JPH035597B2 - - Google Patents

Info

Publication number
JPH035597B2
JPH035597B2 JP56058821A JP5882181A JPH035597B2 JP H035597 B2 JPH035597 B2 JP H035597B2 JP 56058821 A JP56058821 A JP 56058821A JP 5882181 A JP5882181 A JP 5882181A JP H035597 B2 JPH035597 B2 JP H035597B2
Authority
JP
Japan
Prior art keywords
signal
variable
pass filter
level
low
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Expired - Lifetime
Application number
JP56058821A
Other languages
Japanese (ja)
Other versions
JPS57172511A (en
Inventor
Takehiko Asano
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Sanyo Electric Co Ltd
Original Assignee
Sanyo Electric Co Ltd
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Sanyo Electric Co Ltd filed Critical Sanyo Electric Co Ltd
Priority to JP56058821A priority Critical patent/JPS57172511A/en
Publication of JPS57172511A publication Critical patent/JPS57172511A/en
Publication of JPH035597B2 publication Critical patent/JPH035597B2/ja
Granted legal-status Critical Current

Links

Classifications

    • GPHYSICS
    • G11INFORMATION STORAGE
    • G11BINFORMATION STORAGE BASED ON RELATIVE MOVEMENT BETWEEN RECORD CARRIER AND TRANSDUCER
    • G11B20/00Signal processing not specific to the method of recording or reproducing; Circuits therefor
    • G11B20/00007Time or data compression or expansion

Landscapes

  • Engineering & Computer Science (AREA)
  • Signal Processing (AREA)
  • Signal Processing Not Specific To The Method Of Recording And Reproducing (AREA)

Abstract

PURPOSE:To reduce the influence of higher harmonic noise due to the discontinuance of a waveform by providing a variable low-pass filter whose cutoff frequency is controlled by a control signal based upon the processing arithmetic result of a sound piece connection part by an arithmetic processing means. CONSTITUTION:A playback signal reproduced at a different speed from that in recording is equalized by a reproducing equalizer 2 and amplified, and the amplified signal is written in, for example, four BBDs 3-6 and read successively to be outputted through the switching of analog switches 7-10, so that reproduction is carried out through a variable low-pass filter 19. On the other hand, the output of the reproducing equalizer 2 is applied to a variable and-pass dividing filter 20, and levels of a low and a high frequency part are detected by sensors 21 and 22. Both the levels are compared mutually by a level comparator 23; when the level of the low frequency component is higher, a variable low-pass filter 19 operates to cut higher harmonics of the discontinuous part of a signal, and when not, the variable low-pass filter is turned off to mask higher harmonic noise with the signal of the high frequency component.

Description

【発明の詳細な説明】 本発明は録音テープ等に記録された音声信号を
記録速度とは異なる速度で再生する際に用いる時
間軸圧縮伸長処理装置(以下時間軸圧縮伸長装置
と略す)の処理信号の品質改善に関する。
DETAILED DESCRIPTION OF THE INVENTION The present invention relates to processing of a time axis compression/expansion processing device (hereinafter abbreviated as “time axis compression/expansion device”) used when reproducing an audio signal recorded on a recording tape or the like at a speed different from the recording speed. Concerning signal quality improvement.

テープレコーダなどに記録された内容をゆつく
りと聞いたり、あるいは短時間で聞きとつたりす
るために、再生速度を可変にすることがよく行な
われる。この場合、単に再生速度を変えただけで
は再生信号の周波数帯域が変化してしまい予解度
の低下した再生音しか得られない。したがつてこ
の変化した再生信号の周波数帯域を原信号の周波
数帯域に戻し、良好な了解度を有する再生音を得
るため時間軸の圧縮操作が行なわれる。時間軸圧
伸処理にはいくつかの方法があるが、例えば
BBDのようなアナログ記憶素子を用い、一定の
読み出しクロツク信号に対し再生速度に応じて書
き込みクロツク信号を変える方法が知られてい
る。
In order to listen to the content recorded on a tape recorder or the like more slowly or to understand it in a shorter time, the playback speed is often made variable. In this case, simply changing the playback speed changes the frequency band of the playback signal, resulting in only a playback sound with reduced predictability. Therefore, in order to return the changed frequency band of the reproduced signal to the frequency band of the original signal and obtain reproduced sound with good intelligibility, a time axis compression operation is performed. There are several methods for time axis companding processing, for example
It is known to use an analog storage element such as a BBD and change the write clock signal depending on the playback speed for a constant read clock signal.

第1図はBBDを用いた可変速再生テープレコ
ーダの時間軸圧伸回路の構成図である。再生ヘツ
ド1で拾われた信号は再生イコライザ(P.Eq)
2で等化、増幅された後、4個のBBD、即ち
BBD−13、BBD−24、BBD−35、BBD
−46に書き込みクロツク(fw)で順次書き込
まれる。読み出しは読み出しクロツク(fR)でや
はりBBD−13からBBD−24へと順番に行な
われる。読み出された信号はアナログスイツチ
AS−17〜AS−410の開閉により1つのシリ
アル信号として出力され、増幅器11に印加され
る。4個のBBDにより周期的に書き込みおよび
読み出しを行なうことにより時間軸圧伸処理が可
能となる。しかし、この処理を単純に周期的に繰
り返すだけでは、4個のBBDの出力信号をシリ
アル信号に合成した場合、その接続部の殆んどで
信号波形に不連続が生ずる。この波形の不連続性
は高調波ノイズの原因となり、合成音のS/Nを
低下させ、明瞭度を落とす。
FIG. 1 is a block diagram of a time-base companding circuit of a variable speed playback tape recorder using a BBD. The signal picked up by playback head 1 is sent to the playback equalizer (P.Eq)
After being equalized and amplified by 2, there are 4 BBDs, i.e.
BBD-13, BBD-24, BBD-35, BBD
-46 are sequentially written using the write clock (fw). Reading is also performed sequentially from BBD-13 to BBD-24 with the read clock (f R ). The read signal is an analog switch
The signal is output as one serial signal by opening and closing AS-17 to AS-410, and is applied to the amplifier 11. By periodically writing and reading information using four BBDs, time-axis companding processing becomes possible. However, if this process is simply repeated periodically, when the output signals of four BBDs are combined into a serial signal, discontinuities will occur in the signal waveform at most of the connections. This waveform discontinuity causes harmonic noise, lowers the S/N of the synthesized sound, and reduces clarity.

したがつて、この波形の不連続が生じないよう
な接続方法が必要になり、この処理を演算処理部
13に受け持たせる。第2図はこの処理の原理を
示し、再生速度が記録速度の約0.7倍の時の例で
ある。第2図において、T1,T2…は処理周期で
あり、通常20〜30msecの一定値に設定される。
再生増幅された信号は各BBDへ順次書き込まれ、
それぞれt1,t2,t3,t4の区間の信号がそれぞれ
BBDに取り込まれる。この信号はT4〜T7の処理
周期に順次読み出されて合成出力となる。ここで
各BBDに信号が書き込まれる区間t1,t2,t3,t4
が演算処理部13によつて決定され、不連続箇所
の無い信号波形が合成される。すなわち、ある処
理周期に読み出されているBBDに書き込まれた
信号の後端部とその次に読み出されるべきBBD
に書き込まれている信号の先端部との相関が書き
込み処理と並行して計算され、最も相関が高くな
るように書き込みクロツクの停止時期が決定され
る。この処理によつて滑らかな接続部を持つ良質
な合成波形が得られる。この処理は再生信号を比
較的短時間(20〜30msec)の信号片に分割し、
低速度再生の場合は再生信号の一部を繰り返して
用い、逆に高速再生の場合には再生信号の一部を
切り拾てて合成するということであるから、その
対象とする信号が持つ冗長性に大きく依存してい
ると言うことができる。したがつて信号の取り込
みのタイミングによつては書き込みクロツクの制
御だけでは波形接続処理が良好に行なえないこと
が起り得る。この時には合成信号波形の接続部で
は波形に不連続が生じ前述の如くに高調波ノイズ
が発生し、合成信号の品質が低下している。この
状態を演算処理部13から見れば、前述の波形パ
ターンの一連の相関計算の結果それら計算値に極
値と認めるべきものがなく、相関がとれなかつた
という事にほかならない。したがつてある計算結
果について極値と認めるかどうかの判断のため実
験的に確認された基準値を設定することができれ
ば、合成信号波形に不連続が生じる場合演算処理
部13で何らかの処置がとれる。この考えによつ
て可変ローパスフイルタ19を用いた時間軸圧伸
回路の例を第3図に示す。第3図において時間軸
圧伸の基本的動作は第1図と全く同じである。こ
こでは前述の波形不連続による高調波ノイズの影
響を軽減する目的で演算処理部13によつて制御
される可変ローパスフイルタ(Var.LPF)19
が備えてある。
Therefore, a connection method that does not cause this waveform discontinuity is required, and the arithmetic processing section 13 is responsible for this process. FIG. 2 shows the principle of this process, and is an example when the playback speed is approximately 0.7 times the recording speed. In FIG. 2, T 1 , T 2 . . . are processing cycles, which are usually set to a constant value of 20 to 30 msec.
The reproduced and amplified signals are sequentially written to each BBD,
The signals in the sections t 1 , t 2 , t 3 , and t 4 are respectively
Incorporated into BBD. This signal is sequentially read out in processing cycles from T 4 to T 7 and becomes a composite output. Here, the intervals t 1 , t 2 , t 3 , t 4 in which signals are written to each BBD
is determined by the arithmetic processing unit 13, and a signal waveform without discontinuities is synthesized. In other words, the rear end of the signal written to the BBD being read in a certain processing cycle and the BBD to be read next
The correlation with the leading end of the signal being written in is calculated in parallel with the writing process, and the timing to stop the write clock is determined so that the correlation is the highest. Through this processing, a high-quality composite waveform with smooth connections can be obtained. This process divides the reproduced signal into relatively short (20 to 30 msec) signal pieces,
In the case of low-speed playback, a part of the playback signal is repeatedly used, and in the case of high-speed playback, a part of the playback signal is cut out and synthesized, so the redundancy of the target signal is reduced. It can be said that it largely depends on gender. Therefore, depending on the timing of signal acquisition, waveform connection processing may not be performed satisfactorily by controlling the write clock alone. At this time, discontinuity occurs in the waveform at the connection portion of the composite signal waveform, causing harmonic noise as described above and degrading the quality of the composite signal. Looking at this state from the arithmetic processing unit 13, it is nothing but a result of the series of correlation calculations of the waveform patterns described above, and there is no value that should be recognized as an extreme value among the calculated values, and no correlation can be taken. Therefore, if it is possible to set an experimentally confirmed reference value for determining whether or not a certain calculation result is recognized as an extreme value, the arithmetic processing unit 13 can take some action if discontinuity occurs in the composite signal waveform. . An example of a time-base companding circuit using a variable low-pass filter 19 based on this idea is shown in FIG. In FIG. 3, the basic operation of time axis companding is exactly the same as in FIG. Here, a variable low-pass filter (Var.LPF) 19 controlled by the arithmetic processing unit 13 is used for the purpose of reducing the influence of harmonic noise caused by the aforementioned waveform discontinuity.
is provided.

一般に音声信号の周波数スペクトルは300Hz〜
500Hz付近にピークを有し、それより高い周波数
領域では周波数上昇と共にレベルが低下してい
る。それに対し、前記波形の不連続によつて生じ
るノイズは高い周波数領域にまで広がつたスペク
トル分布を示しており、聴感上耳ざわりである。
このような高調波ノイズの影響を軽減する目的で
可変ローパスフイルタ19を用いる。可変ローパ
スフイルタ19を駆動するタイミングは前述の如
く相関計算の結果、一定の基準値以上の計算値が
得られない時点である。可変ローパスフイルタ1
9遮断周波数は通常は音声品質に影響のない値
(6KHz程度)に設定しておき、駆動時点では高周
波ノイズ成分の軽減効果が得られる2〜3KHz程
度にまで低下させる。第3図の構成により、相関
がとれない場合、接続部で発生するノイズの影響
は効果的に軽減できる。ところで再生信号のスペ
クトル分布に注目した場合、低い周波数成分が優
勢な再生信号であるならば、接続部に生じるノイ
ズの影響を軽減するために前述のように可変ロー
パスフイルタ19を動作させても、信号自体に及
ぶ影響は比較的少ないと考えられる。ところが再
生信号中に可変ローパスフイルタ19の動作時の
遮断周波数より高い周波数成分を多く持つような
場合には、可変ローパスフイルタ19を動作させ
ることで信号自体が受ける影響、いい換えれば一
部の信号成分が欠落することが問題となつてく
る。更に、前記可変ローパスフイルタ19の動作
時の遮断周波数よりも高い周波数成分(便宜上高
周波成分と呼ぶ)のレベルが充分に高い場合に
は、逆にその高周波成分による高調波ノイズに対
するマスキング効果が現れるので、高周波成分が
多い再生信号の場合前述の可変ローパスフイルタ
19を動作させる事については更に工夫の余地が
ある。
Generally, the frequency spectrum of audio signals is 300Hz~
It has a peak around 500Hz, and in the higher frequency range, the level decreases as the frequency increases. On the other hand, the noise caused by the discontinuity of the waveform has a spectral distribution that extends to a high frequency region, and is audibly unpleasant.
A variable low-pass filter 19 is used to reduce the influence of such harmonic noise. The timing at which the variable low-pass filter 19 is driven is when, as a result of the correlation calculation, no calculated value greater than a certain reference value is obtained, as described above. Variable low pass filter 1
9. The cutoff frequency is normally set to a value (about 6 KHz) that does not affect the audio quality, but at the time of driving, it is lowered to about 2 to 3 KHz, which provides the effect of reducing high frequency noise components. With the configuration shown in FIG. 3, the influence of noise generated at the connection can be effectively reduced when correlation cannot be established. By the way, when paying attention to the spectral distribution of the reproduced signal, if the reproduced signal is dominated by low frequency components, even if the variable low-pass filter 19 is operated as described above to reduce the influence of noise generated at the connection part, It is thought that the effect on the signal itself is relatively small. However, if the reproduced signal contains many frequency components higher than the cutoff frequency when the variable low-pass filter 19 is operating, operating the variable low-pass filter 19 will affect the signal itself, or in other words, reduce the effect on some of the signals. The problem is that some ingredients are missing. Furthermore, if the level of a frequency component higher than the cutoff frequency during operation of the variable low-pass filter 19 (referred to as a high-frequency component for convenience) is sufficiently high, the high-frequency component will have a masking effect on harmonic noise. In the case of a reproduced signal containing many high frequency components, there is room for further improvement in operating the variable low-pass filter 19 described above.

この点に着目してなされた本発明の時間軸圧伸
回路の実施例を第4図に示す。
FIG. 4 shows an embodiment of the time-base companding circuit of the present invention, which has been made with this point in mind.

第4図の構成においても、時間軸圧伸処理につ
いては前記第1図および第3図と同様である。再
生イコライザ2からの再生信号は再生速度制御入
力(Vs)によつてクロスオーバ周波数(fcr)を
変化させる事が可能な可変帯域分割フイルタ20
に入力される。可変帯域分割フイルタ20のクロ
スオーバ周波数(fcr)は、通常再生の場合は、
fcrn=2〜3KHzに設定されているが、再生速度
が変化するにつれ、再生速度(m)を m=変速再生速度/通常再生速度 ……(1) とすれば、 fcr=m・fcrn ……(2) にしたがつて演算処理部13により制御される。
In the configuration shown in FIG. 4, the time axis companding process is the same as in FIGS. 1 and 3. The reproduction signal from the reproduction equalizer 2 is passed through a variable band division filter 20 whose crossover frequency (fcr) can be changed by the reproduction speed control input (Vs).
is input. In normal playback, the crossover frequency (fcr) of the variable band division filter 20 is as follows:
fcrn=2~3KHz, but as the playback speed changes, if the playback speed (m) is m=variable playback speed/normal playback speed...(1), then fcr=m・fcrn... (2) It is controlled by the arithmetic processing unit 13 according to.

可変帯域分割フイルタ20からの低域成分は低
域成分のレベルを検出するレベル検出器−121
に入力され、高域成分は高域成分のレベルを検出
するレベル検出器−222に入力される。前述し
たように音声信号のスペクトル分布を見れば、高
域信号のレベルは低域信号のレベルに比較して低
いものとなつているが、聴感上は耳につき易い帯
域となつている。したがつて前記レベル検出器
2,22のゲインはこの聴感上の補正が施された
ものになつている。レベル検出器121からの低
域レベル信号はレベル・コンパレータ23の非反
転入力端子に入力され、レベル検出器222から
の高域レベル信号はレベル・コンパレータ23の
反転入力端子に入力される。レベル・コンパレー
タ23の出力はANDゲート24の一方の入力と
なり、演算処理部13からの可変ローパスフイル
タ動作制御信号をゲートする。ANDゲート24
の出力は可変ローパスフイルタ19の制御入力端
子に入力される。この構成による動作を説明す
る。可変帯域分割フイルタ20は前記(2)式に示し
たように再生速度に応じてそのクロスオーバ周波
数が変化するように制御されるので、再生速度に
よつて再生信号の周波数帯域が変化してもその低
域成分および高域成分を正確に分割抽出すること
ができる。したがつてレベル検出器121及びレ
ベル検出器222からのレベル信号は通常再生時
における低域レベル信号及び高域レベル信号と同
じものが得られる。低域レベル信号と高域レベル
信号をレベル・コンパレータ23で比較し、低域
レベル信号の方が高域レベル信号より大である場
合はレベル・コンパレータ23の出力は“H”で
演算処理部13からの可変ローパスフイルタ動作
制御信号はANDゲート24でゲートされること
なく、可変ローパスフイルタ19に印加されるこ
とになる。即ち、この場合は低域信号成分が充分
に優勢で、可変ローパスフイルタ19の作動によ
つての影響が少ない状態である。逆に高域レベル
信号の方が低域レベル信号より大である場合は、
レベル・コンパレータ24の出力は“L”とな
り、演算処理部13からの可変ローパスフイルタ
動作制御信号をゲートし、可変ローパスフイルタ
19は作動しないことになる。即ちこの場合は可
変ローパスフイルタ19の作動によつての高域成
分欠落で信号の品質が著しく劣化する状態であ
り、可変ローパスフイルタ19を作動させぬこと
で良い結果が得られるのである。
The low frequency component from the variable band division filter 20 is detected by a level detector 121 that detects the level of the low frequency component.
The high frequency component is input to a level detector 222 which detects the level of the high frequency component. As mentioned above, looking at the spectral distribution of the audio signal, the level of the high-frequency signal is lower than the level of the low-frequency signal, but it is a band that is audible to the ear. Therefore, the gains of the level detectors 2 and 22 have been subjected to this audible correction. The low level signal from the level detector 121 is input to the non-inverting input terminal of the level comparator 23, and the high level signal from the level detector 222 is input to the inverting input terminal of the level comparator 23. The output of the level comparator 23 becomes one input of an AND gate 24, which gates the variable low-pass filter operation control signal from the arithmetic processing section 13. AND gate 24
The output of is input to the control input terminal of the variable low-pass filter 19. The operation of this configuration will be explained. The variable band division filter 20 is controlled so that its crossover frequency changes according to the playback speed as shown in equation (2) above, so even if the frequency band of the playback signal changes depending on the playback speed, The low frequency component and high frequency component can be accurately divided and extracted. Therefore, the level signals from the level detector 121 and the level detector 222 are the same as the low level signal and the high level signal during normal reproduction. The level comparator 23 compares the low level signal and the high level signal, and if the low level signal is higher than the high level signal, the output of the level comparator 23 is "H" and the arithmetic processing unit 13 The variable low-pass filter operation control signal from is applied to the variable low-pass filter 19 without being gated by the AND gate 24. That is, in this case, the low-frequency signal component is sufficiently dominant, and the influence of the operation of the variable low-pass filter 19 is small. Conversely, if the high-frequency level signal is larger than the low-frequency level signal,
The output of the level comparator 24 becomes "L", gates the variable low-pass filter operation control signal from the arithmetic processing section 13, and the variable low-pass filter 19 does not operate. That is, in this case, the quality of the signal is significantly degraded due to the loss of high-frequency components due to the operation of the variable low-pass filter 19, and good results can be obtained by not operating the variable low-pass filter 19.

なお、上述の実施例においてはアナログ記憶素
子にBBDを用いた例について説明したが、本発
明はこの外、A−D変換器、RAM(ランダム・
アクセス・メモリ)、D−A変換器を用いてデイ
ジタル処理する場合にも全く同様に適用できる。
また、デイジタル・フイルタを用いてこれを演算
処理部で制御すれば、帯域成分のレベル検出もソ
フトウエアで処理可能となる事は言うまでもな
い。
In addition, in the above-mentioned embodiment, an example was explained in which a BBD was used as an analog storage element, but the present invention can also be applied to an A-D converter, a RAM (random memory element), etc.
It can be applied in exactly the same way to the case of digital processing using an access memory) or a DA converter.
Furthermore, it goes without saying that if a digital filter is used and controlled by an arithmetic processing section, level detection of band components can also be processed by software.

以上述べたように本発明による構成によれば、
接続部の波形パターンの相関計算結果によつて直
ちに可変ローパスフイルタを作動させる場合に比
較し、全体的に品質のよい処理信号の得られる時
間軸圧伸装置の実現が可能である。
As described above, according to the configuration according to the present invention,
Compared to the case where the variable low-pass filter is activated immediately based on the correlation calculation result of the waveform pattern of the connection part, it is possible to realize a time-base companding apparatus that can obtain a processed signal of higher quality overall.

【図面の簡単な説明】[Brief explanation of the drawing]

第1図は従来の時間軸圧伸回路を示す回路図、
第2図は音声素片の接続部に不連続部の生じない
ようにするための信号処理を示す信号処理タイム
チヤート、第3図は可変ローパスフイルタを使用
した本発明の時間軸圧縮伸長回路を示すブロツク
回路図、第4図は本発明の他の実施例を示すブロ
ツク回路図である。 3,4,5,6……記憶手段、7,8,9,1
0……アナログスイツチ、11……増幅器、12
……A−D変換器、13……演算処理回路、14
……クロツク制御回路、15……電圧制御発振
器、16,18……分周回路、17……発振器、
19……可変ローパスフイルタ、20……可変帯
域分割フイルタ、21,22……第1第2レベル
検出器、23……レベル比較器、24……アンド
ゲート。
Figure 1 is a circuit diagram showing a conventional time-base companding circuit.
Fig. 2 is a signal processing time chart showing signal processing to prevent discontinuities from occurring at the connecting parts of speech segments, and Fig. 3 is a time axis compression/expansion circuit of the present invention using a variable low-pass filter. FIG. 4 is a block circuit diagram showing another embodiment of the present invention. 3, 4, 5, 6... storage means, 7, 8, 9, 1
0...Analog switch, 11...Amplifier, 12
...A-D converter, 13... Arithmetic processing circuit, 14
... Clock control circuit, 15 ... Voltage controlled oscillator, 16, 18 ... Frequency dividing circuit, 17 ... Oscillator,
19... Variable low-pass filter, 20... Variable band division filter, 21, 22... First and second level detector, 23... Level comparator, 24... AND gate.

Claims (1)

【特許請求の範囲】 1 音声信号を時間的に分割して抽出した音声片
を接続処理する際、先行音声片の後端部近傍の値
と後続音声片の先端部近傍の値との相関度を演算
し且つ該相関度の最も高い時点で前記後続音声片
の先端部を前記先行音声片の後端部に接続させる
よう制御する演算処理手段と、該演算処理手段に
よる接続部の処理演算の結果に基づく制御信号に
より遮断周波数が制御される可変ローパスフイル
タとを備えることを特徴とする音声信号の時間軸
圧縮伸長回路。 2 音声信号を時間的に分割して抽出した音声片
を接続処理する際、先行音声片の後端部近傍の値
と後続音声片の先端部近傍の値との相関度を演算
し且つ該相関度の最も高い時点で前記後続音声片
の先端部を前記先行音声片の後端部に接続させる
よう制御する演算処理手段と、該演算処理手段に
よる接続部の処理演算の結果に基づく制御信号に
より遮断周波数が制御される可変ローパスフイル
タと、音声信号の時間軸圧伸比に応じてクロスオ
ーバ周波数が変化可能であり且つ入力音声信号が
供給される可変帯域分割フイルタと、該可変帯域
分割フイルタからの低域信号の信号レベルを検出
する第1レベル検出器と、前記可変帯域分割フイ
ルタからの高域信号の信号レベルを検出する第2
レベル検出器と、前記両レベル検出器の出力信号
を比較して前記第2レベル検出器出力の方が大で
ある時に前記可変ローパスフイルタの制御信号を
ゲートするレベル・コンパレータとを備えること
を特徴とする音声信号の時間軸圧縮伸長回路。
[Claims] 1. When performing a connection process on speech segments extracted by temporally dividing a speech signal, the degree of correlation between a value near the rear end of a preceding speech segment and a value near the leading end of a subsequent speech segment. arithmetic processing means for calculating and controlling the leading end of the subsequent speech piece to be connected to the rear end of the preceding speech piece at the point when the degree of correlation is highest; 1. A time-base compression/expansion circuit for an audio signal, comprising: a variable low-pass filter whose cutoff frequency is controlled by a control signal based on the result. 2. When connecting the speech segments extracted by temporally dividing the speech signal, calculate the degree of correlation between the value near the rear end of the preceding speech segment and the value near the leading end of the succeeding speech segment, and calculate the correlation. an arithmetic processing means for controlling the leading end of the subsequent speech piece to be connected to the rear end of the preceding speech piece at the highest point in time, and a control signal based on the result of the processing calculation of the connection part by the arithmetic processing means; a variable low-pass filter whose cut-off frequency is controlled; a variable band division filter whose crossover frequency can be changed according to the time-domain companding ratio of the audio signal; and a variable band division filter to which the input audio signal is supplied; and from the variable band division filter. a first level detector that detects the signal level of the low frequency signal from the variable band division filter; and a second level detector that detects the signal level of the high frequency signal from the variable band division filter.
It is characterized by comprising a level detector, and a level comparator that compares the output signals of both the level detectors and gates the control signal of the variable low-pass filter when the output of the second level detector is larger. A time-base compression/expansion circuit for audio signals.
JP56058821A 1981-04-17 1981-04-17 Time-axis compressing and expanding circuit Granted JPS57172511A (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP56058821A JPS57172511A (en) 1981-04-17 1981-04-17 Time-axis compressing and expanding circuit

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP56058821A JPS57172511A (en) 1981-04-17 1981-04-17 Time-axis compressing and expanding circuit

Publications (2)

Publication Number Publication Date
JPS57172511A JPS57172511A (en) 1982-10-23
JPH035597B2 true JPH035597B2 (en) 1991-01-25

Family

ID=13095290

Family Applications (1)

Application Number Title Priority Date Filing Date
JP56058821A Granted JPS57172511A (en) 1981-04-17 1981-04-17 Time-axis compressing and expanding circuit

Country Status (1)

Country Link
JP (1) JPS57172511A (en)

Families Citing this family (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2599363B2 (en) * 1985-12-13 1997-04-09 カシオ計算機株式会社 Loop region automatic determination device
JPH05292467A (en) * 1992-04-08 1993-11-05 Sony Corp Reproducing device for audio signal
JP2570112B2 (en) * 1993-06-11 1997-01-08 日本電気株式会社 PCM audio recording and playback device
EP2261892B1 (en) * 2001-04-13 2020-09-16 Dolby Laboratories Licensing Corporation High quality time-scaling and pitch-scaling of audio signals

Citations (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS52134303A (en) * 1976-05-06 1977-11-10 Tadamutsu Hirata Device for processing audio pitch correcting signal

Patent Citations (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS52134303A (en) * 1976-05-06 1977-11-10 Tadamutsu Hirata Device for processing audio pitch correcting signal

Also Published As

Publication number Publication date
JPS57172511A (en) 1982-10-23

Similar Documents

Publication Publication Date Title
JP3630609B2 (en) Audio information reproducing method and apparatus
JPH035597B2 (en)
US6070135A (en) Method and apparatus for discriminating non-sounds and voiceless sounds of speech signals from each other
JPS601654A (en) Recording device
JP3474596B2 (en) Audio recording device
JPH0575366A (en) Signal processing circuit in audio equipment
JP3127659B2 (en) Audio signal processing equipment
JPS61120378A (en) Reproducing device
JP2799084B2 (en) Muting method of CD player
JP2516119B2 (en) Recording speed switching method for timer recording
JPH0962285A (en) Digital reproduction device
JPH02259699A (en) Sound recording and reproducing device
JPH01152499A (en) Double-speed reproducer
JPH08306128A (en) Recording and reproducing device
JPH09330094A (en) Voice reproducing device with variable tempo function
JPH08287610A (en) Audio data reproducing device
JPS6025698Y2 (en) Control signal switching circuit
JPH03237695A (en) Sound recording and reproducing device
JPH0218702A (en) Magnetic recording and reproducing device
JPS58161115A (en) Digital sound recording and reproducing device
JPH04229459A (en) Device and method for controlling audio regenerative signal at variable tape speed
JPH02203451A (en) Playing method for digital audio tape recorder
JPH05266634A (en) Method and apparatus for superposing audio data
KR970023203A (en) Background sound synthesis method and apparatus therefor for variable reproduction of voice signal
JPS6014422B2 (en) Playback signal compression device