JPH0352218B2 - - Google Patents

Info

Publication number
JPH0352218B2
JPH0352218B2 JP55088418A JP8841880A JPH0352218B2 JP H0352218 B2 JPH0352218 B2 JP H0352218B2 JP 55088418 A JP55088418 A JP 55088418A JP 8841880 A JP8841880 A JP 8841880A JP H0352218 B2 JPH0352218 B2 JP H0352218B2
Authority
JP
Japan
Prior art keywords
active
load
mostq
ccd
charge
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Expired - Lifetime
Application number
JP55088418A
Other languages
Japanese (ja)
Other versions
JPS5713764A (en
Inventor
Yoshihiro Myamoto
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Fujitsu Ltd
Original Assignee
Fujitsu Ltd
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Fujitsu Ltd filed Critical Fujitsu Ltd
Priority to JP8841880A priority Critical patent/JPS5713764A/en
Publication of JPS5713764A publication Critical patent/JPS5713764A/en
Publication of JPH0352218B2 publication Critical patent/JPH0352218B2/ja
Granted legal-status Critical Current

Links

Classifications

    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01LSEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
    • H01L29/00Semiconductor devices specially adapted for rectifying, amplifying, oscillating or switching and having potential barriers; Capacitors or resistors having potential barriers, e.g. a PN-junction depletion layer or carrier concentration layer; Details of semiconductor bodies or of electrodes thereof ; Multistep manufacturing processes therefor
    • H01L29/66Types of semiconductor device ; Multistep manufacturing processes therefor
    • H01L29/68Types of semiconductor device ; Multistep manufacturing processes therefor controllable by only the electric current supplied, or only the electric potential applied, to an electrode which does not carry the current to be rectified, amplified or switched
    • H01L29/76Unipolar devices, e.g. field effect transistors
    • H01L29/762Charge transfer devices
    • H01L29/765Charge-coupled devices
    • H01L29/768Charge-coupled devices with field effect produced by an insulated gate
    • H01L29/76816Output structures

Landscapes

  • Engineering & Computer Science (AREA)
  • Microelectronics & Electronic Packaging (AREA)
  • Power Engineering (AREA)
  • Physics & Mathematics (AREA)
  • Ceramic Engineering (AREA)
  • Condensed Matter Physics & Semiconductors (AREA)
  • General Physics & Mathematics (AREA)
  • Computer Hardware Design (AREA)
  • Solid State Image Pick-Up Elements (AREA)

Description

【発明の詳細な説明】 本発明はCCDの電荷検出装置、特に2相動作
の埋込みチヤンネルCCDと同一半導体基板上に
構成して有効な電荷検出装置の新しい構成に関す
るものである。
DETAILED DESCRIPTION OF THE INVENTION The present invention relates to a charge detection device for a CCD, and particularly to a new configuration of a charge detection device that can be effectively constructed on the same semiconductor substrate as a two-phase operation buried channel CCD.

一般にCCDの電荷検出には、高速応答、高感
度、低消費電力等の他に、外部回路の簡単さ、調
整の容易さなどが要求される。特に埋込みチヤン
ネルCCDは表面チヤンネルCCDよりも高速転送
動作を行うから、これと一体化される検出回路に
は上記の高速転送性に応じうるだけの高速応答性
が要求される。
Generally, CCD charge detection requires fast response, high sensitivity, low power consumption, etc., as well as simplicity of external circuitry and ease of adjustment. In particular, since a buried channel CCD performs a faster transfer operation than a surface channel CCD, the detection circuit integrated therewith is required to have high-speed response to meet the above-mentioned high-speed transfer performance.

CCDの出力端子に接続される信号電荷の検出
回路は通常1対の絶縁ゲート型電界効果トランジ
スタ(以下MOSTと略記する)で構成されたソ
ースフオロワ回路が用いられる。現在では転送電
極長が10μm程度の埋込みチヤンネルCCDの動作
周波数の上限は数10MHzに達しているが、該
CCDの電荷検出を行う検出回路の応答周波数が
上記CCDの動作周波数に対応した値でなければ
該CCDの高速動作性は発揮できるものではない。
以下これについて簡単に述べる。
The signal charge detection circuit connected to the output terminal of the CCD usually uses a source follower circuit composed of a pair of insulated gate field effect transistors (hereinafter abbreviated as MOST). Currently, the upper limit of the operating frequency of embedded channel CCDs with a transfer electrode length of about 10 μm has reached several tens of MHz.
Unless the response frequency of the detection circuit that detects the charge of the CCD corresponds to the operating frequency of the CCD, the CCD cannot exhibit high-speed operation.
This will be briefly discussed below.

第1図に示したごとくCCDの出力端子たる浮
遊拡散層Dの負荷は該拡散層Dの容量とこれにつ
ながる電荷検出用ソースフオロワ回路の能動
MOSTQAのゲート容量のごとき容量性負荷であ
る。したがつて、該CCDの出力たる転送電荷QT
を電圧Vの形で高感度で検出するためにはV=
QT/Cなる関係から、能動MOSTQAのゲート容
量は小さくなくてはならず、このために該能動
MOSTQAの寸法を大きくすることはできない。
As shown in Figure 1, the load on the floating diffusion layer D, which is the output terminal of the CCD, is the capacitance of the diffusion layer D and the active charge detection source follower circuit connected to it.
It is a capacitive load like the gate capacitance of MOSTQ A. Therefore, the transferred charge Q T which is the output of the CCD
In order to detect with high sensitivity in the form of voltage V, V=
Due to the relationship Q T /C, the gate capacitance of the active MOSTQ A must be small, so the active
It is not possible to increase the dimensions of MOSTQ A.

一方、ソースフオロワ回路の出力端は、能動
MOSTQAのソースと負荷MOSTQLのドレインと
の接続拡散層(以下この点をDS点と呼ぶ)自体
の容量と該DS点につながる図示しないサンプル
ホールド用MOSTの入力容量の合計できまり、
やはり容量性である。したがつて一段のソースフ
オロワ回路から見ればその負荷は第1図中に示し
たごとく容量CLと見なすことができる。
On the other hand, the output end of the source follower circuit is
It is determined by the sum of the capacitance of the diffusion layer connecting the source of MOSTQ A and the drain of the load MOSTQ L (hereinafter referred to as the DS point) itself, and the input capacitance of the sample-hold MOST (not shown) connected to the DS point.
It is also capacitive. Therefore, from the perspective of a single-stage source follower circuit, its load can be regarded as the capacitance C L as shown in FIG.

また一方で、上記のごとく能動MOSTQAの寸
法を大にはできないが、負荷MOSTQLはソース
フオロワ回路の入力端子につながつていないか
ら、この負荷MOSTQLの寸法を大にすることは
可能でこの寸法を大とすれば負荷MOSTQLのコ
ンダクタンスGLは大となり、容量性負荷CLの充
放電時定数は短縮され、したがつてソースフオロ
ワ回路の応答速度は上昇する。このゆえに上記負
荷MOSTQLの寸法を大とすることは該ソースフ
オロワ回路を高速動作のものとすることにつなが
る。
On the other hand, as mentioned above, it is not possible to increase the dimensions of active MOSTQ A , but since load MOSTQ L is not connected to the input terminal of the source follower circuit, it is possible to increase the dimensions of this load MOSTQ L. If the dimensions are increased, the conductance G L of the load MOSTQ L will be increased, the charging/discharging time constant of the capacitive load C L will be shortened, and the response speed of the source follower circuit will therefore be increased. Therefore, increasing the size of the load MOSTQ L allows the source follower circuit to operate at high speed.

第2図は、能動MOSTの電流IDと負荷MOST
の電流ILを縦軸に、またDS点の電圧VDSを横軸に
とつた一段ソースフオロワを構成する各MOST
の動作点の移動を示す図である。
Figure 2 shows the active MOST current I D and the load MOST
The current I L at DS point is plotted on the vertical axis, and the voltage at point DS V DS is plotted on the horizontal axis.
FIG. 3 is a diagram showing movement of the operating point of FIG.

単一のMOSTの飽和電流Iは周知のごとく、
(VG−VT)で決定される。ただしVGは入力ゲー
ト電圧、VTはしきい値電圧であるが、ソースフ
オロワ回路の能動MOSTにおいてはそのゲート
端子GGおよびDS点の各電圧VGGおよびVDSとの差
(VGG−VDS)が上記のVGに対応する。したがつて
該能動MOSTの飽和電流Iは(VGG−VDS−VT2
となるが、能動MOSTが表面チヤンネル型であ
つてそのためにVT0であるならば上記飽和電
流Iは事実上(VGG−VDS2と表せて、能動
MOSTの飽和電流IはこのVGG−VDSの自乗特性
によつてたとえば第1図中の曲線ホのごとく描か
れる。
As is well known, the saturation current I of a single MOST is
It is determined by (V G − V T ). However, V G is the input gate voltage and V T is the threshold voltage, but in the active MOST of the source follower circuit, the difference between the voltages V GG and V DS at the gate terminal GG and DS point (V GG − V DS ) corresponds to V G above. Therefore, the saturation current I of the active MOST is (V GG - V DS - V T ) 2
However, if the active MOST is of the surface channel type and therefore V T 0, the above saturation current I can be effectively expressed as (V GG - V DS ) 2 , and the active
The saturation current I of the MOST is drawn by the square characteristic of V GG -V DS , for example, as shown by the curve E in FIG.

ところで負荷MOSTのゲート端子GLは通常接
地されるべきソース端子SSに接続される。この
負荷MOSTQLのコンダクタンスを決定すべく該
MOSTQL中を流れる飽和電流が第1図中のIL1
示したごとく小さな値であるとすると、該電流
IL1は能動MOSTを流れる電流IDと一致するよう
に、動作点はたとえば曲線ホ上のA点となる。と
ころで能動MOSTのゲート端子VGGにはリセツト
トランジスタQRを介してVDD=12Vなる電圧が印
加されている。したがつて今CCDから前記浮遊
拡散層D中に転送電荷QTが入つて来て2Vなる電
圧を生じたとすれば能動MOSTQAのゲート端子
電圧VGGは上記の12Vなる値から10Vになる値に
まで2Vの低下を呈する。この電圧低下が起これ
ば能動MOSTQAの電流IDは減少して動作点はB
点にうつりそのため負荷MOSTQLの電流ILより
も小つまりID<ILとなる。
By the way, the gate terminal GL of the load MOST is normally connected to the source terminal SS, which should be grounded. To determine the conductance of this load MOSTQ L ,
If the saturation current flowing through MOSTQ L is a small value as shown by I L1 in Figure 1, then the current
The operating point is, for example, point A on curve H so that I L1 matches the current ID flowing through the active MOST. By the way, a voltage of V DD =12V is applied to the gate terminal V GG of the active MOST via the reset transistor Q R . Therefore, if the transferred charge Q T enters the floating diffusion layer D from the CCD and generates a voltage of 2V, the gate terminal voltage V GG of the active MOSTQ A will change from the above 12V to 10V. It exhibits a drop of 2V to . If this voltage drop occurs, the current I D of active MOSTQ A will decrease and the operating point will be B.
Therefore, the current I L of the load MOSTQ L is smaller than the current I L , that is, I D < I L.

このID<ILとなつた状態は負荷容量のCL中の電
荷が負荷MOSTQLを介して流出、つまり放電す
ることを意味する。しかしDS点の電圧VDSすなわ
ち負荷容量CL両端の電圧は一定であるから、上
記の電流IDの減少は第1図中ではまず点Aから点
Bへの移動として表されるが、動作点はさらに能
動MOSTの自乗特性曲線へに沿つて点Cに到つ
て放電を終り、この点Cにおいて能動MOSTQA
と負荷MOSTQLとの各電流IDとIL1とは、再び平
衡を保つ。
This state of I D <I L means that the charge in the load capacitance C L flows out through the load MOSTQ L , that is, it is discharged. However, since the voltage V DS at point DS, that is, the voltage across the load capacitance C L , is constant, the decrease in the current I D described above is first expressed as a movement from point A to point B in Figure 1, but the operation The point further follows the square characteristic curve of the active MOST until it reaches a point C, where it finishes discharging, and at this point C the active MOSTQ A
The currents I D and I L1 with the load MOSTQ L are again balanced.

逆に能動MOSTQAのゲート電圧VGGが10Vから
12Vまで増加すれば、能動MOSTQAの電流ID
VDSが一定のもとで増加し曲線ホ上の点Dに達し
た後にやはり自乗特性曲線ホに沿つて点Aにもど
つて平衡する。
Conversely, when the gate voltage V GG of active MOSTQ A starts from 10V
If increased to 12V, the active MOSTQ A current I D will be
After increasing while V DS is constant and reaching point D on curve E, it returns to point A along square characteristic curve E and reaches equilibrium.

この場合の該ソースフオロワ回路の動作速度は
正確には積分方程式で表される複雑な形をとるの
で理解の便宜のために省略するが、図式的には近
似的に直線と見なしうるB〜C間あるいはD〜A
間の傾斜が上記動作点の変化の速さに対応する。
In this case, the operating speed of the source follower circuit takes a complex form expressed by an integral equation, so it will be omitted for the sake of understanding, but diagrammatically, the line between B and C can be approximately regarded as a straight line. Or D~A
The slope between them corresponds to the speed of change of the operating point.

この同図からわかるように、上記のB〜C間あ
るいはD〜A間の傾斜はあまり急峻なものではな
く、これら負荷MOSTを流れる電流IL1のごとく
小さければ該ソースフオロワ回路の応答性は高速
でないということがわかる。
As can be seen from this figure, the slope between B and C or between D and A is not very steep, and if the current flowing through the load MOST is as small as I L1 , the response of the source follower circuit is not fast. That's what I understand.

したがつて今、該ソースフオロワ回路を高速化
するために、負荷MOSTQLのゲート幅Wとゲー
ト長Lの比W/Lを増加させ、先にはIL1であつ
た負荷MOSTQLの電流をIL2なる値に増大せしめ
る。
Therefore, now, in order to speed up the source follower circuit, the ratio W/L of the gate width W to the gate length L of the load MOSTQ L is increased, and the current of the load MOSTQ L , which was previously I L1 , is reduced to I Increase it to a value of L2 .

かくすれば、前記したごとくソースフオロワ回
路の入力電圧VGGが変化したことによる動作点の
移動は、第2図中のa〜b〜c〜d〜aのごとく
なり、特にb〜c、ならびにd〜aの傾斜が急峻
となつているところから該ソースフオロワ回路は
高速応答性を有するものとなることが理解され
る。
In this way, the movement of the operating point due to the change in the input voltage V GG of the source follower circuit as described above will be as shown in a to b to c to d to a in FIG. 2, and especially b to c and d. It is understood that the source follower circuit has high-speed response from the fact that the slope of ~a is steep.

ところがこのように負荷MOSTQLの寸法を大
にして該MOSTQLを流れる電流を大にすれば、
上述のごとく応答速度は増大するが、能動
MOSTのゲート端子電圧VGGは前記のごとく12V
に一定化されているのに対し、VDS点の電圧は低
下する。すなわちソースフオロワ回路における電
圧シフト量が増大するという欠点がある。この電
圧シフト量の増大は1段だけのソースフオロワで
はたとえたいしたことがなくとも該ソースフオロ
ワを2段接続にした場合にはその影響が無視でき
なくなり、出力信号の歪発生の原因となる。
However, if we increase the dimensions of the load MOSTQ L and increase the current flowing through the MOSTQ L ,
As mentioned above, the response speed increases, but the active
MOST gate terminal voltage V GG is 12V as mentioned above.
The voltage at the V DS point decreases, while the voltage at the V DS point decreases. That is, there is a drawback that the amount of voltage shift in the source follower circuit increases. Although this increase in the amount of voltage shift may not be a big deal in a single-stage source follower, when the source follower is connected in two stages, the effect cannot be ignored and becomes a cause of distortion in the output signal.

本発明はこうした欠点に鑑みなされたもので、
上記の能動MOST、負荷MOSTのしきい値電圧
を調整することにより上記の電圧シフト量が増大
しないようにして、しかも埋込みチヤンネル
CCDと同一の半導体基板板上に同一の製造工程
を用いて形成できる新規な電荷検出装置を提供せ
んとするものであつて以下第3図を用いて詳述す
る。
The present invention was made in view of these drawbacks.
By adjusting the threshold voltages of the active MOST and load MOST mentioned above, the amount of voltage shift mentioned above can be prevented from increasing, and the buried channel can be
The present invention aims to provide a novel charge detection device that can be formed on the same semiconductor substrate as a CCD using the same manufacturing process, and will be described in detail below with reference to FIG.

第3図a,b,cは本発明に係る電荷検出装置
の製造工程を示すものであつて、以下該工程を順
に述べて行く。
FIGS. 3a, 3b, and 3c show the manufacturing process of the charge detection device according to the present invention, and these steps will be described in order below.

まず、たとえばP型半導体基板1の所定領域
に、埋込みチヤンネルCCD、ならびにその出力
端子たる浮遊拡散層をソース拡散層と共用するリ
セツト用MOSTの両者が形成されるべき第1の
活性領域Aと、ソースフオロワ回路を構成する能
動MOSTQAと負荷MOSTQLの両者が形成される
べき第2の活性領域Bとを画定するための絶縁層
2を、いわゆるLOCOS法により形成する。
First, in a predetermined region of a P-type semiconductor substrate 1, for example, a first active region A in which both a buried channel CCD and a reset MOST whose floating diffusion layer serving as its output terminal is shared with the source diffusion layer are formed; An insulating layer 2 for defining a second active region B in which both the active MOSTQ A and the load MOSTQ L constituting the source follower circuit are to be formed is formed by a so-called LOCOS method.

しかる後、たとえば燐(P)イオンをたとえば
1.2×1012cm-2のドーズ量ならびに90Kevのエネル
ギーで矢印イのごとく注入して上記表面に基板1
と逆導電型つまりn型の層4を第3図aに示すご
とく形成する。
After that, for example, the phosphorus (P) ion is
The substrate 1 was implanted on the above surface as shown by arrow A with a dose of 1.2×10 12 cm -2 and an energy of 90Kev.
A layer 4 of opposite conductivity type, that is, n-type, is formed as shown in FIG. 3a.

次に該基板1の表面にたとえば1200Åの厚さの
絶縁膜5を第3図bに示すごとく形成した後、
CVD法等により、その上面にポリシリコン層を
堆積しパターニングを行なつて同図中に6として
示した第1層ポリシリコンゲート電極を形成す
る。続いて該ポリシリコンゲート電極6をマスク
として矢印ロで示したように硼素(B)イオンをたと
えば8×1011cm-2のドーズ量、90Kevのエネルギ
ーで注入すれば先に形成されたn型層(埋込み
層)の一部は補償され、活性領域A中ではCCD
内の電荷案内領域7、ならびにリセツト用
MOSTのゲート直下の半導体領域7′が形成さ
れ、活性領域B中では能動ならびに負荷用の各
MOSTの各ゲート直下の半導体領域7″が形成さ
れる。なお上記のリセツト用能動用ならびに負荷
用の各MOSTのゲート直下の半導体領域7′,
7″はCCD内の埋込み層中に規則的に配設された
案内領域7と同一でn-型である。
Next, after forming an insulating film 5 with a thickness of, for example, 1200 Å on the surface of the substrate 1 as shown in FIG. 3b,
A polysilicon layer is deposited on the upper surface by CVD or the like and patterned to form a first layer polysilicon gate electrode shown as 6 in the figure. Next, using the polysilicon gate electrode 6 as a mask, boron (B) ions are implanted at a dose of, for example, 8×10 11 cm -2 and an energy of 90 Kev as shown by the arrow RO, thereby removing the previously formed n-type. A part of the layer (buried layer) is compensated and in the active area A the CCD
charge guide area 7 in the
A semiconductor region 7' is formed directly under the gate of the MOST, and in the active region B there are various active and load regions.
A semiconductor region 7'' is formed directly under each gate of the MOST.Semiconductor regions 7',
7'' are the same as the guide regions 7 regularly arranged in the buried layer in the CCD and are of n - type.

次に同図cに示したごとく先に形成されたポリ
シリコンゲート電極6の上面を酸化することによ
り絶縁膜8を形成して表面絶縁を行い、第2層ポ
リシリコンゲート電極9を形成する。しかして
後、自己整合拡散法により、活性領域A中ではリ
セツト用MOSTのソースおよびドレインとなり、
活性領域B中では能動MOSTおよび負荷MOST
のソースおよびドレインとなるn+拡散層10が
形成されるように燐(P)を基板1中に拡散す
る。
Next, as shown in FIG. 3C, the upper surface of the polysilicon gate electrode 6 previously formed is oxidized to form an insulating film 8 for surface insulation, and a second layer polysilicon gate electrode 9 is formed. Afterwards, by self-aligned diffusion method, it becomes the source and drain of the reset MOST in the active region A.
In active region B, active MOST and load MOST
Phosphorus (P) is diffused into the substrate 1 so as to form an n + diffusion layer 10 that will serve as the source and drain.

この後、上記第2層ポリシリコンゲート電極上
面を酸化絶縁してパツシベーシヨンを施すことに
より絶縁膜11を形成し、該絶縁膜11ならびに
前記絶縁膜8の上部、および拡散層10上面の絶
縁膜5に対してコンタクト穴を設け、アルミニウ
ム(Al)を蒸着の後パターニングして配線を終
了する。かくすれば、第3図aの工程でPの注入
により形成されたn層は上記諸工程の進行と共に
その拡がりをまし、最終的にはたとえば1.5μmの
深さを有する結果となる一方、同図bの工程でB
の注入により形成されたP層は1μmに止まり、
ここに活性領域A中に電荷案内領域としての半導
体層7と電荷蓄積領域としての半導体層とを有す
る埋込みチヤンネルCCDと、ゲート直下に該電
荷案内領域と同一の半導体層7′を備えたリセツ
ト用MOSTが完成すると同時に活性領域B中に
はゲート直下にやはり電荷案内領域と同一の半導
体層7″を有する能動ならびに負荷MOSTとが形
成される。
Thereafter, an insulating film 11 is formed by oxidizing and insulating the upper surface of the second layer polysilicon gate electrode and performing passivation. A contact hole is made for the electrode, and aluminum (Al) is deposited and patterned to complete the wiring. In this way, the n-layer formed by implanting P in the process of FIG. B in the process of figure b
The P layer formed by implantation is only 1 μm,
Here, there is a buried channel CCD having a semiconductor layer 7 as a charge guiding region and a semiconductor layer as a charge storage region in the active region A, and a reset CCD having a semiconductor layer 7' identical to the charge guiding region directly under the gate. At the same time as the MOST is completed, an active and load MOST is formed in the active region B, which also has a semiconductor layer 7'', which is the same as the charge guiding region, directly under the gate.

ここで能動ならびに負荷用MOSTとリセツト
MOSTのゲート直下は前記PとBとの両不純物
の注入の結果補償されてn-型となつており、特
に能動MOSTのしきい値電圧Vthの値としては、
5V程度の負の値を呈する結果となる。
Here MOST and reset for active and load
The region immediately below the gate of the MOST is compensated as a result of the implantation of both P and B impurities and becomes n - type, and in particular, the value of the threshold voltage V th of the active MOST is as follows.
This results in a negative value of about 5V.

このように能動MOSTQAのゲート直下に負荷
用MOSTQLと同称に、CCD部の電荷案内領域と
同一の不純物ドープ層を形成してやれば、上記の
能動ならびに負荷用の両MOSTのしきい値電圧
は前記のごとく−5V程度となりその結果、前記
した(VGG−VDS2曲線は定常状態において第2図
中に示した曲線トとなり過渡的状態においては曲
線チとなつて前記の電圧シフト量は大きくならず
にすむ。しかも両曲線ト,チ間の動作点の移動範
緯e〜f〜g〜h〜eから判るように、f〜g間
ならびにh〜e間の傾斜は急峻であり、これか
ら、該検出回路の応答速は大となることがわか
る。
In this way, if we form the same impurity doped layer as the charge guiding region of the CCD section directly under the gate of the active MOSTQ A and the same name as the load MOSTQ L , the threshold voltage of both the active and load MOSTs can be reduced. As mentioned above, becomes about -5V, and as a result, the above-mentioned (V GG - V DS ) 2 curve becomes curve G shown in Fig. 2 in the steady state, and becomes curve H in the transient state, resulting in the above voltage shift. The amount does not have to be large. Moreover, as can be seen from the movement range e-f-g-h-e of the operating point between both curves G and H, the slopes between f and g and between h and e are steep. It can be seen that the response speed is high.

以上に述べた本発明に係る電荷検出装置によれ
ば埋込みチヤンネルCCD部と電荷検出部を同一
工程で作製できるばかりでなく、該CCDと一体
化されるソースフオロワ構成の電荷検出回路を形
成する負荷用ならびに能動用の両MOSTのしき
い値電圧をたとえば−5V程度となし得、したが
つて前記したような理由から電圧シフト量を大き
くすることなく上記の検出回路たるソースフオロ
ワ回路の応動速度を高めることができるので、実
用上多大の効果が期待できる。
According to the charge detection device according to the present invention described above, not only the embedded channel CCD section and the charge detection section can be manufactured in the same process, but also the charge detection device for the load forming the charge detection circuit of the source follower configuration integrated with the CCD can be used. In addition, the threshold voltage of both MOSTs for active use can be set to, for example, about -5V, and therefore, for the reasons mentioned above, the response speed of the source follower circuit, which is the detection circuit, can be increased without increasing the amount of voltage shift. As a result, great practical effects can be expected.

【図面の簡単な説明】[Brief explanation of drawings]

第1図は通常CCDの電荷検出に用いられるソ
ースフオロワ構成の検出回路を示した図であり、
第2図は上記ソースフオロワの検出回路を構成す
る能動MOSTならびに負荷用MOSTの動作点を
示す図である。さらに第3図a,b,cは本発明
に係る電荷検出装置を埋込みチヤンネル型CCD
と一体化しかつ同一工程を用いて一挙に作製する
ための工程図を示したものである。 1:半導体基板、2:活性領域画定用の絶縁
層、5:基板表面を覆う絶縁膜、6,9:ポリシ
リコンゲート電極、7:電荷案内領域、8,1
1:ポリシリコンゲート表面の絶縁膜、A,B:
活性領域、QR:リセツト用MOST、QA:ソース
フオロワ回路を構成する能動MOST、QL:ソー
スフオロワ回路を構成する負荷MOST、ID:能動
MOSTのドレイン電流、IL:負荷MOSTのドレ
イン電流、D:CCDの浮遊拡散層、CL:容量性
負荷、IL1:負荷MOSTの低い電流値、IL2:負荷
MOSTの高い電流値。
FIG. 1 is a diagram showing a source follower configuration detection circuit normally used for CCD charge detection.
FIG. 2 is a diagram showing the operating points of the active MOST and the load MOST constituting the detection circuit of the source follower. Furthermore, FIGS. 3a, b, and c show channel type CCDs in which the charge detection device according to the present invention is embedded.
This figure shows a process diagram for manufacturing the product all at once by integrating it with the product and using the same process. 1: Semiconductor substrate, 2: Insulating layer for defining active region, 5: Insulating film covering the substrate surface, 6, 9: Polysilicon gate electrode, 7: Charge guiding region, 8, 1
1: Insulating film on polysilicon gate surface, A, B:
Active region, Q R : MOST for reset, Q A : Active MOST forming the source follower circuit, Q L : Load MOST forming the source follower circuit, ID : Active
Drain current of MOST, I L : Drain current of load MOST, D: Floating diffusion layer of CCD, C L : Capacitive load, I L1 : Low current value of load MOST, I L2 : Load
High current value of MOST.

Claims (1)

【特許請求の範囲】 1 埋込み層4中に規則的に形成された電荷案内
領域7を有する埋込みチヤンネルCCDの出力電
極に接続され、かつ該CCDと同一半導体基板上
に形成されたソースフオロワ構成の電荷検出回路
を有する電荷検出装置において、 前記電荷検出回路に含まれる能動用絶縁ゲート
型電界効果トランジスタQAと負荷用絶縁ゲート
型電界効果トランジスタQLの各ゲート電極9直
下に、上記の半導体基板上の埋込み層中の電荷案
内領域と同時に形成した不純物ドープ層7″を有
することを特徴とする電荷検出装置。
[Claims] 1. Charges in a source follower configuration connected to the output electrode of a buried channel CCD having charge guiding regions 7 regularly formed in a buried layer 4 and formed on the same semiconductor substrate as the CCD. In a charge detection device having a detection circuit, a layer on the semiconductor substrate is placed directly under each gate electrode 9 of an active insulated gate field effect transistor Q A and a load insulated gate field effect transistor Q L included in the charge detection circuit. A charge detection device characterized in that it has an impurity doped layer 7'' formed simultaneously with a charge guiding region in the buried layer.
JP8841880A 1980-06-27 1980-06-27 Charge detector Granted JPS5713764A (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP8841880A JPS5713764A (en) 1980-06-27 1980-06-27 Charge detector

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP8841880A JPS5713764A (en) 1980-06-27 1980-06-27 Charge detector

Publications (2)

Publication Number Publication Date
JPS5713764A JPS5713764A (en) 1982-01-23
JPH0352218B2 true JPH0352218B2 (en) 1991-08-09

Family

ID=13942233

Family Applications (1)

Application Number Title Priority Date Filing Date
JP8841880A Granted JPS5713764A (en) 1980-06-27 1980-06-27 Charge detector

Country Status (1)

Country Link
JP (1) JPS5713764A (en)

Families Citing this family (8)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS58128767A (en) * 1982-01-28 1983-08-01 Toshiba Corp Manufacture of charge transfer device
JPS5994870A (en) * 1982-11-22 1984-05-31 Nec Corp Charge transfer element
JPS61131854U (en) * 1985-02-06 1986-08-18
JP2535888B2 (en) * 1987-03-19 1996-09-18 ソニー株式会社 Solid-state imaging device
JPH03245504A (en) * 1990-02-23 1991-11-01 Sumitomo Heavy Ind Ltd Magnet for critical magnetic field measuring device
JPH05315587A (en) * 1992-04-02 1993-11-26 Nec Corp Semiconductor device
JPH0786568A (en) * 1993-09-09 1995-03-31 Nec Corp Charge transfer device
JPH07122733A (en) * 1993-10-21 1995-05-12 Nec Corp Charge transfer device and its manufacture

Citations (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS5632764A (en) * 1979-08-27 1981-04-02 Nec Corp Charge coupled device
JPS56169365A (en) * 1980-05-30 1981-12-26 Fujitsu Ltd Charge detector

Patent Citations (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS5632764A (en) * 1979-08-27 1981-04-02 Nec Corp Charge coupled device
JPS56169365A (en) * 1980-05-30 1981-12-26 Fujitsu Ltd Charge detector

Also Published As

Publication number Publication date
JPS5713764A (en) 1982-01-23

Similar Documents

Publication Publication Date Title
US5369047A (en) Method of making a BCD low noise high sensitivity charge detection amplifier for high performance image sensors
JPH01205470A (en) Semiconductor device and its manufacture
US5191398A (en) Charge transfer device producing a noise-free output
JP3386863B2 (en) Thin film transistor and method of manufacturing the same
JP3281700B2 (en) Semiconductor device
US4484209A (en) SOS Mosfet with thinned channel contact region
US4041519A (en) Low transient effect switching device and method
JPH0352218B2 (en)
US5430312A (en) Charge modulated device
JPH077147A (en) Charge coupled device image sensor
US5965921A (en) High voltage inverter circuit
JPS5816565A (en) Insulating gate type field effect transistor
JPS61198676A (en) Semiconductor integrated circuit device
US4099317A (en) Method for fabricating self-aligned CCD devices and their output self-aligned MOS transistors on a single semiconductor substrate
JPH0878663A (en) Electric charge detection node of ccd
JPH07106553A (en) Solid state image pickup element
JPH07122733A (en) Charge transfer device and its manufacture
US5294817A (en) Output circuit for charged transfer device and having a high detection sensitivity
US5652442A (en) Charge coupled device and imaging device having a charge coupled device
JPH05243281A (en) Semiconductor device and its manufacture
JPS60132367A (en) Charge transfer device
US4250517A (en) Charge transfer, tetrode bucket-brigade device
JPH0319349A (en) Charge-coupled device
JPS6315754B2 (en)
KR100197656B1 (en) Fabricating method of s.o.i. semiconductor device