JPH0352801B2 - - Google Patents

Info

Publication number
JPH0352801B2
JPH0352801B2 JP3618484A JP3618484A JPH0352801B2 JP H0352801 B2 JPH0352801 B2 JP H0352801B2 JP 3618484 A JP3618484 A JP 3618484A JP 3618484 A JP3618484 A JP 3618484A JP H0352801 B2 JPH0352801 B2 JP H0352801B2
Authority
JP
Japan
Prior art keywords
magnet
measured
displacement
present
measuring
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Expired
Application number
JP3618484A
Other languages
Japanese (ja)
Other versions
JPS60181603A (en
Inventor
Masanori Kunieda
Takeo Nakagawa
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Individual
Original Assignee
Individual
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Individual filed Critical Individual
Priority to JP3618484A priority Critical patent/JPS60181603A/en
Publication of JPS60181603A publication Critical patent/JPS60181603A/en
Publication of JPH0352801B2 publication Critical patent/JPH0352801B2/ja
Granted legal-status Critical Current

Links

Description

【発明の詳細な説明】 本発明は形状測定方法とりわけ磁力を利用した
形状測定方法に関する。
DETAILED DESCRIPTION OF THE INVENTION The present invention relates to a shape measuring method, particularly a shape measuring method using magnetic force.

製品形状の多様化、複雑化や製品加工組立技術
の高度化に伴い自由曲面を対象にした形状測定の
重要性が高まつており、ことに自由曲面の法線方
向や変位を簡便かつ能率よく計測する方法の開発
が望まれている。
With the diversification and complexity of product shapes and the advancement of product processing and assembly technology, the importance of shape measurement for free-form surfaces is increasing, and in particular, it is possible to easily and efficiently measure the normal direction and displacement of free-form surfaces. It is desired to develop a method for measuring this.

一般に自由間面の測定には接触子を被測定物に
接触させる方法がとられているが、この方法では
被測定面に傷を付けやすく、また方向性がある
点、摩擦による誤差の介入がある点などから、精
度が低く、連続化も達成できない。
Generally, the method of measuring a free surface is to bring a contact into contact with the object to be measured, but this method easily scratches the surface to be measured, is directional, and does not introduce errors due to friction. For certain reasons, accuracy is low and continuity cannot be achieved.

従つて、この種形状測定は非接触方式が望まし
く、たとえば、法線近傍の3点の座標値から曲面
上のある点の法線方向を算出する方法があるが、
多数の点の測定と演算が必要であるため実用性に
乏しいうらみがある。また変位計を正三角形の頂
点の位置に3個配列したり、2個の変位計をZ方
向など一つの力方向に可動に構成したセンサーを
用いる方法も考えられるが、精度確保の点からセ
ンサーの頭部を小さくできないため装置が大型化
し、局所的な曲率の変化を測定することができな
いという欠点がある。そのほか、レンズと鏡と受
光素子を用いた光学式のものもあるが、被測定物
の凹凸などによつて反射率が微妙に変化するため
誤差が大きくなるという問題がある。
Therefore, a non-contact method is preferable for this type of shape measurement; for example, there is a method of calculating the normal direction of a point on a curved surface from the coordinate values of three points near the normal.
This method has the disadvantage of being impractical because it requires measurement and calculation of a large number of points. It is also possible to arrange three displacement gauges at the vertices of an equilateral triangle, or use a sensor in which two displacement gauges are movable in one force direction such as the Z direction, but from the viewpoint of ensuring accuracy, the sensor The disadvantage is that the head of the device cannot be made small, making the device large, and local changes in curvature cannot be measured. In addition, there is an optical type that uses a lens, mirror, and light receiving element, but there is a problem in that the reflectance changes slightly depending on the irregularities of the object to be measured, resulting in large errors.

本発明は上記したような従来の形状測定法の不
具合を解消するために研究と実験を重ねて創案さ
れたもので、その目的とするところは、三次元自
由曲面の法線方向の検出、自由曲面との距離及び
角度の同時検出、直線面の傾き方向と角度の検
出、あるいはさらに穴の中心と方向の検出をも簡
便かつ連続的に行え、センサー構造もきわめて簡
単でヤンサ頭を小型化でき、局所的な曲率変化に
も追従することができるこの種形状測定方法を提
供することにある。
The present invention was created through repeated research and experiments in order to solve the problems of the conventional shape measurement method as described above, and its purpose is to detect the normal direction of a three-dimensional free-form surface, Simultaneous detection of the distance and angle to a curved surface, detection of the inclination direction and angle of a straight surface, or even the detection of the center and direction of a hole can be easily and continuously performed.The sensor structure is extremely simple, and the Yansa head can be made compact. The object of the present invention is to provide a shape measuring method of this type that can also follow local curvature changes.

この目的を達成するため、本発明は、異なる磁
性体の不連続境界面に働く応力が面に垂直方向成
分のみを有し、透磁率の大きい方から小さい方へ
向いている点に着目し、これを利用して磁力方式
で形状測定を行うようにしたもので、すなわち、
強磁性体からなる被測定面に磁石を接近させ、磁
石が被測定面の法線方向に吸引されることによる
変位を測定することで形状検出を行うようにした
ことを特徴とするものである。
To achieve this objective, the present invention focuses on the fact that the stress acting on the discontinuous interface between different magnetic materials has only a component perpendicular to the surface, and is oriented from the side with higher magnetic permeability to the side with lower magnetic permeability, This is used to measure the shape using a magnetic force method, that is,
The feature is that a magnet is brought close to a surface to be measured made of a ferromagnetic material, and shape detection is performed by measuring the displacement caused by the magnet being attracted in the normal direction of the surface to be measured. .

以下本発明の実施例を添付図面に基いて説明す
る。
Embodiments of the present invention will be described below with reference to the accompanying drawings.

第1図ないし第3図は本発明による形状測定方
法を適用して得たセンサーの実施例を示すもの
で、1は被測定物であり、少なくとも被測定面1
1は鉄などの強磁性体からなつている。2は磁石
であり、図示するものは永久磁石を用いている
が、電磁石を用いてもよいのは勿論である。磁石
2は角度の測定精度の点からセンサー先端にモー
メントが生じないような断面積にすべきであり、
図示するような円盤状に代え針状ないしこれに近
い形状寸法にすることが望ましい。磁束密度は感
度の面からできるだけ高いことが望ましい。
1 to 3 show examples of sensors obtained by applying the shape measuring method according to the present invention, in which 1 is an object to be measured, and at least a surface 1 to be measured is shown.
1 is made of a ferromagnetic material such as iron. 2 is a magnet, and although a permanent magnet is used in the illustrated example, it is of course possible to use an electromagnet. In terms of angle measurement accuracy, the magnet 2 should have a cross-sectional area that does not create a moment at the tip of the sensor.
It is preferable to use a needle-like shape or a shape close to this instead of a disk-like shape as shown in the figure. It is desirable that the magnetic flux density be as high as possible from the viewpoint of sensitivity.

3は前記磁石2を支持して被測定面11に非接
触で対峙させ、磁石の変位を後記する変位計に伝
達する支持体であり、第1図と第2図の実施例で
は横梁30およびこれから立上るたて梁31から
なる剛構造を用い、たて梁31の先端に磁石2を
接着など任意の方法で取付けており、横梁30を
もつてアーム等の支台6に固定するようになつて
いる。第3図の実施例はフレキシブルな支持体つ
まり或る範囲で支持はしているが、その範囲内で
は自由に磁石の変位を許す構造の支持体としたも
ので、たて梁31の先端に磁石2を取付け、たて
梁31の中間部に膨大部10を設けこれを静圧式
その他の空気軸受9で揺動、直動及び回転が可能
なように支えたものである。
Reference numeral 3 denotes a support body that supports the magnet 2 and makes it face the surface to be measured 11 in a non-contact manner, and transmits the displacement of the magnet to a displacement meter to be described later. A rigid structure consisting of a vertical beam 31 that is about to rise is used, and a magnet 2 is attached to the tip of the vertical beam 31 by any method such as gluing, and the horizontal beam 30 is fixed to a support 6 such as an arm. It's summery. The embodiment shown in FIG. 3 is a flexible support, that is, a support with a structure that supports the magnet within a certain range, but allows the magnet to move freely within that range. A magnet 2 is attached, an enlarged portion 10 is provided in the middle of a vertical beam 31, and this is supported by a static pressure type or other air bearing 9 so as to be able to swing, translate, and rotate.

4は前記磁石2が被測定面11の法線方向に吸
引されることにより生ずる変位を測定する手段で
あり、ひずみゲージ、圧電素子、光電素子、渦電
流、差動トランスなど接触型、非接触型の要素を
用いることができる。
4 is a means for measuring the displacement caused by the magnet 2 being attracted in the normal direction of the surface to be measured 11, and is a means for measuring the displacement caused by the attraction of the magnet 2 in the normal direction of the surface to be measured 11, and can be a contact type or non-contact type such as a strain gauge, a piezoelectric element, a photoelectric element, an eddy current, a differential transformer, etc. You can use elements of type.

本実施例では、変位測定手段として、3分力計
もしくはこれと同等のものを用いており、第1図
と第2図ではたて梁31の適所にひずみゲージの
ごとき接触変位計5a,5b,5c,5dを取付
けて傾きを検出するようにし、横梁30にも複数
個の接触変位計6a,6b,7a,7bを配設
し、これらで軸方向の変位を検出するようにして
いる。第3図の実施例においては、空気軸受9よ
り後方のたて梁31′に対し、非接触又は接触型
の変位計5,6,7を配している。
In this embodiment, a three-component force meter or something equivalent is used as the displacement measuring means, and in FIGS. , 5c, and 5d are attached to detect the inclination, and a plurality of contact displacement meters 6a, 6b, 7a, and 7b are also arranged on the cross beam 30, and these are used to detect displacement in the axial direction. In the embodiment shown in FIG. 3, non-contact or contact type displacement gauges 5, 6, and 7 are arranged on the vertical beam 31' behind the air bearing 9.

しかして、本発明は支持体3に磁石2を取付け
ておき、磁石2を被測定面11に近づけるもので
ある。この被測定面11が強磁性体からなる場
合、さきに述べたように、異なる磁性体の不連続
境界面に働く応力は面に垂直方向成分のみを有
し、透磁率の大きい方から小さい方へ向いている
ことから、磁石2は必ず被測定面11の法線方向
に吸引される。そこでこの吸引による磁石2の変
位を測定すれば、一本の細いセンサー構造で、曲
面からの距離と傾きが同時に検出される。
Therefore, in the present invention, the magnet 2 is attached to the support 3 and the magnet 2 is brought close to the surface to be measured 11. When the surface to be measured 11 is made of a ferromagnetic material, as mentioned earlier, the stress acting on the discontinuous interface between different magnetic materials has only a component perpendicular to the surface, and the stress is distributed from the side with higher magnetic permeability to the side with lower magnetic permeability. Since the magnet 2 is oriented toward the surface 11, the magnet 2 is always attracted in the normal direction of the surface 11 to be measured. Therefore, by measuring the displacement of the magnet 2 due to this attraction, the distance and inclination from the curved surface can be simultaneously detected using a single thin sensor structure.

すなわち、第1図と第2図の実施例において、
被測定面11と磁石2の先端との距離をZ、セン
サ軸つまり支持体3の軸方向の変位をZ′、支持体
3の法線からの傾きをθ1,θ2とすれば、Z′方向の
引張力Pz′は変位計5a〜5dにより測定され、
θ1及びθ2方向の力Pθ1,Pθ2はそれぞれ変位計6
a,6b、7a,7bにより測定される。
That is, in the embodiments of FIGS. 1 and 2,
If Z is the distance between the surface to be measured 11 and the tip of the magnet 2, Z' is the axial displacement of the sensor axis, that is, the support 3, and θ 1 and θ 2 are the inclinations from the normal of the support 3, then Z The tensile force Pz′ in the ′ direction is measured by displacement meters 5a to 5d,
The forces Pθ 1 and Pθ 2 in the θ 1 and θ 2 directions are respectively
a, 6b, 7a, 7b.

磁石2が曲面から受ける〓の大きさはZとθ1
θ2の関数であり、θ1とθ2を一定にすれば〓の絶対
値よりZを求めることができる。θとθについて
は、〓の成分は(Pz、Pθ1、Pθ2)で与えられ、
吸引力〓の方向は法線方向と一致するから、セン
サ軸の傾きθ1,θ2は次式から求めることができ
る。
The magnitude of 〓 that magnet 2 receives from the curved surface is Z and θ 1 ,
It is a function of θ 2 , and if θ 1 and θ 2 are held constant, Z can be found from the absolute value of 〓. For θ and θ, the components of 〓 are given by (Pz, Pθ 1 , Pθ 2 ),
Since the direction of the attraction force 〓 coincides with the normal direction, the inclinations θ 1 and θ 2 of the sensor axis can be determined from the following equations.

θ1=tan-1(Pθ1/Pz)、 θ2=tan-1(Pθ2/Pz) 第4図は本発明による測定方法の基本特性をみ
るための実験装置を示すもので、XYテーブル1
2に回転テーブル13を載置させ、回転テーブル
13に被測定物1を固定し、磁石2を取付けた支
持体3を支台8により固定している。
θ 1 = tan -1 (Pθ 1 /Pz), θ 2 = tan -1 (Pθ 2 /Pz) Figure 4 shows the experimental setup for examining the basic characteristics of the measurement method according to the present invention. 1
A rotary table 13 is placed on the rotary table 2, the object 1 to be measured is fixed to the rotary table 13, and a support body 3 to which a magnet 2 is attached is fixed by a support base 8.

この実験装置において、たて梁31と横梁30
には5mm□ のアルミニウム材を用い、これの適所
に孔をあけて、円孔ロードセルを取付け、たて梁
31の先端に直径9mmの鉄製ホルダ14を介して
厚み2mm、直径8mm、残留磁束密度10キロガウ
ス、希土類永久磁石を付けた。後部梁から磁石の
先端までの長さは89.5mmである。
In this experimental device, the vertical beam 31 and the horizontal beam 30
A 5 mm square aluminum material is used, a hole is drilled in the appropriate place, a circular hole load cell is attached, and a 2 mm thick, 8 mm diameter, residual magnetic flux density is attached to the tip of the vertical beam 31 via an iron holder 14 with a diameter of 9 mm. Equipped with a 10 kilogauss rare earth permanent magnet. The length from the rear beam to the tip of the magnet is 89.5mm.

第5図は厚さ15mm、材質S45Cの被測定物につ
いて、θ=0として変位ZとZ軸の出力の関係を
測定した結果であり、磁石2が法線方向に吸引さ
れることによる出力により被測定面からの距離を
測定できることがわかる。
Figure 5 shows the results of measuring the relationship between displacement Z and Z-axis output with θ=0 for an object to be measured with a thickness of 15 mm and material S45C. It can be seen that the distance from the surface to be measured can be measured.

第6図はZ′をパラメータにとり、傾斜角θ1とθ1
軸の出力の関係を測定した結果であり、この第6
図からθ方向の出力により傾き角を測定でき、
Z′を小さくするほど感度がよいことがわかる。自
重の影響はセンサ頭部重量が2gfと小さいため無
視できた。
Figure 6 takes Z′ as a parameter, and the inclination angles θ 1 and θ 1
This is the result of measuring the relationship between the shaft outputs, and this sixth
From the figure, the tilt angle can be measured by the output in the θ direction,
It can be seen that the smaller Z' is, the better the sensitivity is. The effect of own weight could be ignored because the weight of the sensor head was small at 2 gf.

第7図はZ′=1mmにおいて測定したPz′とPθ1
基に、実際の傾斜角θ1を横軸にとり、センサによ
り測定した傾斜角tan-1(Pθ1/Pz′)を点で示した
もので、実線はtan-1(Pθ1/Pz′)=θ1の理論値で
ある。この第7図からZを任意にとつたままで被
測定面の傾斜角を測定できることがわかる。
In Figure 7, based on Pz' and Pθ 1 measured at Z' = 1 mm, the actual inclination angle θ 1 is plotted on the horizontal axis, and the inclination angle tan -1 (Pθ 1 /Pz') measured by the sensor is plotted as a point. In the figure, the solid line is the theoretical value of tan −1 (Pθ 1 /Pz′)=θ 1 . It can be seen from FIG. 7 that the inclination angle of the surface to be measured can be measured while keeping Z at an arbitrary value.

第8図は被測定物の板厚による影響を測定した
データであり、第9図と第10図は板厚一定(15
mmt)において材質の変化によるセンサー特性を
測定したものである。これら第8図ないし第10
図から、実験センサーにおいては、板厚約0.9mm
以上であれば材質に関係なく一定の特性を維持で
き、これは、5軸のレーザー加工機やロボツトに
よる溶接、スタツド溶接等に応用する場合に好都
合の特性であるといえる。
Figure 8 shows the data obtained by measuring the influence of the plate thickness of the object to be measured, and Figures 9 and 10 show the data when the plate thickness is constant (15
mmt), the sensor characteristics due to changes in material were measured. These figures 8 to 10
From the figure, the experimental sensor has a plate thickness of approximately 0.9 mm.
If the properties are above, constant properties can be maintained regardless of the material, and this can be said to be a convenient property when applied to welding by a 5-axis laser processing machine, robot, stud welding, etc.

本発明は上記のような特性を有しているため、
強磁性体からなる曲面の法線方向の検出を行える
と共に、曲面からの距離と傾きを同時に検出する
ことができ、またあらゆる面の傾き方向と角度、
角部や隅部の測定、さらには穴の中心と方向の検
出を行うことができる。
Since the present invention has the above characteristics,
It is possible to detect the normal direction of a curved surface made of ferromagnetic material, and simultaneously detect the distance and inclination from the curved surface.
It is possible to measure corners and corners, as well as detect the center and direction of holes.

次に本発明の具体的な実施例を示す。 Next, specific examples of the present invention will be shown.

実施例 1 第4図の実験装置を用いて曲面の形状測定を行
つた。実験はXYテーブルのX軸の目盛を一定の
ピツチで動かすことで被測定面と磁石との相対移
動を得た。このときに、Pz′が一定にPθがOすな
わち法線方向に向くようにY軸と回転角を調整し
た。
Example 1 The shape of a curved surface was measured using the experimental apparatus shown in FIG. In the experiment, the relative movement between the surface to be measured and the magnet was obtained by moving the X-axis scale of the XY table at a constant pitch. At this time, the Y-axis and the rotation angle were adjusted so that Pz' was constant and Pθ was oriented toward O, that is, the normal direction.

第11図はR35凹面の測定結果を示すもの
で、第12図は測定誤差をみたものである。第1
2図において、設定値Z0=1mmからのずれをΔZ
=Z−Z0、法線方向からのずれを時計方向を正に
とりΔθとし、測定面に沿つた弧長Sに従つてΔZ
とΔθの変化をみた。磁石が直径8mmと比較的大
きいにもかかわらず良好な結果が得られている。
測定精度は磁石をもつと小さくし、3分力計の感
度(試作センサはひずみ50μstrain以下を小さい)
を上げることにより容易に向上でき、曲率の大き
い場合にも十分に適用できる。現状のままでも曲
面とある角度をなし(特に法線方向)一定の距離
を保す必要がある場合のセンサーとして有効であ
る。
FIG. 11 shows the measurement results for the R35 concave surface, and FIG. 12 shows the measurement errors. 1st
In Figure 2, the deviation from the set value Z 0 = 1 mm is ΔZ
=Z-Z 0 , the deviation from the normal direction is set as Δθ with the clockwise direction being positive, and ΔZ is determined according to the arc length S along the measurement surface.
We looked at the changes in Δθ. Good results were obtained even though the magnet was relatively large with a diameter of 8 mm.
The measurement accuracy is reduced by using a magnet, and the sensitivity of the 3-component force meter is reduced (the prototype sensor reduces strain below 50μstrain).
This can be easily improved by increasing the curvature, and it can be fully applied even when the curvature is large. Even in its current state, it is effective as a sensor when it is necessary to form a certain angle with a curved surface and maintain a certain distance (especially in the normal direction).

第13図は本発明でROの角部を、第14図は
RO隅部の測定をそれぞれ行つた結果を示すもの
で、簡単に角部や隅部を検出できることがわか
る。
Figure 13 shows the corner of the RO according to the present invention, and Figure 14 shows the corner of the RO.
This shows the results of measuring each RO corner, and shows that corners and corners can be easily detected.

実施例 2 本発明により穴の中心軸の位置と方向の測定
を行つた。第15図はその測定方法と原理を示
すもので、板厚15mmの鉄板に幅寸法bの長円1
1′を形成し、その長円11′に支持体3を介し
て磁石2を挿入するもので磁石2が穴曲面の法
線方向に吸引されるため、偏心量に相当したθ
軸の出力があり、またセンサ軸が傾いている場
合、軸方向にZだけ移動するとθ軸の出力が変
化する。したがつて、θ軸の出力が0となるよ
うにすれば穴の中心が簡単に検出できる。第1
6図は偏心量と出力との関係を示すもので、長
円幅寸法が狭いほど感度が良いことがわかる。
Example 2 The position and direction of the central axis of a hole were measured according to the present invention. Figure 15 shows the measurement method and principle.
1', and the magnet 2 is inserted into the ellipse 11' via the support 3. Since the magnet 2 is attracted in the normal direction of the hole curved surface, θ corresponding to the amount of eccentricity
If there is an axial output and the sensor axis is tilted, moving by Z in the axial direction will change the θ-axis output. Therefore, if the θ-axis output is set to 0, the center of the hole can be easily detected. 1st
Figure 6 shows the relationship between eccentricity and output, and it can be seen that the narrower the oval width dimension, the better the sensitivity.

本発明により穴の方向の検出を行つた。 The direction of the hole was detected according to the present invention.

第16図はその測定方法と結果を示すもの
で、支持体3を介して磁石2をb=10mmの穴中
に所要深さ(Z=−7.5mm)挿入し、その状態
で磁石2を移動する。これによりθ軸の出力が
変化するため穴の中心軸からの傾きを直ちに検
出することができる。
Figure 16 shows the measurement method and results. Magnet 2 is inserted into a hole of b = 10 mm to the required depth (Z = -7.5 mm) through support 3, and magnet 2 is moved in this state. do. As a result, the θ-axis output changes, so the inclination of the hole from the central axis can be immediately detected.

以上説明した本発明の形状測定方法によるとき
には、非接触式であるため被測定面に傷をつける
心配や摩擦による誤差が生ずる問題もなく連続的
に曲面の法線方向や直線面を含む面や穴面などか
らの距離、傾きを同時検出することができ、それ
でいて梁が一本で足りると共にセンサ頭を小さく
できるので、センサ構造をきわめて簡単かつ小型
なものにすることができ、局所的な曲率の変化に
も自在に対応することができる。
When using the shape measuring method of the present invention as explained above, since it is a non-contact method, there is no need to worry about scratching the surface to be measured or errors caused by friction, and it is possible to continuously measure surfaces including the normal direction of curved surfaces and straight surfaces. It is possible to simultaneously detect the distance and inclination from the hole surface, etc., yet only one beam is sufficient, and the sensor head can be made small, making the sensor structure extremely simple and compact. It is possible to freely respond to changes in

本発明の測定方法は、3次元測定機のプルーブ
のほか、多軸レーザー加工機や溶接ロボツト、組
立てロボツトなど加工機やロボツトが手首を法線
方向に向け、距離を一定に保つて動く必要のある
場合のセンサ等広い範囲に適用が可能である。
The measurement method of the present invention uses the probe of a three-dimensional measuring machine, as well as processing machines and robots such as multi-axis laser processing machines, welding robots, and assembly robots that need to move with their wrists pointing in the normal direction and keeping a constant distance. It can be applied to a wide range of applications such as sensors in certain cases.

【図面の簡単な説明】[Brief explanation of drawings]

第1図は本発明に係る磁力式形状測定方法を適
用して得たセンサーの一実施例を示す正面図、第
2図は同じくその側面図、第3図は別の実施例を
示す平面図、第4図は第1図と第2図のセンサー
を用いた測定実験装置の斜視図、第5図は本発明
における被測定面からの変位と出力の関係を示す
グラフ、第6図は法線方向からの傾きと出力の関
係を示すグラフ、第7図は本発明による傾斜角測
定結果を示すグラフ、第8図は被測定物の板厚と
出力の最大値との関係を示すグラフ、第9図と第
10図は被測定物の材質と磁石の変位特性との関
係を示すグラフ、第11図は本発明による自由曲
面の測定結果を示す線図、第12図は第11図に
おける測定誤差を示すグラフ、第13図は本発明
による角部測定結果を示す線図、第14図は本発
明による隅部測定結果を示す線図、第15図a,
bは本発明による穴の中心軸の位置と方向の測定
方法を示す説明図、第16図は本発明により穴部
検出を行つたときの偏心量と出力の関係を示すグ
ラフ、第17図は本発明により穴の方向検出を行
つた結果を示すグラフである。 1……被測定物、2……磁石、3……支持体、
4……変位を測定する手段、11……被測定面。
FIG. 1 is a front view showing one embodiment of a sensor obtained by applying the magnetic shape measuring method according to the present invention, FIG. 2 is a side view thereof, and FIG. 3 is a plan view showing another embodiment. , FIG. 4 is a perspective view of a measurement experiment apparatus using the sensors shown in FIGS. 1 and 2, FIG. 5 is a graph showing the relationship between displacement from the surface to be measured and output in the present invention, and FIG. A graph showing the relationship between the inclination from the linear direction and the output, FIG. 7 is a graph showing the inclination angle measurement results according to the present invention, and FIG. 8 is a graph showing the relationship between the thickness of the object to be measured and the maximum value of the output. 9 and 10 are graphs showing the relationship between the material of the object to be measured and the displacement characteristics of the magnet, FIG. 11 is a diagram showing the measurement results of a free-form surface according to the present invention, and FIG. A graph showing the measurement error, FIG. 13 is a diagram showing the corner measurement results according to the present invention, FIG. 14 is a diagram showing the corner measurement results according to the present invention, and FIG. 15 a,
b is an explanatory diagram showing the method of measuring the position and direction of the center axis of a hole according to the present invention, FIG. 16 is a graph showing the relationship between eccentricity and output when detecting a hole according to the present invention, and FIG. 3 is a graph showing the results of detecting the direction of a hole according to the present invention. 1...Object to be measured, 2...Magnet, 3...Support,
4... Means for measuring displacement, 11... Surface to be measured.

Claims (1)

【特許請求の範囲】 1 強磁性体からなる被測定面に磁石を近接さ
せ、磁石が被測定面の法線方向に吸引されること
による磁石の変位を測定することで形状検出を行
うようにしたことを特徴とする磁力式形状測定方
法。 2 磁石の変位の測定を3分力計もしくはその類
似手段を用いて行う特許請求の範囲第1項記載の
磁力式形状測定方法。 3 磁石として永久磁石を用いる特許請求の範囲
第1項記載の磁力式形状測定方法。 4 磁石として電磁石を用いる特許請求の範囲第
1項記載の磁力式形状測定方法。
[Claims] 1 Shape detection is performed by bringing a magnet close to a surface to be measured made of ferromagnetic material and measuring the displacement of the magnet due to attraction of the magnet in the normal direction of the surface to be measured. A magnetic shape measurement method characterized by: 2. The magnetic shape measuring method according to claim 1, wherein the displacement of the magnet is measured using a three-component force meter or similar means. 3. The magnetic shape measuring method according to claim 1, which uses a permanent magnet as the magnet. 4. The magnetic shape measuring method according to claim 1, which uses an electromagnet as the magnet.
JP3618484A 1984-02-29 1984-02-29 Magnetic force type shape measurement Granted JPS60181603A (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP3618484A JPS60181603A (en) 1984-02-29 1984-02-29 Magnetic force type shape measurement

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP3618484A JPS60181603A (en) 1984-02-29 1984-02-29 Magnetic force type shape measurement

Publications (2)

Publication Number Publication Date
JPS60181603A JPS60181603A (en) 1985-09-17
JPH0352801B2 true JPH0352801B2 (en) 1991-08-13

Family

ID=12462640

Family Applications (1)

Application Number Title Priority Date Filing Date
JP3618484A Granted JPS60181603A (en) 1984-02-29 1984-02-29 Magnetic force type shape measurement

Country Status (1)

Country Link
JP (1) JPS60181603A (en)

Cited By (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2006509193A (en) * 2002-12-05 2006-03-16 レニショウ パブリック リミテッド カンパニー High speed scanning probe

Families Citing this family (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
KR102247337B1 (en) * 2014-11-24 2021-05-06 재단법인 포항산업과학연구원 Contactless displacement sensor using magnetic force and method of measuring displacement of a body of reveoltion

Cited By (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2006509193A (en) * 2002-12-05 2006-03-16 レニショウ パブリック リミテッド カンパニー High speed scanning probe

Also Published As

Publication number Publication date
JPS60181603A (en) 1985-09-17

Similar Documents

Publication Publication Date Title
JP2988588B2 (en) Position measuring device
JP2873404B2 (en) Method and apparatus for scanning the surface of a workpiece
US5396712A (en) Coordinate measuring device
CN101282823B (en) Method for determining a virtual tool center point, and device therefor
US5832416A (en) Calibration system for coordinate measuring machine
JP4504818B2 (en) Workpiece inspection method
JP3075981B2 (en) Shape measuring device
EP1875158B1 (en) Surface sensing device with optical sensor
GB1597842A (en) Indexing mechanism
US4942671A (en) Probe head mount for a deflectable probe or the like
JP2001330428A (en) Evaluation method for measuring error of three- dimensional measuring machine and gage for three- dimensional measuring machine
JPH08327344A (en) Multiple-coordinate scanning head
JP2001091203A (en) Machine tool accuracy measuring device
JP4890188B2 (en) Motion error measurement reference body and motion error measurement device
US5109610A (en) True position probe
JPH0352801B2 (en)
JPS62135711A (en) Measuring instrument for sphere
JP2504561B2 (en) Shape measuring device
JPH10213403A (en) Three-dimensional coordinate measuring device
JP2014153341A (en) Coordinate measuring machine
Chu et al. Development of a surface scanning touch probe for micro-CMM
JPH07218207A (en) Surface shape measuring apparatus
JPS62228101A (en) Detector for measuring device
JPH0413609Y2 (en)
JPH06185976A (en) Method and device for detecting normal directing angle

Legal Events

Date Code Title Description
LAPS Cancellation because of no payment of annual fees