JPH0345519A - Production of glass from liquid phase - Google Patents

Production of glass from liquid phase

Info

Publication number
JPH0345519A
JPH0345519A JP18151589A JP18151589A JPH0345519A JP H0345519 A JPH0345519 A JP H0345519A JP 18151589 A JP18151589 A JP 18151589A JP 18151589 A JP18151589 A JP 18151589A JP H0345519 A JPH0345519 A JP H0345519A
Authority
JP
Japan
Prior art keywords
glass
gel
metal alkoxide
temperature
dry gel
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Pending
Application number
JP18151589A
Other languages
Japanese (ja)
Inventor
Jun Satake
順 佐武
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Toyo Ink SC Holdings Co Ltd
Original Assignee
Toyo Ink Mfg Co Ltd
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Toyo Ink Mfg Co Ltd filed Critical Toyo Ink Mfg Co Ltd
Priority to JP18151589A priority Critical patent/JPH0345519A/en
Publication of JPH0345519A publication Critical patent/JPH0345519A/en
Pending legal-status Critical Current

Links

Landscapes

  • Glass Melting And Manufacturing (AREA)
  • Silicon Polymers (AREA)

Abstract

PURPOSE:To prevent cracking or crushing from occurring in converting a metal alkoxide into a dry gel and obtain large-sized glass by hydrolyzing and gelatinizing the metal alkoxide in the coexistence of a specific amount of a specified nitrogen-containing organic compound in a sol-gel method. CONSTITUTION:A metal alkoxide, an alcohol, water and further, as necessary, a catalyst are used to produce glass. In the method, the metal alkoxide is hydrolyzed and gelatinized in the coexistence of one or more N-containing organic compounds, such as acetamide, pyrrolidone and polyacrylamide, in an amount of 10-300wt.% based on the metal alkoxide. The resultant gel is then passed through steps for forming a dry gel and burning the dry gel to produce the objective glass. N- and N,N-substituted acetamides, N-substituted purrolidones, polyamic acids, caprolactam, polyamide resins, nitrile group-containing compounds and oxazoline are cited as the specific N-containing organic compound in addition to the aforementioned compounds.

Description

【発明の詳細な説明】 〔発明の目的〕 (産業上の利用分野) 本発明はゾルゲル法による液相からのガラスの製造方法
に関し、特に原料として金属アルコキシドを用いるガラ
スの製造方法に関する。
DETAILED DESCRIPTION OF THE INVENTION [Object of the Invention] (Industrial Application Field) The present invention relates to a method for producing glass from a liquid phase by a sol-gel method, and particularly to a method for producing glass using a metal alkoxide as a raw material.

(従来技術の説明) 高機能ないしは高品質のガラスの製造方法としては、溶
融法、化学気相反応法、ゾルゲル法などが知られている
が、溶融法には2200〜2300℃の高温を必要とし
、また、化学気相反応法にはガラス原料の相当部分が反
応系外に流出し、原料のガラスへの変換効率が低いとい
う欠点があった。
(Description of Prior Art) Melting methods, chemical vapor phase reaction methods, sol-gel methods, etc. are known as methods for producing high-performance or high-quality glass, but the melting method requires high temperatures of 2200 to 2300°C. In addition, the chemical vapor phase reaction method has the disadvantage that a considerable portion of the raw material for glass flows out of the reaction system, resulting in a low conversion efficiency of the raw material to glass.

これに対しゾルゲル法は、溶液あるいはゾルのゲル化、
ゲルの加熱によりガラスを製造するものであり、溶融法
或は化学気相法の難点を克服するために考案された方法
で、一般に比較的低温の加熱によりガラスの製造を可能
にし、原料のガラスへの変換効率が100%に近いとい
う長所があるが、出発溶液あるいは出発ゲルの乾燥ゲル
体への変換時、或は加熱による乾燥ゲル体のガラス体へ
の転化時に亀裂。
In contrast, the sol-gel method involves gelation of a solution or sol,
Glass is produced by heating gel, and this method was devised to overcome the drawbacks of the melting method or chemical vapor phase method. Generally, glass can be produced by heating at a relatively low temperature, and the raw material glass However, cracks occur during the conversion of the starting solution or starting gel into a dry gel body, or when the dry gel body is converted into a glass body by heating.

破砕、異常膨張による変形が起こり、大きなガラス体を
得るのが困難であるという欠点もあった。
Another drawback was that it was difficult to obtain large glass bodies due to deformation due to crushing and abnormal expansion.

そこで、これらの欠点を補いつつ大きなガラス体を得る
方法として金属酸化物微粒子のゾルを出発原料とする方
法、金属酸化物微粒子を予め金属アルコキシドの溶液に
添加する方法が提案されている。しかしこれらの方法で
は乾燥ゲル体を透明なガラス体に転化するのに1200
℃以上の加熱温度を必要とし、前述したゾルゲル法の長
所が損なわれるという欠点があった。
Therefore, as a method of obtaining a large glass body while compensating for these drawbacks, a method using a sol of metal oxide fine particles as a starting material and a method of adding metal oxide fine particles to a metal alkoxide solution in advance have been proposed. However, these methods require 1200 ml to convert a dry gel body into a transparent glass body.
This method requires a heating temperature of .degree. C. or higher, which has the disadvantage that the advantages of the sol-gel method described above are lost.

一方、ガラス源として金属アルコキシドのみを含む出発
溶液を使用するガラスの製造方法も提案されており、こ
の方法では、乾燥ゲル体をガラスに転化するときの焼結
温度は低いが、特に、溶液がゲル化した当初の軟質ゲル
が乾燥によって乾燥ゲル体に変わるときに亀裂や破砕が
起き易い。
On the other hand, a method for producing glass using a starting solution containing only metal alkoxides as the glass source has also been proposed, in which the sintering temperature when converting the dry gel body into glass is low, but in particular the solution Cracks and fractures are likely to occur when the initially gelled soft gel turns into a dry gel body by drying.

この製造法による亀裂や破砕の発生原因は、細孔が微細
で溶液中の水の蒸発によるゲル体の収縮時に加わる大き
い表面張力による圧縮に、ゲル体の骨格が耐えられない
ため、或はゲル体の自由表面に近い部分と自由表面から
遠い部分との間に乾燥収縮の差が大きくなって画部分の
間に大きい応力を生じるために起きると考えられる。
The cause of cracks and fractures caused by this manufacturing method is that the pores are so small that the skeleton of the gel cannot withstand the compression caused by the large surface tension that is applied when the gel contracts due to evaporation of water in the solution. This is thought to occur because the difference in drying shrinkage becomes large between parts of the body close to the free surface and parts far from the free surface, creating a large stress between the image parts.

そこで、亀裂や破砕を防止する方法として9例えば、超
臨界条件でのオートクレーブ乾燥をする方法。
Therefore, as a method to prevent cracking and crushing,9 for example, a method of drying in an autoclave under supercritical conditions.

緩やかに加熱乾燥する方法、大量の塩酸を添加する方法
、乾燥制御剤としてホルムアミドやN、N−ジメチルホ
ルムアミドを使用する方法などの方策が講じられている
やしかし、オートクレーブ乾燥を行う方法、大量の塩酸
を用いる方法では、充分に大きい乾燥ゲル体を得ること
が困難であり、緩やかに乾燥する方法では、ガラス製造
に長時間を要し、実用的でない。また、乾燥制御剤とし
てホルムアミドやN。
Measures such as slow heating drying, adding a large amount of hydrochloric acid, and using formamide or N,N-dimethylformamide as a drying control agent have been taken. With the method using hydrochloric acid, it is difficult to obtain a sufficiently large dried gel body, and with the method of slow drying, glass production takes a long time and is not practical. Also, formamide and N are used as drying control agents.

N−ジメチルホルムアミドを用いる場合は、触媒として
の塩基や酸の影響が大きく2条件が設定しにくいという
欠点があった。
When N-dimethylformamide is used, there is a drawback that it is difficult to set two conditions because the influence of the base or acid as a catalyst is large.

本発明では以上のごとき背景に鑑みてなされたもので、
その目的とするところは乾燥ゲルへの変換時に於ける亀
裂ないしは破砕の発生を防止し、且つ。
The present invention has been made in view of the above background.
The purpose is to prevent the occurrence of cracks or fractures during conversion into a dry gel.

焼結の高温化を回避しつつ、透明、大型なガラスが得ら
れるゾルゲル法によるガラスの製造方法を提供すること
にある。
It is an object of the present invention to provide a method for manufacturing glass by a sol-gel method, which allows transparent, large-sized glass to be obtained while avoiding high temperatures during sintering.

〔発明の構成〕[Structure of the invention]

(課題を解決するための手段) 本発明は、金属アルコキシド、アルコールおよび水、さ
らに必要に応じて触媒を出発原料としてガラスを製造す
る方法において、金属アルコキシドに対して10−30
0重量%の、アセトアミド、N−置換アセトアくド、N
、N−置換アセトア稟ド、ピロリドン、N−7換ピロリ
ドン、ポリアクリルアミド。
(Means for Solving the Problems) The present invention provides a method for producing glass using a metal alkoxide, alcohol, water, and, if necessary, a catalyst as starting materials.
0% by weight of acetamide, N-substituted acetoamide, N
, N-substituted acetamine, pyrrolidone, N-7-substituted pyrrolidone, polyacrylamide.

ボリアごンク酸、カプロラクタム、ボリアもド樹脂。Boria also contains citric acid, caprolactam, and boria resin.

ニトリル基含有化合物およびオキサプリンから選ばれる
1種または2種以上の窒素含有有機化合物共存下で前記
金属アルコキシドを加水分解、ゲル化させ。
The metal alkoxide is hydrolyzed and gelated in the coexistence of one or more nitrogen-containing organic compounds selected from nitrile group-containing compounds and oxaprines.

その後乾燥ゲル生成工程、乾燥ゲル焼結工程を経てガラ
スを生成させるゾルゲル法によるガラスの製造方法であ
る。
This is a glass manufacturing method using a sol-gel method in which glass is then produced through a dry gel production process and a dry gel sintering process.

上記製造方法に於ける窒素含有有機化合物は、金属アル
コキシド、水、アルコールの混合溶液に対しよく混合す
るものである。また、水への溶解性を増すため酸、塩基
により中和されたものでもよい。
The nitrogen-containing organic compound used in the above production method is one that is well mixed with a mixed solution of metal alkoxide, water, and alcohol. Moreover, in order to increase the solubility in water, it may be neutralized with an acid or a base.

上記アセトアミド、N−i換アセドアくド、N。The above acetamide, Ni-substituted acetoamide, N.

N−置換アセトアミドとしては9例えば、アセドア貴ド
、N−メチルアセトアミド、N、N−ジメチルアセドア
短ド、N−ビニルアセトアミド等が挙げられる。
Examples of the N-substituted acetamide include acedoacetamide, N-methylacetamide, N,N-dimethylacetamide, N-vinylacetamide, and the like.

上記ピロリドン、N−置換ピロリドンとしては。The above pyrrolidone and N-substituted pyrrolidone include:

例えば、2−ピロリドン、N−メチルピロリドンN−ビ
ニルピロリドン、ポリN−ビニルピロリドン等が挙げら
れる。
Examples include 2-pyrrolidone, N-methylpyrrolidone, N-vinylpyrrolidone, polyN-vinylpyrrolidone, and the like.

上記カプロラクタムとしてはε−カプロラクタム等が挙
げられる。
Examples of the caprolactam include ε-caprolactam.

上記ポリアミド樹脂としては9例えば、ポリアミド4,
6樹脂、ポリアミド6.6樹脂、ボリア壽ドロ樹脂、ボ
リアごドII樹脂、ダイマー酸とポリアミンの縮合物等
が挙げられる。
Examples of the above polyamide resins include 9, polyamide 4,
6 resin, polyamide 6.6 resin, boria 6.6 resin, boria godo II resin, condensate of dimer acid and polyamine, and the like.

上記ニトリル含有化合物としてはアセトニトリル。The nitrile-containing compound is acetonitrile.

プロピオニトリル、ブチロニトリル、アクリロニトリル
、ポリアクリロニトリル等が挙げられる。
Examples include propionitrile, butyronitrile, acrylonitrile, polyacrylonitrile, and the like.

また、その他1本法に用いられる窒素含有有機化合物と
してはN−メチルホルムア藁ド、N、N−ジエチルホル
ムアミド、ポリアクリルアミド、ポリアミック酸1等が
挙げられる。
Other nitrogen-containing organic compounds that can be used in this method include N-methylformamide, N,N-diethylformamide, polyacrylamide, and polyamic acid 1.

上記アルコールとしては、メチルアルコール、エチルア
ルコール、n−プロパツール、イソプロパツール、グリ
セリン等が挙げられる。
Examples of the alcohol include methyl alcohol, ethyl alcohol, n-propanol, isopropanol, glycerin, and the like.

上記金属アルコキシドとしては、テトラエチルシリケー
ト、テトラメチルシリケートなどのシリコンアルコキシ
ド、ゲルマニウムアルコキシド、チタンアルコキシド、
ジルコニウムアルコキシドなどが挙げられる。また、こ
れら金属アルコキシドは2種以上の混合物でもよい。
Examples of the metal alkoxide include silicon alkoxide such as tetraethyl silicate and tetramethyl silicate, germanium alkoxide, titanium alkoxide,
Examples include zirconium alkoxide. Moreover, a mixture of two or more types of these metal alkoxides may be used.

乾燥ゲル生成工程に於いては1例えばガラス製容器中で
これを行うと、ガラス壁にゲル体が接着し。
In the dry gel production process, for example, if this is carried out in a glass container, the gel body will adhere to the glass wall.

収縮時に乾燥ゲルに亀裂が生じるので、乾燥ゲル体生成
のための温度である150℃程度の耐熱性のあるふっ素
糸樹脂などの容器、あるいはふっ素樹脂によりコーティ
ングされた容器、もしくはポリメチルペンテン樹脂等の
容器を使用することが望ましい。
Since cracks occur in the dried gel when it shrinks, use a container made of fluorine thread resin that is heat resistant to the temperature of about 150°C, which is the temperature for producing a dry gel body, or a container coated with fluororesin, or a container coated with polymethylpentene resin, etc. It is recommended to use a container of

上記の容器中でゲルの乾燥を行うが、乾燥温度は120
−150℃で行うことが望ましい。120℃よりも乾燥
温度が低い場合は9例えば100℃で定温乾燥させる場
合は、ゲルの乾燥終了直前に亀裂が発生し易く、また乾
燥に長時間を要する。
The gel is dried in the above container, and the drying temperature is 120℃.
It is desirable to carry out at -150 degreeC. If the drying temperature is lower than 120° C.9 For example, if drying is carried out at a constant temperature of 100° C., cracks are likely to occur just before the drying of the gel is completed, and drying takes a long time.

この様にして得た乾燥ゲルは人オーダーの細孔を持つ多
孔質であり、これを所定温度で焼結して微細化。
The dried gel obtained in this way is porous with human-sized pores, which are sintered at a predetermined temperature to make them finer.

無孔化してガラスを得る。Glass is obtained by making it non-porous.

なお、金属アルコキシドに対する窒素含有有機化合物の
添加量が10重量%以下ではゲル乾燥時の亀裂の発生の
防止が有効でなく、300重景%以上ではゲル強度の低
いものしか得られず、金属アルコキシドに対する水のモ
ル比は用途に応じて任意に加えることが出来る。
Note that if the amount of the nitrogen-containing organic compound added to the metal alkoxide is less than 10% by weight, it is not effective in preventing the occurrence of cracks during gel drying, and if it is more than 300% by weight, only a gel with low strength is obtained, and the metal alkoxide The molar ratio of water to water can be added arbitrarily depending on the purpose.

(実施例) 以下に本発明の詳細について実施例により説明する。(Example) The details of the present invention will be explained below using Examples.

実施例1 水10g、メタノール5.5g、N、 N−ジメチルア
セトアミド3gの混合溶液にテトラメトキシシラン10
gを1度に加え、室温で10分間攪拌の後、ポリメチル
ペンテン樹脂製シリンダーに入れ、アルミ箔で蓋をし密
閉して40℃に保温した。この様にしてゲル化した後8
0℃まで48時間で昇温し、80℃でピンホール(直径
約1mm)を10個開は乾燥を開始した。その後、15
0℃まで96時間かけて昇温することにより直径約17
mn+、長さ約401の褐色を帯びたほぼ透明な乾燥ゲ
ルロッドとなった。乾燥ゲルは電気炉中で空気m威の雰
囲気中により15℃/時間の速度で1050℃まで昇温
し焼結させた。
Example 1 10 g of tetramethoxysilane was added to a mixed solution of 10 g of water, 5.5 g of methanol, and 3 g of N,N-dimethylacetamide.
After stirring at room temperature for 10 minutes, the mixture was placed in a polymethylpentene resin cylinder, covered with aluminum foil, sealed, and kept at 40°C. After gelling in this way, 8
The temperature was raised to 0°C in 48 hours, and 10 pinholes (about 1 mm in diameter) were opened at 80°C to start drying. After that, 15
By raising the temperature to 0℃ over 96 hours, the diameter of
The result was a brownish, almost transparent dry gel rod with mn+ and a length of about 401 cm. The dried gel was sintered by increasing the temperature to 1050° C. at a rate of 15° C./hour in an atmosphere of air in an electric furnace.

これにより、iW径約12帥、長さ28mmの透明なシ
リカガラスロッドが得られた。このガラスの密度は2.
2g/c1で、市販の石英ガラスと同じ密度であった。
As a result, a transparent silica glass rod with an iW diameter of about 12 mm and a length of 28 mm was obtained. The density of this glass is 2.
The density was 2 g/c1, the same as commercially available quartz glass.

実施例2 水Log、メタノールs、sg+プロピオニトリル5g
の混合溶液にテトラメトキシシランlOgを1度に加え
、室温で10分間攪拌の後ポリメチルペンテン樹脂製シ
リンダーに入れ、アル′、箔で蓋をし密閉して40℃に
保温した。この様にしてゲル化した後80℃まで48時
間で昇温し、80℃でピンホール(直径約1mm)を1
0個開は乾燥を開始した。その後、150℃まで96時
間かけて昇温することにより直径約17nun、長さ約
40mmの褐色を帯びたほぼ透明な乾燥ゲルロッドとな
った。乾燥ゲルは電気炉中で空気組成の雰囲気中により
15℃/時間の速度で1050℃まで昇温し焼結させた
。これにより。
Example 2 Water Log, methanol s, sg + propionitrile 5g
To the mixed solution was added 10 g of tetramethoxysilane at once, and after stirring at room temperature for 10 minutes, the mixture was placed in a polymethylpentene resin cylinder, covered with Al' and foil, hermetically sealed, and kept at 40°C. After gelatinizing in this way, the temperature was raised to 80°C in 48 hours, and at 80°C, a pinhole (about 1 mm in diameter) was cut into 1 pinhole.
When 0 pieces were opened, drying started. Thereafter, the temperature was raised to 150° C. over 96 hours, resulting in a brownish, almost transparent dried gel rod with a diameter of about 17 nun and a length of about 40 mm. The dried gel was sintered in an electric furnace by increasing the temperature to 1050° C. at a rate of 15° C./hour in an atmosphere of air composition. Due to this.

直径約12nus、長さ28+1101の透明なシリカ
ガラスロッドが得られた。このガラスの密度は2.2g
/cm3で、市販の石英ガラスと同じ密度であった。
A transparent silica glass rod with a diameter of about 12 nus and a length of 28+1101 was obtained. The density of this glass is 2.2g
/cm3, which was the same density as commercially available quartz glass.

実施例3〜7 実施例1のN、 N−ジメチルアセドア旦ドの代わりに
、それぞれアセトアミド、ポリアクリルアミド(分子量
約1万〉、ε−カプロラクタム、トーマイド2500 
(富士化成■製ボリアξド樹脂)またはオキサゾリンを
使用して、実施例と同様にガラスを製造したところ、は
ぼ同様な結果が得られた。
Examples 3 to 7 In place of N and N-dimethyl acedodando in Example 1, acetamide, polyacrylamide (molecular weight approximately 10,000), ε-caprolactam, and Tomide 2500 were used, respectively.
When glass was produced in the same manner as in the Examples using Boria ξ resin (manufactured by Fuji Kasei ■) or oxazoline, almost the same results were obtained.

実施例8 水10g、イソジイソツール9.5g、  4. 4’
シアくノジフェニルエーテル・ピロメリット酸二無水物
から台底されたポリアミック酸のN、N−ジメチルアセ
55120%溶液3g、28%アンモニア水0.1gか
らなる混合物にテトラメトキシシラン10gを加え、室
温で10分攪拌の後アルミ箔で蓋をしたトリメチルペン
テン製シリンダーに入れ、40℃でゲル化させた。その
後48時間かけて80℃まで昇温し、アル旦箔に孔(直
径約1 mm)を10個開け96時間かけて150℃ま
で昇温することにより褐色不透明な乾燥ゲル体を得た。
Example 8 10 g of water, 9.5 g of isodiisotool, 4. 4'
10 g of tetramethoxysilane was added to a mixture consisting of 3 g of a 20% solution of N,N-dimethylacetic acid 551, which was prepared from cyanodiphenyl ether pyromellitic dianhydride, and 0.1 g of 28% aqueous ammonia, and the mixture was heated to 10 g at room temperature. After stirring for several minutes, the mixture was placed in a trimethylpentene cylinder covered with aluminum foil, and gelatinized at 40°C. Thereafter, the temperature was raised to 80°C over 48 hours, ten holes (about 1 mm in diameter) were made in the aluminum foil, and the temperature was raised to 150°C over 96 hours to obtain a brown, opaque dry gel.

乾燥ゲルは電気炉中で空気&Il戒の雰囲気中により1
5℃/時間の速度で1oso℃まで昇温し焼結させた。
The dried gel is heated in an electric furnace in an atmosphere of air and air.
The temperature was raised to 1 oso° C. at a rate of 5° C./hour for sintering.

これにより。Due to this.

直径約12mm、長さ28+++mの透明なシリカガラ
スロッドが得られた。このガラスの密度は2.2g/c
m3で、市販の石英ガラスと同じ密度であった。
A transparent silica glass rod with a diameter of approximately 12 mm and a length of 28+++ m was obtained. The density of this glass is 2.2g/c
m3, and had the same density as commercially available quartz glass.

実施例9 水LOg、イソプロパツール9g、ビニルピロリドン 
3g、酢酸0.1gの混合溶液中にテトラエトキシシラ
ン10gを加え、室温で10分攪拌し、その後放置して
ゲル化させた。その後48時間かけて80℃まで昇温し
ゲルを熟成、更に96時間かけて150℃まで昇温し亀
裂の無い白色の乾燥ゲル体を得た。
Example 9 LOg of water, 9g of isopropanol, vinylpyrrolidone
10 g of tetraethoxysilane was added to a mixed solution of 3 g of acetic acid and 0.1 g of acetic acid, stirred at room temperature for 10 minutes, and then left to gel. Thereafter, the temperature was raised to 80°C over 48 hours to mature the gel, and the temperature was further raised to 150°C over 96 hours to obtain a white dry gel body without cracks.

実施例1O 水10g、メタジメタ5.5g、N、N−ジメチルアセ
トアミド3gの混合溶液にテトラメトキシシラン6g、
テトラメトキシジルコニウム4gを1度に加え。
Example 1O 6 g of tetramethoxysilane was added to a mixed solution of 10 g of water, 5.5 g of metadimeth, and 3 g of N,N-dimethylacetamide.
Add 4g of tetramethoxyzirconium at once.

室温で10分間攪拌の後ポリメチルペンテン樹脂製シリ
ンダーにいれ、アルご箔で蓋をし密閉して40℃に保温
した。この様にしてゲル化した後80℃まで48時間で
昇温し、80℃でピンホール(直径約1mm)を10個
開は乾燥を開始した。その後、150℃まで96時間か
けて昇温することにより直径約17mm、長さ約40m
mの褐色を帯びたほぼ透明な乾燥ゲルロンドとなった。
After stirring at room temperature for 10 minutes, the mixture was placed in a polymethylpentene resin cylinder, covered with aluminum foil, sealed, and kept at 40°C. After gelatinization in this manner, the temperature was raised to 80° C. over 48 hours, and at 80° C., 10 pinholes (about 1 mm in diameter) were opened and drying was started. After that, by raising the temperature to 150℃ over 96 hours, it becomes approximately 17mm in diameter and approximately 40m in length.
The result was a brownish, almost transparent dry gelrond.

乾燥ゲルは電気炉中で空気組成の雰囲気中により15℃
/時間の速度で1050℃まで昇温し焼結させた。これ
により、直径約12am、 長さ28mmの透明なシリ
カージルコニアガラスロンドが得られた。
The dried gel was heated to 15°C in an atmosphere of air composition in an electric furnace.
The temperature was raised to 1050° C./hour to sinter. As a result, a transparent silica zirconia glass iron having a diameter of about 12 am and a length of 28 mm was obtained.

比較例1 水10g、メタジメタ5.5g、の混合溶液にテトラメ
トキシシランlogを1度に加え、室温で10分間攪拌
の後、ポリメチルペンテン樹脂製シリンダーにいれ、ア
ルミ箔で蓋をし密閉して40℃に保温した。
Comparative Example 1 A log of tetramethoxysilane was added at once to a mixed solution of 10 g of water and 5.5 g of methadimeta, and after stirring at room temperature for 10 minutes, the mixture was poured into a polymethylpentene resin cylinder and sealed with an aluminum foil lid. The temperature was kept at 40°C.

この様にしてゲル化した後80°Cまで48時間で昇温
し、80℃でピンホール(直径約1mm)を10個開は
乾燥を開始した。その後、150℃まで96時間かけて
昇温し、乾燥ゲル体を得たが、これは、無数の小さな破
片に破砕されたものであった。
After gelatinization in this manner, the temperature was raised to 80° C. over 48 hours, and at 80° C., 10 pinholes (about 1 mm in diameter) were opened and drying was started. Thereafter, the temperature was raised to 150° C. over 96 hours to obtain a dry gel body, which was crushed into numerous small pieces.

比較例2 水10g、メタジメタ5.5g、N、N−ジメチルホル
ムアミド3gの混合溶液にテトラメトキシシラン10g
を1度に加え、室温で10分間攪拌の後ポリメチルペン
テン樹脂製シリンダーにいれ、アルミ箔で蓋をし密閉し
て40℃に保温した。この様にしてゲル化した後80℃
まで48時間で昇温し、80’Cでピンホール(直径約
1mm)をlO個開は乾燥を開始した。その後、150
℃まで96時間かけて昇温したが、乾燥ゲル体は無数の
小さな破片に破砕されたものであった。
Comparative Example 2 10 g of tetramethoxysilane was added to a mixed solution of 10 g of water, 5.5 g of metadimeth, and 3 g of N,N-dimethylformamide.
was added at once, and after stirring at room temperature for 10 minutes, the mixture was placed in a polymethylpentene resin cylinder, covered with aluminum foil, hermetically sealed, and kept at 40°C. After gelling in this way, 80℃
The temperature was raised to 80'C over 48 hours, and drying was started by opening a pinhole (about 1 mm in diameter) in 1O. After that, 150
Although the temperature was raised to ℃ over 96 hours, the dried gel body was crushed into countless small pieces.

比較例3 4 X 10−”mol/Iのアンモニア水10g、メ
タノール5.5g、N、N−ジメチルホルムアミド3g
の混合溶液にテトラメトキシシラン10gを1度に加え
、室温で10分間攪拌の後ポリメチルペンテン樹脂製シ
リンダーにいれ、アル主苗で蓋をし密閉して40℃に保
温した。この様にしてゲル化した後80℃まで48時間
で昇温し、80℃でピンホール(直径約1mm)を10
個開は乾燥を開始した。その後、150℃まで96時間
かけて昇温したところ乳白色をした乾燥ゲル体が得られ
た。
Comparative Example 3 10 g of aqueous ammonia of 4×10-”mol/I, 5.5 g of methanol, 3 g of N,N-dimethylformamide
10 g of tetramethoxysilane was added to the mixed solution at once, and after stirring at room temperature for 10 minutes, the mixture was placed in a polymethylpentene resin cylinder, covered with an Al main seedling, hermetically sealed, and kept at 40°C. After gelatinizing in this way, the temperature was raised to 80°C in 48 hours, and at 80°C, 10 pinholes (about 1 mm in diameter) were cut.
Individual openings have started drying. Thereafter, the temperature was raised to 150° C. over 96 hours, and a milky white dry gel was obtained.

〔発明の効果〕〔Effect of the invention〕

以上説明したように5本発明方法では窒素含有有機化合
物を原料アルコキシド溶液に添加することにより亀裂の
無い乾燥ゲル体を作成することが出来る。
As explained above, in the method of the present invention, a crack-free dry gel body can be created by adding a nitrogen-containing organic compound to a raw material alkoxide solution.

この原因としては、必ずしも明確となっているわけでは
ないが、窒素原子の持つ極性1表面張力の低さ。
The cause of this is not necessarily clear, but it is the low polarity 1 surface tension of nitrogen atoms.

蒸気圧など多くの事が関係していると思われる。また、
これら本発明法による乾燥ゲル体は細孔分布の制御が可
能であり、シリカガラス中に金属、ハロゲン等の化合物
をドープさせたものを作成する場合。
Many things seem to be involved, including vapor pressure. Also,
The pore distribution of these dry gel bodies produced by the method of the present invention can be controlled, and when silica glass is doped with compounds such as metals and halogens.

乾燥ゲルをドーパントを含む溶液に浸漬して、ドーパン
トを細孔中に拡散させるときの拡散速度の抑制にも細孔
分布の制御が有効であると考えられる。
Controlling the pore distribution is also considered effective in suppressing the diffusion rate when the dry gel is immersed in a solution containing a dopant and the dopant is diffused into the pores.

また1本発明によれば1塩基、酸などの触媒を用いなく
ても亀裂のない乾燥ゲル体が得られ、得られた乾燥ゲル
体の透明性が高く、触媒を用いたものより更に低温で透
明なガラスが得られるものと思われる。
Furthermore, according to the present invention, a dry gel body without cracks can be obtained without using a catalyst such as a base or an acid, and the resulting dry gel body has high transparency and can be used at a lower temperature than that using a catalyst. It seems that transparent glass can be obtained.

さらに1本発明法によれば、ガラスと、窒素原子を含む
有機ポリマー、七ツマ−と分子レベルで複合化すること
ができ、新規な構造材料、複合材料を得ることが可能で
あると考えられる。
Furthermore, according to the method of the present invention, it is possible to composite glass and a nitrogen atom-containing organic polymer, Neptumer, at the molecular level, making it possible to obtain novel structural materials and composite materials. .

Claims (1)

【特許請求の範囲】[Claims] 1、金属アルコキシド、アルコールおよび水、さらに必
要に応じて触媒を用いてガラスを製造する方法において
、金属アルコキシドに対して10−300重量%の、ア
セトアミド、N−置換アセトアミド、N,N−置換アセ
トアミド、ピロリドン、N−置換ピロリドン、ポリアク
リルアミド、ポリアミック酸、カプロラクタム、ポリア
ミド樹脂、ニトリル基含有化合物およびオキサゾリンか
ら選ばれる1種または2種以上の窒素含有有機化合物共
存下で前記金属アルコキシドを加水分解、ゲル化させ、
その後乾燥ゲル生成工程、乾燥ゲル焼結工程を経てガラ
スを生成させることを特徴とするゾルゲル法による液相
からのガラスの製造方法。
1. In a method for producing glass using metal alkoxide, alcohol and water, and optionally a catalyst, 10-300% by weight of acetamide, N-substituted acetamide, N,N-substituted acetamide based on the metal alkoxide. , pyrrolidone, N-substituted pyrrolidone, polyacrylamide, polyamic acid, caprolactam, polyamide resin, nitrile group-containing compound, and oxazoline in the coexistence of one or more nitrogen-containing organic compounds, and the metal alkoxide is hydrolyzed into a gel. to become
A method for producing glass from a liquid phase by a sol-gel method, characterized in that glass is produced through a dry gel production step and a dry gel sintering step.
JP18151589A 1989-07-13 1989-07-13 Production of glass from liquid phase Pending JPH0345519A (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP18151589A JPH0345519A (en) 1989-07-13 1989-07-13 Production of glass from liquid phase

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP18151589A JPH0345519A (en) 1989-07-13 1989-07-13 Production of glass from liquid phase

Publications (1)

Publication Number Publication Date
JPH0345519A true JPH0345519A (en) 1991-02-27

Family

ID=16102108

Family Applications (1)

Application Number Title Priority Date Filing Date
JP18151589A Pending JPH0345519A (en) 1989-07-13 1989-07-13 Production of glass from liquid phase

Country Status (1)

Country Link
JP (1) JPH0345519A (en)

Cited By (6)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
EP0583943A3 (en) * 1992-08-14 1994-08-17 At & T Corp Manufacture of a vitreous silica product by a sol-gel process
JP2005146220A (en) * 2003-11-19 2005-06-09 Central Glass Co Ltd Organic/inorganic hybrid glassy material and method for producing the same
JP2009173701A (en) * 2008-01-22 2009-08-06 National Institute Of Advanced Industrial & Technology Method for producing organic-inorganic hybrid material and organic-inorganic hybrid material
WO2018173850A1 (en) * 2017-03-23 2018-09-27 セイコーエプソン株式会社 Separation device, separation method and sheet production apparatus
CN108863021A (en) * 2018-07-26 2018-11-23 福州大学 A kind of nitrogen oxides bio-vitric and preparation method thereof
CN108892388A (en) * 2018-07-26 2018-11-27 福州大学 A kind of preparation method of porous nitrogen oxides bio-vitric

Citations (15)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS63288920A (en) * 1987-05-20 1988-11-25 Hitachi Chem Co Ltd Production of silicate glass
JPS63288921A (en) * 1987-05-20 1988-11-25 Hitachi Chem Co Ltd Production of silica glass
JPH01138138A (en) * 1987-11-20 1989-05-31 Hitachi Chem Co Ltd Production of silica glass
JPH01138139A (en) * 1987-11-20 1989-05-31 Hitachi Chem Co Ltd Production of silica glass
JPH0214835A (en) * 1988-06-29 1990-01-18 Hitachi Chem Co Ltd Production of silica glass
JPH0214831A (en) * 1988-06-29 1990-01-18 Hitachi Chem Co Ltd Production of silica glass
JPH0238325A (en) * 1988-07-28 1990-02-07 Hitachi Chem Co Ltd Production of silica glass
JPH0238322A (en) * 1988-07-28 1990-02-07 Hitachi Chem Co Ltd Production of silica glass
JPH0259435A (en) * 1988-08-26 1990-02-28 Hitachi Chem Co Ltd Production of silica glass
JPH0259448A (en) * 1988-08-26 1990-02-28 Hitachi Chem Co Ltd Production of silica glass
JPH0259442A (en) * 1988-08-26 1990-02-28 Hitachi Chem Co Ltd Production of silica glass
JPH0259446A (en) * 1988-08-26 1990-02-28 Hitachi Chem Co Ltd Production of silica glass
JPH0259440A (en) * 1988-08-26 1990-02-28 Hitachi Chem Co Ltd Production of silica glass
JPH0259437A (en) * 1988-08-26 1990-02-28 Hitachi Chem Co Ltd Production of silica glass
JPH02248331A (en) * 1989-03-22 1990-10-04 Hitachi Chem Co Ltd Production of silica glass

Patent Citations (15)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS63288920A (en) * 1987-05-20 1988-11-25 Hitachi Chem Co Ltd Production of silicate glass
JPS63288921A (en) * 1987-05-20 1988-11-25 Hitachi Chem Co Ltd Production of silica glass
JPH01138138A (en) * 1987-11-20 1989-05-31 Hitachi Chem Co Ltd Production of silica glass
JPH01138139A (en) * 1987-11-20 1989-05-31 Hitachi Chem Co Ltd Production of silica glass
JPH0214835A (en) * 1988-06-29 1990-01-18 Hitachi Chem Co Ltd Production of silica glass
JPH0214831A (en) * 1988-06-29 1990-01-18 Hitachi Chem Co Ltd Production of silica glass
JPH0238325A (en) * 1988-07-28 1990-02-07 Hitachi Chem Co Ltd Production of silica glass
JPH0238322A (en) * 1988-07-28 1990-02-07 Hitachi Chem Co Ltd Production of silica glass
JPH0259435A (en) * 1988-08-26 1990-02-28 Hitachi Chem Co Ltd Production of silica glass
JPH0259448A (en) * 1988-08-26 1990-02-28 Hitachi Chem Co Ltd Production of silica glass
JPH0259442A (en) * 1988-08-26 1990-02-28 Hitachi Chem Co Ltd Production of silica glass
JPH0259446A (en) * 1988-08-26 1990-02-28 Hitachi Chem Co Ltd Production of silica glass
JPH0259440A (en) * 1988-08-26 1990-02-28 Hitachi Chem Co Ltd Production of silica glass
JPH0259437A (en) * 1988-08-26 1990-02-28 Hitachi Chem Co Ltd Production of silica glass
JPH02248331A (en) * 1989-03-22 1990-10-04 Hitachi Chem Co Ltd Production of silica glass

Cited By (7)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
EP0583943A3 (en) * 1992-08-14 1994-08-17 At & T Corp Manufacture of a vitreous silica product by a sol-gel process
JP2005146220A (en) * 2003-11-19 2005-06-09 Central Glass Co Ltd Organic/inorganic hybrid glassy material and method for producing the same
JP4516737B2 (en) * 2003-11-19 2010-08-04 セントラル硝子株式会社 Organic-inorganic hybrid glassy material and method for producing the same
JP2009173701A (en) * 2008-01-22 2009-08-06 National Institute Of Advanced Industrial & Technology Method for producing organic-inorganic hybrid material and organic-inorganic hybrid material
WO2018173850A1 (en) * 2017-03-23 2018-09-27 セイコーエプソン株式会社 Separation device, separation method and sheet production apparatus
CN108863021A (en) * 2018-07-26 2018-11-23 福州大学 A kind of nitrogen oxides bio-vitric and preparation method thereof
CN108892388A (en) * 2018-07-26 2018-11-27 福州大学 A kind of preparation method of porous nitrogen oxides bio-vitric

Similar Documents

Publication Publication Date Title
JP2939889B2 (en) Manufacturing method of airgel monolith
US6099792A (en) Sol-gel process using porous mold
JPH0118007B2 (en)
JPH0345519A (en) Production of glass from liquid phase
AU764586B2 (en) Sol-gel process using porous mold
JP2002526370A5 (en)
JP3431197B2 (en) Method for producing porous silica body by sol-gel method
JPH038729A (en) Production of porous glass
JP2587876B2 (en) Method for producing glass from liquid phase
JPH054839A (en) Method for preparing thin film by sol-gel method
KR100337703B1 (en) Composition for making silica glass with sol-gel process
JPH01183421A (en) Production of quartz glass
JPS63112429A (en) Production of silica glass by sol-gel process
JPH0124734B2 (en)
JPS61270225A (en) Production of high-silica glass
JPS62265128A (en) Production of silica glass
JPS61163124A (en) Preparation of glass
JPS6186429A (en) Preparation of glass
JPH02243526A (en) Production of glass
JPS6330335A (en) Production of quartz glass
JPS63182222A (en) Production of silica glass
JPS62252330A (en) Production of glass
JPH0825757B2 (en) Silica glass manufacturing method
JPH0214832A (en) Production of silica glass
JPS6090834A (en) Manufacture of quartz glass