly from the flow of the resulting substrate. In particular, in the present invention, the substrates are piled up and compression molded all at once. In this case, the compressive force is applied to the inner layer side of the base material laminate through the outer base material, and the stretching state is likely to be different from that of the outer base material to which the compressive force is directly applied. Therefore, in the present invention, the above-mentioned non-adhesive resin film or sheet with a specific viscosity is used to compress and stretch the substrate laminate as if it were a uniform, integrated object, thereby making it possible to uniformly plug each substrate. By allowing the material to flow, a molded product with uniform and good orientation can be obtained from each substrate. In addition, in the present invention, the base material layered with a non-adhesive film or sheet interposed is vacuum-packed and placed in the die to enable compression molding under deaerated conditions. This prevents air from being trapped between the stacked substrates during compression molding, thereby preventing air bubbles from forming on the molded product. In particular, when separately manufactured substrates are layered with non-adhesive films or sheets, air is likely to be trapped between the layers, and the vacuum packaging of the present invention is extremely effective in reducing the incidence of defective products. The thermoplastic resin mentioned in the present invention is generally a thermoplastic resin that can be compression molded, such as polystyrene, styrene-acrylonitrile copolymer,
Polyolefins such as ABS resin, polyvinyl chloride, polymethyl methacrylate, polycarbonate, polyester, nylon, polyphenylene ether, polyetherimide, polyoxymethylene, polyethylene, and polypropylene, various fluorocarbon resins, and blends and combinations of these resins. Polymers, etc. It is particularly suitable for molding acrylic resins mainly composed of methyl methacrylate (hereinafter abbreviated as MMA), polymethyl methacrylate (hereinafter abbreviated as PMMA), MMA and alkyl acrylate copolymer Co (MMA-AA)), MMA- Maleic anhydride-styrene terpolymer (Co(MMA-MAH)
-St)), MMA-methacrylamide copolymer (Co(MMA-MAAmide)), etc. can be used satisfactorily. Ultra-high molecular weight products of these acrylic resins and gelatinized products that have been slightly crosslinked can also be used satisfactorily. Ultra-high molecular weight MMA has excellent chemical resistance,
A good sheet can be obtained. Colorants, ultraviolet absorbers, infrared absorbers, heat ray reflectors, flame retardants, heat stabilizers, antistatic agents, and the like can be added to these thermoplastic resins as necessary. Acrylic resin has excellent weather resistance and transparency, and a thin 22-axis oriented sheet molded according to the present invention from an acrylic resin containing an ultraviolet absorber, an infrared absorber, a heat ray reflector, etc. can be favorably used as a component of a glazing agent. Furthermore, thermoplastic resins that can be favorably used in the present invention include resins that are difficult to mold due to their high viscosity, such as ultra-high molecular weight polymers, and polyphenylene, which is preferably molded with high viscosity because its softening temperature and decomposition temperature are close to each other. Ether, nylon 46 [−NH−(CH 2 ) 4
There are polyacetal resins such as NH-CO-( CH2 ) 4 -CO-] o which are preferably stretched while crushing the formed spherulites in a high viscosity state because of their fast crystallization speed. The thermoplastic resin substrate mentioned in the present invention is a plate-shaped substrate made of the above thermoplastic resin with a thickness of 0.5 to 50 mm, preferably a plate-shaped substrate with a thickness of 1 to 20 mm. Laying two or more thermoplastic resin bases in a non-adhered state as described in the present invention means that the oriented molded products formed from each base material can be easily peeled off from each other after overlapping and compression molding. It should be kept in a bonded state. Easily peelable generally means 2Kg/25mm or less (200mm/min), that is, the peel strength when a 25mm wide molded product is pulled at a speed of 200mm/min is preferably 2Kg or less, and more preferably 1Kg. It is as follows. In order to place the substrates one on top of the other in a non-adhesive state, a non-adhesive resin film or sheet is placed between each substrate. In this case, the non-adhesive resin film or sheet is
During molding, it is preferable that the viscosity is close to that of the resin base, and the viscosity is in the range of 1/30 to 30 times. If the difference in viscosity between the resin base and the non-adhesive resin film or sheet is small, when the resin base is stretched during compression molding, the non-adhesive resin film or sheet will also be stably stretched, resulting in a uniformly oriented molded product. It will be done. The most preferred non-adhesive resin film or sheet is one that has a viscosity of 1 to 20 times the viscosity of the resin base upon molding and has a smooth surface. When a film or sheet having a higher viscosity than the resin base and a smooth surface is used, the surface of the film or sheet is transferred to the surface of the molded product, resulting in a molded product with a smooth surface. The thickness of the non-adhesive resin film or sheet must be such that it can be easily removed from the molded product after molding. The preferred thickness is 5 to 500 μm, more preferably 10 to 100 μm after orientation molding.
, and thicker than this is uneconomical.
If the thickness is less than this, peeling becomes difficult. When acrylic resin is used as the resin base, polyolefin, nylon, etc., which are non-adhesive to the acrylic resin and have a viscosity similar to the acrylic resin at the orientation molding temperature of 130 to 170°C, can be used. For example, polypropylene homopolymer , polypropylene copolymerized with a small amount of ethylene, nylon 11, nylon
12, nylon 6, etc. can be used satisfactorily. In order to lubricate the interface between the inner surface of the die and the surface of the vacuum packaged body made of vacuum-packed resin material, a lubricant is applied to the inner surface of the die, or a lubricant is applied to the interface between the inner surface of the die and the vacuum packaged body. A lubricated state can be achieved by providing a sheet into which a lubricant is mixed. The lubricant mentioned in the present invention is a fluid with a viscosity of 5000 poise or less, preferably 1000 poise or less during molding, such as liquid paraffin, various silicone oils such as polydimethylsiloxane, stearic acid, stearic acid metal salts, etc. In addition to various fatty acids and their metal salts, various surfactants, glycerin, polyethylene glycol, low molecular weight polyethylene, mixtures of these fluids, commonly used lubricants can be used. Orientation by compression at a temperature above the glass transition temperature and below the melting point of the resin substrate can be achieved by uniformly plug-flowing the stacked substrates in a die due to compressive force. Uniform plug flow molding can be achieved by keeping the interface between the inner surface of the die and the surface of the vacuum package well lubricated. In the present invention, uniaxial orientation, 2
Although any type of axial orientation can be performed, this method is especially suitable for biaxially oriented molding.
An axially oriented sheet can be formed well. In the present invention, the stretching ratio can be selected as required, but is preferably 2 to 10 times, more preferably 3 to 7 times in terms of area ratio. Particularly, what can be well molded in the present invention is PMMA having a weight average molecular weight of 1 million or more, or an ultra-high molecular weight biaxially stretched thin sheet mainly composed of MMA. The performance of ultra-high molecular weight PMMA is particularly markedly improved by biaxial stretching, that is, impact resistance and chemical resistance are significantly improved. The present invention will be explained with reference to the drawings. FIG. 1 shows the process of forming a biaxially oriented sheet by compression molding. FIG. 2 shows the relationship between the thickness of the biaxially oriented sheet and the necessary compressive force when Co (MMA-AA) is made into a biaxially oriented sheet by the method shown in FIG. FIG. 3 shows the process of molding a biaxially oriented sheet by the compression molding method of the present invention. FIG. 4 shows various methods of placing the four layers of resin substrates of the present invention on top of each other in a non-adhered state. In Fig. 1, a lubricant is applied to the inner surface 2 of the compression die 1, and a plate-shaped substrate 3 of thermoplastic resin is placed (1
-1) The substrate 3 is heated to a temperature above the glass transition temperature and below the melting point, and then compressed to cause the substrate 3 to plug flow and become biaxially oriented (1-2), and then cooled as it is to form the biaxially oriented sheet 4. obtain. The compressive force required to form the biaxially oriented sheet 4 varies depending on the type of resin, stretching temperature, stretching ratio, thickness of the biaxially oriented sheet, etc. Figure 2 shows the relationship between the thickness of the biaxially oriented sheet and the required compressive force when Co (MMA-AA) containing 5% by weight of methyl acrylate is stretched at 140°C to 5 times the area ratio using the method shown in Figure 1. This is what is shown. The thinner the biaxially oriented sheet, the higher the compressive force required. The manufacturing cost of a compression molding device increases in proportion to the compression force, and therefore, the thinner the sheet, the higher the molding cost. The present invention provides an improved method for forming thin sheets that are expensive to form.
Furthermore, as shown in FIG. 1, the method that previously allowed molding of only one sheet at a time is now capable of molding two or more sheets at a time, thereby improving productivity. FIG. 3 explains the invention. After applying a lubricant to the inner surface 6 of the compression die 5, a non-adhesive film 8 is placed on each interface between the four thermoplastic resin bases 7, and the entire stacked base is covered with a non-adhesive resin film. 14, and placed in a compression die (3-1). Above the glass transition temperature of substrate 7,
After heating to below the melting point, the material 7 is compressed and plug-flowed to form four biaxially oriented sheets 9 (3-2), which are then cooled and vacuum packaged into four biaxially oriented sheets. 9 from the compression die 5 (3-3), then the non-adhesive resin film 14 is removed, each biaxially oriented sheet is peeled off, and the non-adhesive film is further peeled off from the oriented sheet to form a thin biaxially oriented sheet. Obtain an oriented sheet 10 (3-4). Also,
In the present invention, by transporting and storing the non-adhesive resin film 14 before removing it, and peeling off each sheet as necessary, it is possible to reduce the effort and staining of the sheets during loading. FIG. 4 shows various methods for placing two or more layers of thermoplastic resin substrates on top of each other in a non-adhesive manner. (4-1) is a method of placing a non-adhesive resin film 13 on each interface and surface of the resin base 11;
(4-2) are two types of resins 15 that are non-adhesive to each other,
16, (4-3) shows the case where the resin base has three layers consisting of the surface layer 17 and the inner core 18, and a three-layer biaxially oriented sheet is molded, and the three-layer resin This is a method in which two substrates are stacked and a non-adhesive film 19 is placed on the interface and both surfaces.
In the present invention, by vacuum packaging the resin base,
It is possible to prevent air from remaining at the overlapped interface and deteriorating the surface of the molded product. If a resin base with a mirror-like smooth surface is used, a non-adhesive resin film or sheet with a mirror-like smooth surface is vacuum packaged as shown in , and then compression molded and biaxially oriented, biaxially oriented molding with a smooth surface is obtained. Goods can be obtained. The film or sheet to be vacuum packed may be the same as or different from the film or sheet placed on each resin substrate interface. For stable plug flow compression molding, it is preferable to use a sheet on the outermost surface that has good slippage with the inner surface of the die. The present invention is a compression molding method particularly suitable for molding thin biaxially stretched sheets, and the molding method of the present invention
Thin biaxially stretched sheets with a thickness of about 10 μm to 1 mm can be formed well. It is inefficient to mold thin biaxially stretched sheets one by one by compression molding, but in the present invention, two or more sheets, and if necessary, ten or more sheets can be stacked and molded. According to the present invention, thin sheets of biaxially stretched sheets made of ultra-high molecular weight polymers, resins with high softening temperatures, easily thermally decomposable gun resins, etc., which are generally difficult to mold, can be molded well. By the molding method of the present invention, it is possible to mold thin oriented sheets, which have been difficult to mold in the past, and a plurality of oriented sheets can be molded by one compression molding, which has a large economic effect. By the molding method of the present invention, thin oriented sheets of various thermoplastic resins can be economically molded. Can be used for face plates, name plates for various office equipment, name plates for automobiles, parts for various glazing agents, etc. Example 1 A 4 mm thick ultra-high molecular weight PMMA sheet with a smooth surface and a weight average molecular weight of 1.5 million, polymerized by the cell cast method, was used as a resin base, five sheets of the base were stacked, and a 100 μm thick mirror-like sheet of polypropylene was placed at the interface of each base. The 6-ply thick-walled base material was vacuum-packed with the above-mentioned polypropylene sheet to obtain a base material for compression biaxial orientation molding. As shown in FIG. 3, polydimethylsiloxane was applied to the inner surface of the compression die, and the compression die and resin base were heated to 150° C. and compressed to cause plug flow, resulting in biaxial orientation with an area ratio of 4 times. After cooling the compression die and cooling the biaxially oriented molded product,
The molded products were taken out from the compression die, each molded product was peeled off from each other, and the polypropylene was further peeled off to obtain five 1 mm thick PMMA biaxially oriented sheets with smooth surfaces. The compression force required for the above compression molding was 90 Kg/cm 2 per biaxially oriented sheet. The tensile properties of a 1 mm thick PMMA biaxially oriented sheet and a non-oriented PMMA sheet molded by the molding method of the present invention were as follows.

【表】 本発明で成形された2軸配向シートは伸びが大
きく、タフネスに優れたシートであつた。 比較例 1 実施例1で用いた4mm厚のPMMAシートを素
地とし、第1図に示した圧縮成形法により2軸配
向成形を行つた。面積比で4倍に2軸配向し、1
枚の2軸配向シートを得た。圧縮成形の必要圧縮
力は、2軸配向シート当り240Kg/cm2であつた。 実施例 2 次に示す各樹脂、各フイルムを用い、次に示す
各成形温度で実施例1と同様に成形を行つた。
[Table] The biaxially oriented sheet molded according to the present invention had high elongation and excellent toughness. Comparative Example 1 The 4 mm thick PMMA sheet used in Example 1 was used as a base material, and biaxially oriented molding was performed by the compression molding method shown in FIG. Biaxially oriented 4 times the area ratio, 1
Two biaxially oriented sheets were obtained. The compression force required for compression molding was 240 Kg/cm 2 per biaxially oriented sheet. Example 2 Molding was carried out in the same manner as in Example 1 using the following resins and films at the following molding temperatures.

【表】 いずれの樹脂においても、表面平滑な1mm厚の
2軸配向シートが、1度の成形で5枚得られた。 実施例 3 メチルアアクリレート5重量%のCo(MMA−
AA)の表面平滑な2mm厚シートを樹脂素地と
し、10枚重ねて、実施例1と同様に140℃で成形
を行い、0.5mm厚の表面平滑な2軸配向シートを、
1度の圧縮成形で10枚得た。 実施例 4 セルキヤスト法で重合したPMMAの表面平滑
な2mm厚シートとビスフエバノール系ポリカーボ
ネート(PC)の表面平滑な2mm厚シートを
PMMA/PC/PMMAと重ね合わせて1組の樹
脂素地とし、該素地を2組重ね合わせてその界面
にナイロン12の100μm厚の鏡面フイルムを置い
た。PMMA/PC/PMMA/Nylon12/
PMMA/PC/PMMAと重ねた積層物をナイロ
ン12の100μm厚フイルムで真空包装した後、ポ
リジメチルシロキサンが塗布された圧縮ダイで、
170℃で圧縮し面積比で4倍に2軸配向した。冷
却後2軸配向成形物をダイより取り出し、成形品
を剥離し、ナイロン12のフイルムを取り去ると、
PMMA/PC/PMMAの3層で1.5厚の表面平滑
な2軸延伸シートが2枚得られた。 実施例 5 ポリエーテルイミド(ゼネラルエレクトリツク
社製ULTEM1000)の2mm厚シートを樹脂素地と
して5枚重ね、該素地の各界面と両表面にポリ4
−メチルペンテン−1の100μm厚シートを置き、
さらに全体をポリ4−メチルペンテン−1の
100μm厚シートで真空包装して圧縮2軸配向成
形の素地とした。該素地を230℃に加熱された2
枚の鉄板で5分間15分間はさんで加熱し、該素地
を、230℃に加熱され且つ潤滑されたダイで圧縮
して、面積比で4倍に2軸配向した。ダイを冷却
して配向成形品を冷却して取り出し、各成形品を
剥離して、0.5mm厚のポリエーテルイミドの2軸
配向シートを5枚得た。 実施例 6 硬質ポリ塩化ビニルの2mm厚シート(筒中プラ
スチツク工業(株)製サンロイドプレート)を樹脂素
地とし、該素地を5枚重ね、その各素地の界面に
高密度ポリエチレンの100μm厚シートを置き、
さらに全体を高密度ポリエチレンの100μm厚シ
ートで真空包装して圧縮成形用素地とした。該素
地を用いて実施例1と同様に成形を行い、0.5mm
厚の良好な硬質ポリ塩化ビニルの2軸配向シート
を5枚得た。
[Table] For each resin, five biaxially oriented sheets with a smooth surface and a thickness of 1 mm were obtained in one molding process. Example 3 Methyl acrylate 5% by weight Co(MMA-
A 2 mm thick sheet with a smooth surface of AA) was used as a resin base, 10 sheets were stacked and molded at 140°C in the same manner as in Example 1, and a 0.5 mm thick biaxially oriented sheet with a smooth surface was made.
Ten pieces were obtained by one compression molding. Example 4 A 2 mm thick sheet with a smooth surface of PMMA polymerized by the cell cast method and a 2 mm thick sheet with a smooth surface of bisphevanol polycarbonate (PC) were prepared.
PMMA/PC/PMMA were stacked to form one set of resin substrates, two sets of the substrates were stacked together, and a 100 μm thick mirror film of nylon 12 was placed on the interface. PMMA/PC/PMMA/Nylon12/
After vacuum-packaging the PMMA/PC/PMMA laminate with a 100 μm thick nylon 12 film, it is processed using a compression die coated with polydimethylsiloxane.
It was compressed at 170°C and biaxially oriented with an area ratio of 4 times. After cooling, the biaxially oriented molded product is removed from the die, the molded product is peeled off, and the nylon 12 film is removed.
Two 1.5-thick biaxially stretched sheets with smooth surfaces were obtained with three layers of PMMA/PC/PMMA. Example 5 Five 2 mm thick sheets of polyetherimide (ULTEM1000 manufactured by General Electric Company) were stacked together as a resin base, and each interface and both surfaces of the base were coated with polyurethane.
- Place a 100 μm thick sheet of methylpentene-1,
Furthermore, the whole is made of poly 4-methylpentene-1.
It was vacuum packed with a 100 μm thick sheet and used as a base material for compression biaxial orientation molding. The substrate was heated to 230℃ 2
The material was heated by sandwiching it between two iron plates for 5 minutes and 15 minutes, and the material was compressed with a lubricated die heated to 230.degree. C., resulting in biaxial orientation with an area ratio of 4 times. The die was cooled to cool and take out the oriented molded products, and each molded product was peeled off to obtain five biaxially oriented sheets of polyetherimide having a thickness of 0.5 mm. Example 6 A 2 mm thick sheet of hard polyvinyl chloride (Sunroid Plate manufactured by Tsutsunaka Plastic Industries Co., Ltd.) was used as a resin base, five sheets of the base were stacked, and a 100 μm thick sheet of high density polyethylene was placed at the interface of each base. ,
Furthermore, the whole was vacuum-packed with a 100 μm thick sheet of high-density polyethylene to form a base material for compression molding. Using the base material, molding was carried out in the same manner as in Example 1, and 0.5 mm
Five biaxially oriented hard polyvinyl chloride sheets with good thickness were obtained.

【図面の簡単な説明】[Brief explanation of drawings]

第1図は圧縮成形により2軸配向シートを成形
する経過を示す概略説明図、第2図はCo(MMA
−AA)を第1図の方法で2軸配向シートにした
時の2軸配向シート厚みと必要圧縮力の関係を示
すグラフ、第3図は本発明の圧縮成形法により2
軸配向シートを成形する経過を示す概略説明図、
第4図は本発明の4層の樹脂素地を互いに非接着
状態にして重ねて置く各種方法を示す概略断面図
である。
Figure 1 is a schematic explanatory diagram showing the process of forming a biaxially oriented sheet by compression molding, and Figure 2 is a Co (MMA
-AA) is made into a biaxially oriented sheet by the method shown in Figure 1. A graph showing the relationship between the thickness of the biaxially oriented sheet and the necessary compressive force.
A schematic explanatory diagram showing the process of forming an axially oriented sheet,
FIG. 4 is a schematic cross-sectional view showing various methods of stacking four layers of resin substrates of the present invention in a non-adhered state.

Claims (1)

【特許請求の範囲】 1 熱可塑性樹脂素地を圧縮ダイ内で圧縮して配
向成形品を成形する方法に於て、 2層以上の熱可塑性樹脂素地を重ね、 且つ、各素地の間に、素地と非接着性で、成
形時における粘度が素地の粘度の1/30〜30倍と
なる樹脂フイルムあるいはシートを置くことに
より、素地を互いに非接着状態にし、 重ね合わせた素地全体を真空包装してダイ内
に置き、 ダイ内表面と上記真空包装体表面との界面を
潤滑状態にし、 該樹脂素地のガラス転移温度以上、融点以下
で圧縮して樹脂素地を配向させ、 冷却後ダイ内より取り出し、各素地より成形
された配向成形品を互いに剥離して2個以上の
成形品を得ることを特徴とする配向成形品の圧
縮成形法。
[Scope of Claims] 1. In a method for forming an oriented molded product by compressing a thermoplastic resin base material in a compression die, two or more layers of thermoplastic resin base materials are stacked, and a base material is placed between each base material. By placing a non-adhesive resin film or sheet whose viscosity during molding is 1/30 to 30 times the viscosity of the substrate, the substrates are made non-adhesive to each other, and the entire stacked substrate is vacuum-packed. placed in a die, lubricated the interface between the inner surface of the die and the surface of the vacuum package, compressed at a temperature above the glass transition temperature and below the melting point of the resin base to orient the resin base, and after cooling, taken out from the die; A compression molding method for an oriented molded product, which comprises peeling off oriented molded products formed from each base material to obtain two or more molded products.
JP58234950A 1983-12-15 1983-12-15 Compression molding of oriented molding product Granted JPS60149420A (en)

Priority Applications (2)

Application Number Priority Date Filing Date Title
JP58234950A JPS60149420A (en) 1983-12-15 1983-12-15 Compression molding of oriented molding product
US06/681,791 US4668729A (en) 1983-12-15 1984-12-14 Process for compression molding of thermoplastic resin and moldings molded by said process

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP58234950A JPS60149420A (en) 1983-12-15 1983-12-15 Compression molding of oriented molding product

Publications (2)

Publication Number Publication Date
JPS60149420A JPS60149420A (en) 1985-08-06
JPH0367845B2 true JPH0367845B2 (en) 1991-10-24

Family

ID=16978796

Family Applications (1)

Application Number Title Priority Date Filing Date
JP58234950A Granted JPS60149420A (en) 1983-12-15 1983-12-15 Compression molding of oriented molding product

Country Status (1)

Country Link
JP (1) JPS60149420A (en)

Cited By (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2011043619A (en) * 2009-08-20 2011-03-03 Nippon Shokubai Co Ltd Front plate for image display device, and method for manufacturing the same

Families Citing this family (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS63239019A (en) * 1986-03-18 1988-10-05 Asahi Chem Ind Co Ltd Tetrafluoroethylene polymer molded item
US5558930A (en) * 1994-06-23 1996-09-24 Tredegar Industries, Inc. Heat sealable, high moisture barrier film and method of making same
JP6040547B2 (en) * 2011-03-28 2016-12-07 東レ株式会社 Manufacturing method of fiber reinforced plastic

Citations (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS56113427A (en) * 1980-02-14 1981-09-07 Toyobo Co Ltd Film-forming method
JPS57144728A (en) * 1981-03-02 1982-09-07 Asahi Chem Ind Co Ltd New oriented molded article

Patent Citations (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS56113427A (en) * 1980-02-14 1981-09-07 Toyobo Co Ltd Film-forming method
JPS57144728A (en) * 1981-03-02 1982-09-07 Asahi Chem Ind Co Ltd New oriented molded article

Cited By (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2011043619A (en) * 2009-08-20 2011-03-03 Nippon Shokubai Co Ltd Front plate for image display device, and method for manufacturing the same

Also Published As

Publication number Publication date
JPS60149420A (en) 1985-08-06

Similar Documents

Publication Publication Date Title
US4668729A (en) Process for compression molding of thermoplastic resin and moldings molded by said process
US4439493A (en) Multilayer heat sealable oriented packaging film and method of forming same
US3620898A (en) Heat shrinkable cushioning material
US3971866A (en) Thermoformable release liner
US5709932A (en) Ultra thin heat-shrinkable monolayer polyethylene films
JP5297233B2 (en) Release film for semiconductor encapsulation process and method for producing resin-encapsulated semiconductor using the same
JP7463478B2 (en) Release film for resin sealing process by compression molding
EP2594387A1 (en) Polymer article and method for producing polymer article
JP2017100397A (en) Release film for processing, application thereof and manufacturing method of resin encapsulated semiconductor using the same
EP0570222A1 (en) Polypropylene foam trays having a barrier layer
JPH0367845B2 (en)
WO1994008787A1 (en) Crosslinked acrylic sheet with enhanced vacuum molding attributes
JP3160221B2 (en) Polyethylene multilayer film
JPH06238830A (en) Composite film and production thereof
JPH05302068A (en) Surface-protecting film
US5275866A (en) Thermoformed poly (methyl methacrylate) sheets with protective film and adhesion layer
TW202012140A (en) Release film for semiconductor sealing process and method for manufacturing electronic component using same
JPH0365270B2 (en)
JPS60257212A (en) Compression molding process for resin orientated molded product of thermoplastic
US5279883A (en) Thermoformed poly (methyl methacrylate) sheets with protective film
JP2020019564A (en) Packaging sheet and package using the same
JP2002326327A (en) Method for manufacturing thermoplastic composite foam
JPS59152855A (en) Solid multilayer acryl sheet-shaped shape
JPH0155087B2 (en)
CN113348066B (en) Biaxially oriented polyamide film and rolled polyamide film roll

Legal Events

Date Code Title Description
LAPS Cancellation because of no payment of annual fees