JPH0365900A - Ultrasonic doppler sensor - Google Patents

Ultrasonic doppler sensor

Info

Publication number
JPH0365900A
JPH0365900A JP20188689A JP20188689A JPH0365900A JP H0365900 A JPH0365900 A JP H0365900A JP 20188689 A JP20188689 A JP 20188689A JP 20188689 A JP20188689 A JP 20188689A JP H0365900 A JPH0365900 A JP H0365900A
Authority
JP
Japan
Prior art keywords
piezoelectric material
high polymer
sensor
film
metallic plate
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Pending
Application number
JP20188689A
Other languages
Japanese (ja)
Inventor
Masahiro Sasaki
佐々木 政弘
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Mitsubishi Petrochemical Co Ltd
Original Assignee
Mitsubishi Petrochemical Co Ltd
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Mitsubishi Petrochemical Co Ltd filed Critical Mitsubishi Petrochemical Co Ltd
Priority to JP20188689A priority Critical patent/JPH0365900A/en
Publication of JPH0365900A publication Critical patent/JPH0365900A/en
Pending legal-status Critical Current

Links

Landscapes

  • Investigating Or Analyzing Materials By The Use Of Ultrasonic Waves (AREA)
  • Ultra Sonic Daignosis Equipment (AREA)
  • Transducers For Ultrasonic Waves (AREA)
  • Measurement Of Velocity Or Position Using Acoustic Or Ultrasonic Waves (AREA)

Abstract

PURPOSE:To prevent a broken fault by fitting a metallic plate whose acoustic impedance is 15X10<6>kg/m<2>.S or over and whose thickness is 10-300mu to at least one side of a film shaped high polymer group piezoelectric material and coating them with a flexible high polymer material so as to avoid generation of elongation to the piezoelectric material even in the case of bent. CONSTITUTION:A metallic plate whose acoustic impedance is 15X10<6>kg/m<2>.S or over and whose thickness is 10-300mu is fitted on at least one side of a film shaped high polymer group piezoelectric material and they are coated with a flexible high polymer material. In this case, since elongation/contraction is caused around the film metallic plate 2 fitted on the high polymer group piezoelectric material 1 even when the sensor is bent, the elongation of the piezoelectric material 1 is small and the possibility of broken material is precluded. Moreover, when the film metallic plate 2 with a large acoustic impedance is fitted on the high polymer group piezoelectric material 1, the amplitude is suppressed, the frequency is lowered and it is possible for vibration at desired frequencies of 1-3.5MHz to generate an ultrasonic wave and the thickness of the piezoelectric material is thin. Thus, the sensor with excellent flexibility is obtained.

Description

【発明の詳細な説明】 〔産業上の利用分野〕 本発明は、分娩監視装置に係り、胎児の心拍情報を測定
するための超音波ドプラセンサに関する。
DETAILED DESCRIPTION OF THE INVENTION [Field of Industrial Application] The present invention relates to a delivery monitoring device, and more particularly to an ultrasonic Doppler sensor for measuring fetal heartbeat information.

〔従来の技術とその課題〕[Conventional technology and its issues]

胎児の心拍情報を得る手段として従来よりセラミック圧
電素子を用いた超音波ドプラセンサは広く臨床に利用さ
れている。しかし圧電素子自体が硬く、もろいため、広
い面積のセンサを作ることは困難である。
Ultrasonic Doppler sensors using ceramic piezoelectric elements have been widely used clinically as a means of obtaining fetal heartbeat information. However, since the piezoelectric element itself is hard and brittle, it is difficult to create a sensor with a large area.

そこで、高分子系圧電材料を用いると、本用途分野の周
波数は主に1〜3.5μHzであり、高分子系圧電材料
の厚みとしては300〜1000μmが必要である。
Therefore, when a polymeric piezoelectric material is used, the frequency in this application field is mainly 1 to 3.5 μHz, and the thickness of the polymeric piezoelectric material is required to be 300 to 1000 μm.

従って厚さが厚いために分極時に絶縁破壊を生じ易く歩
留りが悪いばかりでなく、厚みが400〜1000μm
になると、高分子系と言えども剛直性になり、例えば折
り曲げ半径5 mm程度に折り曲げると、圧電膜にクラ
ックが発生し、圧電膜が折損するおそれがあった。
Therefore, not only is the thickness easy to cause dielectric breakdown during polarization, resulting in poor yields, but also the thickness is 400 to 1000 μm.
In this case, even though it is a polymeric material, it becomes rigid, and if it is bent to a bending radius of about 5 mm, for example, cracks may occur in the piezoelectric film and there is a risk that the piezoelectric film will break.

〔発明の概要〕[Summary of the invention]

本発明センサは上記の課題を解決するため、第1、第2
図示のように膜状の高分子系圧電材料の、少なくとも片
面に音響インピーダンスが15X106kg/m2・S
以上で厚みが10〜300μの金属板を添着し、柔軟性
高分子材料で被覆してなる構成としたものである。
In order to solve the above problems, the sensor of the present invention has two
As shown in the figure, the acoustic impedance of at least one side of the film-like polymeric piezoelectric material is 15X106kg/m2・S.
In the above configuration, a metal plate having a thickness of 10 to 300 μm is attached and coated with a flexible polymer material.

このような構成とすることによりセンサが曲げられたと
きにも高分子系圧電材料1に添着された膜状金属板2を
中心にして伸縮が生じるため、圧電材料1の伸びが小さ
くなり、折損のおそれがなくなる。
With such a configuration, even when the sensor is bent, expansion and contraction occurs centering around the membrane metal plate 2 attached to the polymeric piezoelectric material 1, so the expansion and contraction of the piezoelectric material 1 becomes small, and breakage occurs. The fear of

また、高分子系圧電材料1に音響インピーダンスの大き
な膜状金属板2を添着すると、従来のものよりも振幅が
抑制され、周波数が低くなり、希望する周波数l〜3.
5MHzで振動させ、超音波を発生させることが可能と
なり、圧電材料を薄くすることができる。
Furthermore, when a film-like metal plate 2 with a large acoustic impedance is attached to the polymeric piezoelectric material 1, the amplitude is suppressed and the frequency becomes lower than that of the conventional one, and the desired frequency l to 3.
It is possible to generate ultrasonic waves by vibrating at 5 MHz, and the piezoelectric material can be made thinner.

〔発明の詳細な説明〕[Detailed description of the invention]

以下図面に基づいて本発明の詳細な説明する。 The present invention will be described in detail below based on the drawings.

第1図は本発明センサの一実施例の構成を示す断面図、
第2図はそのセンサ部の一例の構成を示す詳細断面であ
る。
FIG. 1 is a sectional view showing the configuration of an embodiment of the sensor of the present invention;
FIG. 2 is a detailed sectional view showing the configuration of an example of the sensor section.

第1図中1は膜状の高分子系圧電材料で、少なくともそ
の片面に音響インピーダンスが15X10’kg/m2
・S以上で、厚みが10〜300μmの金属板2、例え
ば厚みが80μmの銅板2が添着されている。高分子系
圧電材料1の他面にはシールド材3゜例えば膜状網目銅
板3が添着されている。これらの銅板2.3には白色ポ
リエステルフィルム等のプラスチックフィルム4が被覆
されており、褒状銅板2側の中央部以外はウレタンゴム
等の柔軟性高分子材料5で被覆されている。
1 in Figure 1 is a film-like polymeric piezoelectric material, and at least one side thereof has an acoustic impedance of 15X10'kg/m2.
- A metal plate 2 having a thickness of 10 to 300 μm, for example, a copper plate 2 having a thickness of 80 μm is attached. A shielding material 3°, for example a film-like mesh copper plate 3, is attached to the other surface of the polymeric piezoelectric material 1. These copper plates 2.3 are covered with a plastic film 4 such as a white polyester film, and the areas other than the central portion on the award copper plate 2 side are covered with a flexible polymeric material 5 such as urethane rubber.

高分子系圧電材料1としては、合成の高分子物質からな
る圧電体、あるいは、高分子物質中に強誘電体セラミッ
クス粉末を混練した複合型の圧電体を指し、具体的には
、ポリ弗化ビニリデン樹脂フィルム、シアン化ビニリデ
ンと該ビニリデンと共重合可能なモノマー例えば酢酸ビ
ニルとの共重合体、弗化ビニリデンと他の共重合可能な
モノマー(例エバトリプルオロエチレン、シアン化ビニ
リデンなど)との共重合樹脂フィルムなどを延伸し分極
した圧電材料や、強誘電性セラミックス(例えばチタン
ジルコン酸鉛〉と高分子(例えばポリ弗化ビニリデン樹
脂、弗化ビニリデンの共重合樹脂、ナイロン樹脂、ポリ
アセタール樹脂、弗素系コム、NBR,クロロプレンゴ
ム、クロルヒドリンゴム、塩素化ポリエチレンエラスト
マーの1つもしくは2つ以上の組合せから成る)との複
合物に分極処理を施した圧電性高分子複合材料などが用
いられる。その厚みは30〜350μm程度が好ましい
The polymer-based piezoelectric material 1 refers to a piezoelectric material made of a synthetic polymer material or a composite piezoelectric material made by kneading ferroelectric ceramic powder into a polymer material. Vinylidene resin films, copolymers of vinylidene cyanide and monomers copolymerizable with vinylidene, such as vinyl acetate, and copolymers of vinylidene fluoride with other copolymerizable monomers (e.g., evatrifluoroethylene, vinylidene cyanide, etc.). Piezoelectric materials made by stretching and polarizing copolymer resin films, ferroelectric ceramics (e.g. titanium lead zirconate) and polymers (e.g. polyvinylidene fluoride resin, vinylidene fluoride copolymer resin, nylon resin, polyacetal resin, A piezoelectric polymer composite material is used, which is obtained by polarizing a composite material consisting of one or a combination of two or more of fluorine-based comb, NBR, chloroprene rubber, chlorohydrin rubber, and chlorinated polyethylene elastomer. The thickness is preferably about 30 to 350 μm.

膜状金属板2としては、銅、鉛、ステンレス。The film metal plate 2 is made of copper, lead, or stainless steel.

リン青銅、ニッケル等を用いることができ、音響インピ
ーダンスが小さいと共振周波数の低下効果が小さくなる
。そのため膜状金属板2としては音響インピーダンスが
15X10’ kg/m2・S以上のものが必要である
。この金属板2の厚みとしては一般に10〜300μm
特に30〜200μmが好適であり、l〜3.5μHz
の周波数で発振することができ、かつ分極時に絶縁破壊
し難くなり、電気機械結合定数が大幅に向上し、また歩
留りも向上する。
Phosphor bronze, nickel, etc. can be used, and if the acoustic impedance is small, the effect of lowering the resonance frequency will be small. Therefore, the membrane metal plate 2 needs to have an acoustic impedance of 15×10' kg/m2·S or more. The thickness of this metal plate 2 is generally 10 to 300 μm.
In particular, 30 to 200 μm is suitable, and 1 to 3.5 μHz
It is possible to oscillate at a frequency of , and it is difficult to cause dielectric breakdown during polarization, and the electromechanical coupling constant is significantly improved, and the yield is also improved.

プラスチックフィルム4としてはポリエステル。The plastic film 4 is polyester.

ポリイミドが適する。Polyimide is suitable.

また、柔軟性高分子材料としては、ウレタンゴム、シリ
コンゴム、熱可塑性エラストマー等を用いることができ
る。
Further, as the flexible polymer material, urethane rubber, silicone rubber, thermoplastic elastomer, etc. can be used.

第3図(a)〜(イ)は本発明における高分子系圧電材
料と膜状金属板の貼合せ構造例を示し、第3図(a)は
高分子系圧電材料1の一面に膜状金属板2を添着した例
、第3図(5)は高分子系圧電材料10両面に金属板2
を添着した例、第3図(C)は金属板2の両面に高分子
系圧電材料1を添着した例及び第3図(イ)は金属板2
の一面に2枚の高分子系圧電材料1を2層に添着した例
であり、いずれの構造であってもよい。
3(a) to 3(a) show an example of a structure in which a polymeric piezoelectric material and a film-like metal plate are bonded together in the present invention, and FIG. FIG. 3 (5) shows an example in which metal plates 2 are attached to both sides of the polymeric piezoelectric material 10.
3 (C) is an example in which the polymeric piezoelectric material 1 is attached to both sides of the metal plate 2, and FIG. 3 (A) is an example in which the metal plate 2 is attached.
This is an example in which two polymer-based piezoelectric materials 1 are attached in two layers to one surface of the structure, and any structure may be used.

第4図は本発明センサを構成する超音波の発信。FIG. 4 shows the transmission of ultrasonic waves constituting the sensor of the present invention.

受信部の構造例を示す断面図で、本発明センサ13は超
音波発信部6と、超音波受信部7よりなり、発信、受信
部6.7は高分子系圧電材料lを用いて構成したもので
ある。
This is a cross-sectional view showing an example of the structure of a receiving section, and the sensor 13 of the present invention is composed of an ultrasonic transmitting section 6 and an ultrasonic receiving section 7, and the transmitting and receiving sections 6.7 are constructed using a polymeric piezoelectric material l. It is something.

本発明における発信部6と受信部7は、第5図示のよう
に高分子系圧電材料1の裏面に共通電極8を添着し、上
面には、発信部6を構成する発信用電極9と受信部7を
構成する受信用電極10を僅かな間隙をおいて形成する
The transmitting part 6 and the receiving part 7 in the present invention have a common electrode 8 attached to the back surface of the polymeric piezoelectric material 1 as shown in FIG. The receiving electrodes 10 constituting the portion 7 are formed with a slight gap therebetween.

また、発信用電極9と受信用電極10は、第4図に示す
ように櫛型として、互いに嵌合した状態に配設しである
Further, as shown in FIG. 4, the transmitting electrode 9 and the receiving electrode 10 are arranged in a comb shape so as to fit into each other.

共通電極89発信用電極9及び受信用電極10は、アル
ミニウムの蒸着あるいは導電性ゴムの添着等によって形
成することができる。
The common electrode 89, the transmitting electrode 9, and the receiving electrode 10 can be formed by vapor deposition of aluminum, adhesion of conductive rubber, or the like.

各電極8.9.10のリード線8a 、 9a 、10
aはケーブル11を介してプラグ12に接続する。14
はケーブル端子部で、8a−10aはそれぞれグランド
線。
Lead wires 8a, 9a, 10 for each electrode 8.9.10
a is connected to a plug 12 via a cable 11. 14
are the cable terminals, and 8a-10a are the ground wires.

発信信号線及び受信信号線としてケーブル11に接続す
る。15はリード線 (グランド線)8aに接続された
グランド端子、16はリード線(発信信号線〉9aに接
続された発信端子、17はリード線(受信信号線)10
aに接続された受信端子である。
It is connected to the cable 11 as a transmission signal line and a reception signal line. 15 is a ground terminal connected to the lead wire (ground wire) 8a, 16 is a transmission terminal connected to the lead wire (transmission signal line) 9a, and 17 is a lead wire (reception signal line) 10
This is a receiving terminal connected to a.

プラグ12は、超音波領域の高周波を発信して、共通電
極8と発信用電極9に印加して超音波を発生させる装置
本体く図示せず)に接続される。
The plug 12 is connected to a device main body (not shown) that transmits high frequency waves in the ultrasonic range and applies them to the common electrode 8 and the transmitting electrode 9 to generate ultrasonic waves.

また、発生した超音波の反射波は受信部7で受信され、
共通電極8と受信用電極10間に電気信号が発生する。
Further, the reflected waves of the generated ultrasonic waves are received by the receiving section 7,
An electrical signal is generated between the common electrode 8 and the receiving electrode 10.

発生した電気信号は装置本体に入力され、例えばオシロ
スコープ等の表示器に表示されるように構成されている
The generated electrical signal is input to the main body of the apparatus and is configured to be displayed on a display such as an oscilloscope.

上記実施例では、発信部6と受信部7を区分したが、区
分を省略して全面に単一の電極を形成して発信と受信を
兼用させてもよい。
In the above embodiment, the transmitting section 6 and the receiving section 7 are divided, but the division may be omitted and a single electrode may be formed on the entire surface to serve both the transmitting and receiving functions.

このような構成とすることによりセンサが曲げられたと
きにも高分子系圧電材料1に添着された膜状金属板2を
中心にして伸縮が生じるため、圧電材料1の伸びが小さ
くなり、折損のおそれがなくなる。
With such a configuration, even when the sensor is bent, expansion and contraction occurs centering around the membrane metal plate 2 attached to the polymeric piezoelectric material 1, so the expansion and contraction of the piezoelectric material 1 becomes small, and breakage occurs. The fear of

また、高分子系圧電材料lに音響インピーダンスの大き
な膜状金属板2を添着すると、従来のものよりも振幅が
抑制され、周波数が低くなり、低周波数の超音波を発生
させることが可能である。
Furthermore, when a film-like metal plate 2 with large acoustic impedance is attached to a polymer-based piezoelectric material 1, the amplitude is suppressed and the frequency becomes lower than that of conventional ones, making it possible to generate low-frequency ultrasonic waves. .

第6図は高分子系圧電材料の厚みと周波数の関係を示す
図で、a線は圧電材料のみ、b線は圧電材料に金属板を
貼り付けた場合を示す。第7図は本発明の使用状態を示
す断面図である。
FIG. 6 is a diagram showing the relationship between the thickness and frequency of a polymeric piezoelectric material, where the a line shows only the piezoelectric material and the b line shows a case where a metal plate is attached to the piezoelectric material. FIG. 7 is a sectional view showing the state of use of the present invention.

本発明センサ13は第7図に示すように母体!壁面18
に適合して装着する。発信部6に高周波のパルス波ない
しバースト波電圧をケーブル11.プラグ12を介して
加えると、超音波が発生し、この超音波が母体内の胎児
19の心臓に照射される。胎児心臓表面や弁などで反射
し、心臓の動きにより変調されたドプラ信号(音響信号
)はセンサの受信部で胎児心拍信号(電気信号)に変換
され、ケーブル11.プラグ12で装置本体に導かれる
。発信部6、受信部7は高分子系圧電材料1を用いて構
成され、全体を柔軟性高分子材料5で覆い、厚さを数m
mにしたため全体がフレキシブルであり、かつ素子の面
積を広くすることにより非常に広範囲の胎児心拍情報を
採取することができる。
The sensor 13 of the present invention is a main body as shown in FIG. Wall surface 18
Attach it in accordance with the A high frequency pulse wave or burst wave voltage is applied to the transmitter 6 through a cable 11. When applied through the plug 12, ultrasonic waves are generated and are irradiated to the heart of the fetus 19 within the mother's body. The Doppler signal (acoustic signal) reflected by the surface of the fetal heart, valves, etc. and modulated by the movement of the heart is converted into a fetal heartbeat signal (electrical signal) at the receiving section of the sensor, and then sent to the cable 11. The plug 12 leads to the main body of the device. The transmitting section 6 and the receiving section 7 are constructed using a polymeric piezoelectric material 1, and are entirely covered with a flexible polymeric material 5 to a thickness of several meters.
m, the entire device is flexible, and by increasing the area of the element, it is possible to collect fetal heartbeat information over a very wide range.

〔発明の効果〕〔Effect of the invention〕

以上のように本発明によれば、発信部、受信部の面積が
広く、フレキシブルであるため分娩時は、胎児の進んで
いく方向に、本発明超音波ドプラセンサを装着すること
により、従来のように胎児が徐々に移動する毎にセンサ
の位置を変更(再調整)する必要もなく、最適の心拍情
報を得ることができ、管理の省力化をはかることができ
る。また妊娠中の検査においても、少々胎児が動いても
、超音波の発信、受信部の面積が広いため、分娩時開様
、センサ位置の再調整の頻度を極めて少なくすることが
できる。また、全体がフレキシブルなため、従来のセラ
ミックのセンサでは母体表面に強い圧迫感、違和感を生
じさせたが、これを極めて改善することができる。
As described above, according to the present invention, the area of the transmitting part and the receiving part is large and flexible. There is no need to change (readjust) the position of the sensor each time the fetus gradually moves, and optimal heartbeat information can be obtained, leading to labor-saving management. In addition, even during pregnancy tests, even if the fetus moves slightly, the area of the ultrasound transmitting and receiving sections is large, so the frequency of readjusting the position of the fetus during delivery and the position of the sensor can be extremely reduced. In addition, since the entire sensor is flexible, it is possible to significantly improve the strong pressure and discomfort felt on the surface of the base body with conventional ceramic sensors.

また、金属板を添着したから、膜厚の薄い圧電材料でも
って低周波を発振することができ、1〜3、5MHz程
度の高周波を用いるときも、柔軟性に優れたセンサとす
ることができる。更にまた、曲げに対しても圧電材料に
伸びが発生することがなく折損事故を防止することがで
きる。
In addition, since the metal plate is attached, it is possible to oscillate low frequencies using a thin piezoelectric material, and even when using high frequencies of about 1 to 3.5 MHz, the sensor can be made with excellent flexibility. . Furthermore, the piezoelectric material does not elongate when bent, and breakage accidents can be prevented.

【図面の簡単な説明】[Brief explanation of drawings]

第1図は本発明センサの一実施例の構成を示す断面図、
第2図はそのセンサ部の一例の構成を示す詳細断面、第
3図(a)〜(d)は本発明における高分子系圧電材料
と膜状金属板の貼合せ構造例を示す断面図、第4図は本
発明センサを構成する超音波の発信、受信部の構造例を
示す断面図、第5図は本発明における圧電素子部の構成
を示す断面図、第6図は高分子系圧電材料の厚みと周波
数の関係を示す図、第7図は本発明の使用状態を示す断
面図である。 1・・・・・・高分子系圧電材料、2・・・・・・膜状
金属板(銅板)、3・・・・・・シールド材(膜状網目
銅板)、4・・・・・・プラスチックフィルム(白色ポ
リエステルフィルム)、5・・・・・・柔軟性高分子材
料(ウレタンゴム)、6・・・・・・発信部、7・・・
・・・受信部、8・・・・・・共通電極、8a = 9
a 、10a・・・・・・リード線、9・・・・・・発
信用電極、10・・・・・・受信用電極、11・・・・
・・ケーブル、13・・・・・・本発明センサ。 写9臣 写5臘 吾θ玲 の4I切 ひパン 月台愼シ
FIG. 1 is a sectional view showing the configuration of an embodiment of the sensor of the present invention;
FIG. 2 is a detailed cross-sectional view showing the configuration of an example of the sensor part, and FIGS. 3(a) to (d) are cross-sectional views showing an example of the lamination structure of the polymeric piezoelectric material and the film-like metal plate in the present invention. FIG. 4 is a cross-sectional view showing an example of the structure of the ultrasonic transmitting and receiving part constituting the sensor of the present invention, FIG. 5 is a cross-sectional view showing the structure of the piezoelectric element part of the present invention, and FIG. A diagram showing the relationship between material thickness and frequency, and FIG. 7 is a sectional view showing the state of use of the present invention. 1... Polymer piezoelectric material, 2... Membrane metal plate (copper plate), 3... Shielding material (membrane mesh copper plate), 4...・Plastic film (white polyester film), 5... Flexible polymer material (urethane rubber), 6... Transmission section, 7...
...Receiving section, 8...Common electrode, 8a = 9
a, 10a... Lead wire, 9... Electrode for transmitting, 10... Electrode for receiving, 11...
...Cable, 13...Sensor of the present invention. Sha 9 Minister Sha 5 Rōgo θ Rei's 4I Kirihipan Tsukidai Shinshi

Claims (1)

【特許請求の範囲】[Claims]  膜状の高分子系圧電材料の、少なくとも片面に音響イ
ンピーダンスが15×10^6kg/m^2・S以上で
厚みが10〜300μの金属板を添着し、柔軟性高分子
材料で被覆してなる超音波ドプラセンサ。
A metal plate with an acoustic impedance of 15 x 10^6 kg/m^2 S or more and a thickness of 10 to 300μ is attached to at least one side of a film-like polymeric piezoelectric material, and the metal plate is covered with a flexible polymeric material. Ultrasonic Doppler sensor.
JP20188689A 1989-08-02 1989-08-02 Ultrasonic doppler sensor Pending JPH0365900A (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP20188689A JPH0365900A (en) 1989-08-02 1989-08-02 Ultrasonic doppler sensor

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP20188689A JPH0365900A (en) 1989-08-02 1989-08-02 Ultrasonic doppler sensor

Publications (1)

Publication Number Publication Date
JPH0365900A true JPH0365900A (en) 1991-03-20

Family

ID=16448474

Family Applications (1)

Application Number Title Priority Date Filing Date
JP20188689A Pending JPH0365900A (en) 1989-08-02 1989-08-02 Ultrasonic doppler sensor

Country Status (1)

Country Link
JP (1) JPH0365900A (en)

Similar Documents

Publication Publication Date Title
US10770058B2 (en) Acoustic lens for micromachined ultrasound transducers
US5175709A (en) Ultrasonic transducer with reduced acoustic cross coupling
Saitoh et al. A dual frequency ultrasonic probe for medical applications
US8758253B2 (en) Ultrasonic probe and ultrasonic diagnostic apparatus using the same
JP6744491B2 (en) Ultrasonic device for contact
EP2424273B1 (en) Ultrasonic probe and ultrasonic imaging apparatus
JPH02261437A (en) Ultrasonic probe
JPS5825450B2 (en) Biological transducer
WO2007126069A1 (en) Ultrasonic probe
CN103069844B (en) Ultrasonic probe and its diagnostic ultrasound equipment of use
US8564177B2 (en) Piezopolymer transducer with matching layer
JP7191049B2 (en) Ultrasound interface element and method
US9166141B2 (en) Process of manufacturing a piezopolymer transducer with matching layer
EP2679160A2 (en) Ultrasonic probe having a bonded chemical barrier
JPH0453117Y2 (en)
US11638571B2 (en) Ultrasound probe and ultrasound diagnostic apparatus
US20130226006A1 (en) Ultrasonic probe
EP1700641A1 (en) Endocavity ultrasonic probe
TW201818870A (en) Wearable ultrasonic sensing device
JPH0365900A (en) Ultrasonic doppler sensor
JP2935551B2 (en) Ultrasonic probe
EP3868482B1 (en) Ultrasonic probe with grooved matching layer
JPS63305839A (en) Ultrasonic doppler sensor for obsteric tocomonitor
CN111558514B (en) Ultrasonic transducer
JP2010213766A (en) Ultrasonic probe and ultrasonic diagnosis apparatus