JPH0345106A - Magnetic levitation carrier - Google Patents

Magnetic levitation carrier

Info

Publication number
JPH0345106A
JPH0345106A JP17713789A JP17713789A JPH0345106A JP H0345106 A JPH0345106 A JP H0345106A JP 17713789 A JP17713789 A JP 17713789A JP 17713789 A JP17713789 A JP 17713789A JP H0345106 A JPH0345106 A JP H0345106A
Authority
JP
Japan
Prior art keywords
gap sensor
gap
output
conveyance
sensor
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Pending
Application number
JP17713789A
Other languages
Japanese (ja)
Inventor
Katsumi Fukazawa
深沢 勝美
Koji Inoue
井上 宏治
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Toshiba Corp
Original Assignee
Toshiba Corp
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Toshiba Corp filed Critical Toshiba Corp
Priority to JP17713789A priority Critical patent/JPH0345106A/en
Publication of JPH0345106A publication Critical patent/JPH0345106A/en
Pending legal-status Critical Current

Links

Landscapes

  • Control Of Vehicles With Linear Motors And Vehicles That Are Magnetically Levitated (AREA)

Abstract

PURPOSE:To perform highly accurate zero power feedback control by arranging first and second gap sensors then calibrating the output from the first gap sensor with reference to the output from the second gap sensor and carrying out feedback control. CONSTITUTION:A complex electromagnet comprises yoke 9 arranged through a predetermined gap on a guide rail 2, electromagnets 11 for electromagnet coils 10, and permanent magnets 12. First gap sensor, i.e. an optical gap sensor 13, for detecting the gap length between the complex electromagnet and the under face of the guide rail 2 and a second gap sensor, i.e. an eddy current gap sensor 14, are provided. Output B from the eddy current gap sensor 14 is divided by the output A from the optical gap sensor 13 then multiplied by the output A from the optical gap sensor 13 for the purpose of calibration, then the calibrated value is inputted to a feedback control system in order to control the gap length. By such arrangement, calibration can be carried out correctly regardless of aging.

Description

【発明の詳細な説明】 [発明の目的] (産業上の利用分野) 本発明は、書類、現金等の小荷物を搬送する磁気浮上式
搬送装置に係わり、特に浮上制御を行う時に用いるギャ
ップセンサの信頼性を向上させた磁気浮上式搬送装置に
関する。
[Detailed Description of the Invention] [Objective of the Invention] (Industrial Application Field) The present invention relates to a magnetic levitation type conveyance device for conveying small items such as documents and cash, and particularly relates to a gap sensor used when performing levitation control. This invention relates to a magnetic levitation transfer device with improved reliability.

(従来の技術) 最近、オフィスオートメーションの一環として、建家内
の複数の地点間において伝票、書類。
(Prior art) Recently, as part of office automation, slips and documents are transferred between multiple points within a building.

現金、試料等を移動させるのに搬送装置を用いることが
広く行われている。
BACKGROUND OF THE INVENTION The use of transport devices to move cash, samples, etc. is widely practiced.

このような用途に用いられる搬送装置は、搬送物を速や
かに、かつ静かに移動させ得るものであることが要求さ
れる。このため、この種の搬送装置においてはガイドレ
ール上で搬送車を非接触で支持することが行われている
。中でも、搬送車を磁気的に非接触で支持する方式は、
ガイドレールに対する追従性や騒音1発塵防止効果に優
れている。
Conveyance devices used for such applications are required to be able to move the conveyed object quickly and quietly. For this reason, in this type of transport device, the transport vehicle is supported on a guide rail in a non-contact manner. Among them, the method of magnetically supporting the transport vehicle without contact is
Excellent in following the guide rail and preventing noise and dust generation.

しかし、搬送車を磁気力によって支持する場合。However, when the transport vehicle is supported by magnetic force.

この磁気力をすべて電磁石によって賄おうとすると、電
磁石を常時付勢しなければならず、消費電力が大きく、
ならざるを得ない。
If all of this magnetic force were to be provided by electromagnets, the electromagnets would have to be energized all the time, resulting in large power consumption.
I have no choice but to do so.

そこで、先に、電磁力で要求される起磁力の大部分を永
久磁石によって与え、消費電力の低減化を図った。いわ
ゆるゼロパワーフィードバック制御方式を提案した。(
特開昭61−102105号公報参照) この制御方式は、搬送車の重量が変動しても常に永久磁
石による磁気力と搬送車の重量が平均するように両者間
のギャップ(空隙)を制御しようとするものである。こ
れにより、電磁石に殆ど電流を流すことなく磁気浮上さ
せることができ、搬送車に搭載する電池の容量を小さく
することができる。
Therefore, we first attempted to reduce power consumption by providing most of the magnetomotive force required by electromagnetic force using permanent magnets. A so-called zero power feedback control method was proposed. (
(Refer to Japanese Unexamined Patent Publication No. 102105/1982) This control method attempts to control the gap between the two so that even if the weight of the transport vehicle changes, the magnetic force of the permanent magnet and the weight of the transport vehicle are always averaged. That is. As a result, magnetic levitation can be achieved with almost no current flowing through the electromagnet, and the capacity of the battery mounted on the transport vehicle can be reduced.

第3図はその具体的校正を示す。同図において搬送路は
、断面が逆U字状をなす軌道枠1と、軌道枠1の上部壁
下面の離れた位置に埋設され強磁性体よりなる2本のガ
イドレール2と、軌道枠1の側壁内面にそれぞれ断面が
〕字状をなし互いの開放側を対向して取り付けられた非
常用ガイドレール3と、軌道枠1の2本のガイドレール
2の中間に配置され、かつ長手方向に所定の距離を隔て
て取り付けられたリニアインダクションモータの固定子
4とから校正されている。また、この搬送路に沿って走
行移動自在とした搬送車5には、搬送車枠6の上部に上
記したガイドレール2のそれぞれに所定のギャップをも
って配置された複合電磁石7と、これら複合電磁石7を
固定すると共ににガイドレール2の下面と対向するよう
に配置された平板状の基台8を取り付けている。しかし
て、複合電磁石7は、第4図に示す様に上記ガイドレー
ル2に所定のギャップを持ち両側に配置した継鉄9及び
これら継鉄9にそれぞれ巻き付けた電磁石コイル10と
からなる2組の電磁石11と2個の継鉄9の間に配置さ
れた永久磁石12とから校正され、全体としてU字状を
なし、2個の電磁石コイル10は形成する磁束φが互い
に加算される様に接続される。
FIG. 3 shows the specific calibration. In the figure, the conveyance path consists of a track frame 1 having an inverted U-shaped cross section, two guide rails 2 made of ferromagnetic material buried at separate positions on the lower surface of the upper wall of the track frame 1, and the track frame 1. The emergency guide rail 3 is installed on the inner surface of the side wall of the track frame 1, and the emergency guide rail 3 has a shape of a square cross section and is attached with the open sides facing each other, and the guide rail 2 is disposed between the two guide rails 2 of the track frame 1, and extends in the longitudinal direction. It is calibrated from the stator 4 of the linear induction motor, which is attached at a predetermined distance. In addition, the conveyance vehicle 5, which is freely movable along the conveyance path, has composite electromagnets 7 arranged on the upper part of the conveyance vehicle frame 6 with a predetermined gap between each of the guide rails 2 described above, and these composite electromagnets 7. A flat base 8 is attached to the guide rail 2, which is fixed thereto and is arranged so as to face the lower surface of the guide rail 2. As shown in FIG. 4, the composite electromagnet 7 consists of two sets of yokes 9 arranged on both sides of the guide rail 2 with a predetermined gap, and electromagnetic coils 10 respectively wound around the yokes 9. It is calibrated from an electromagnet 11 and a permanent magnet 12 placed between two yokes 9, and has a U-shape as a whole, and the two electromagnetic coils 10 are connected so that the magnetic flux φ they form is added to each other. be done.

なお、複合電磁石7には、同複合電磁石7とガイドレー
ル2の下面との空隙長を検出する光学式ギャップセンサ
13が取り付けられている。
Note that an optical gap sensor 13 is attached to the composite electromagnet 7 to detect the gap length between the composite electromagnet 7 and the lower surface of the guide rail 2.

なお、搬送車5の駆動は、−次側となる固定子4を搬送
路側に適宜の距離をおいて配置する。
In addition, when driving the transport vehicle 5, the stator 4 on the negative side is placed at an appropriate distance on the transport path side.

方、二次側導体となるリニアインダクションモータ駆動
方式になっている。
On the other hand, it is driven by a linear induction motor that serves as the secondary conductor.

(発明が解決しようとする課題) 搬送車5をゼロパワーフィードバック制御を行う場合に
は常にガイドレール2と搬送車5の両者間のギャップを
正しく検出しなければならない。
(Problems to be Solved by the Invention) When performing zero power feedback control on the transport vehicle 5, the gap between both the guide rail 2 and the transport vehicle 5 must always be detected correctly.

しかしながら、従来方式の光学式のギャップセンサ13
では、第5図に一例を示す様な経時変化がおこり、時間
が経つと共に発光ダイオードの光量が減少し、同じ空隙
でありながら光学式ギャップセンサ13の出力が増加し
、あたかも空隙が増加したような特性になってしまう。
However, the conventional optical gap sensor 13
In this case, a change over time occurs as shown in an example in Fig. 5.As time passes, the light intensity of the light emitting diode decreases, and the output of the optical gap sensor 13 increases even though the gap remains the same, making it appear as if the gap has increased. It becomes a characteristic.

そのため、前記搬送車の浮上制御に支承を来し、ゼロパ
ワーフィードバック制御が崩れ、電池の消費量が増大し
、制御できなくなり、搬送車の落下等の事故になってし
まうこともある。
As a result, the levitation control of the transport vehicle is affected, the zero power feedback control is disrupted, battery consumption increases, control becomes impossible, and accidents such as the transport vehicle falling may occur.

経時変化のないギャップセンサとしては例えば渦電流式
のセンサが知られている。この種のセンサは電磁現象を
利用してギャップを測定するものであるから、複合電磁
石7のように強くしかも一定しない磁界を発生するもの
の近くでは正しい測定値が得られない。そこで、渦電流
式ギャップセンサを用いる場合には、搬送車5上におい
て複合電磁石からできるだけ離れた位置にセンサを配置
し、複合電磁石7の磁界の影響を受けないようにしなけ
ればならない。
For example, an eddy current type sensor is known as a gap sensor that does not change over time. Since this type of sensor measures the gap using electromagnetic phenomena, accurate measurement values cannot be obtained in the vicinity of something that generates a strong and inconsistent magnetic field, such as the composite electromagnet 7. Therefore, when using an eddy current gap sensor, the sensor must be placed as far away from the composite electromagnet as possible on the carrier 5 so as not to be affected by the magnetic field of the composite electromagnet 7.

ところで、前記ゼロパワーフィードバック制御によって
厳密に制御しようとしているのは、複合電磁石7とガイ
ドレール2との間の空隙であるが、ある程度大きな搬送
車5上において渦電流式ギャップセンサが複合電磁石7
から相当離れて取り付けられていると、制御対象部位(
複合電磁石7の位置でのギャップ)とギャップ測定部位
とが大きく異なるため、走行中に生じる搬送車5の微小
な傾きや振動の影響により、センサの測定値と対象部位
の実際のギャップとの間に不規則な狂いを生じる。その
ため、渦電流式ギャップセンサを前記ゼロパワーフィー
ドバック@御用として採用することはできなかった。
By the way, what is intended to be strictly controlled by the zero power feedback control is the gap between the composite electromagnet 7 and the guide rail 2, and the eddy current type gap sensor is installed on the relatively large carrier 5 to control the gap between the composite electromagnet 7 and the guide rail 2.
If it is installed at a considerable distance from the control target area (
Since the gap at the position of the composite electromagnet 7 is significantly different from the gap measurement site, the difference between the sensor measurement value and the actual gap at the target site may be affected by the slight tilt or vibration of the transport vehicle 5 that occurs while traveling. It causes irregular deviations. Therefore, it was not possible to employ the eddy current type gap sensor as the zero power feedback @ service.

この発明は前述した従来の問題点に鑑みなされたもので
、その目的は、前記ゼロパワーフィードバック制御を長
期にわたって高精度かつ安定に行うことができる磁気浮
上式搬送装置を提供することにある。
The present invention has been made in view of the above-mentioned conventional problems, and its purpose is to provide a magnetic levitation type transfer device that can perform the zero power feedback control with high precision and stability over a long period of time.

[発明の構成] (課題を解決するための手段) そこでこの発明は、搬送車と搬送路との間の空隙長を前
記複合電磁石の位置にて測定する第1のギャップセンサ
(磁界の影響は受けないが経時変化のある光学式ギャッ
プセンサ等)、搬送車と搬送路との間の空隙長を前記複
合電磁石から離れた位置にて測定する第2のギャップセ
ンサ(経時変化はないが磁界の影響を受ける渦電流式ギ
ャップセンサ等)とを設け、搬送車が停肥している状態
にて第2のギャップセンサの出力を基準にしてて第1の
ギャップセンサの出力を校正するとともに、第1のギャ
ップセンサの出力にも基づいて空隙のフィードバック制
御を行う校正とした。
[Structure of the Invention] (Means for Solving the Problems) Therefore, the present invention provides a first gap sensor (the influence of the magnetic field is A second gap sensor that measures the gap length between the transport vehicle and the transport path at a position away from the composite electromagnet (such as an optical gap sensor that does not change over time but changes over time); The output of the first gap sensor is calibrated based on the output of the second gap sensor while the transport vehicle is stationary, and the output of the first gap sensor is calibrated based on the output of the second gap sensor. The calibration was performed by performing feedback control of the air gap based on the output of the gap sensor No. 1.

(作用) 前記搬送車が停止している状態では、前記第2のギャッ
プセンサの出力値は制御対象部位(複合電磁石の位置)
での空隙長とほとんど等しい。
(Function) When the conveyance vehicle is stopped, the output value of the second gap sensor is the control target part (position of the composite electromagnet).
almost equal to the void length at .

この状態での第2のギャップセンサの出力を基準にして
第1のギャップセンサの出力の校正することを適宜に実
施することで、第1のギャップセンサの経時変化が随時
補償され、その第1のギャップセンサの出力に基づいて
走行中の前記ゼロフィードバック制御が行われる。
By appropriately calibrating the output of the first gap sensor based on the output of the second gap sensor in this state, changes over time in the first gap sensor can be compensated for at any time, and the The zero feedback control is performed while the vehicle is running based on the output of the gap sensor.

(実施例) 第1図は本発明の一実施例を示す構成図、第2図は本発
明の一実施例を示す制御回路構成図を示す。第3図に示
した従来の校正例と事なるところは複合電磁石7からの
影響を受けない距離LMれた位置に渦電流式ギャップセ
ンサ14を付加した事である。
(Embodiment) FIG. 1 is a block diagram showing an embodiment of the present invention, and FIG. 2 is a block diagram of a control circuit showing an embodiment of the present invention. The difference from the conventional calibration example shown in FIG. 3 is that an eddy current type gap sensor 14 is added at a distance LM away from the influence of the composite electromagnet 7.

次に、第2図の制御回路構成図について説明する。Next, the control circuit configuration diagram shown in FIG. 2 will be explained.

割り算器20では渦電流式ギャップセンサ14の出力B
を光学式ギャップセンサ13の出力Aで除算し、その割
り算結果B/AがADコンバータ21に入力される。こ
のADコンバータ21は、制御信号Sがオンのとき、入
力B/Aを順次ディジタル変換して出力し、制御信号S
がオフになったとき、その時点の出力値を記憶保持する
The divider 20 outputs the output B of the eddy current gap sensor 14.
is divided by the output A of the optical gap sensor 13, and the division result B/A is input to the AD converter 21. When the control signal S is on, this AD converter 21 sequentially converts the input B/A into digital and outputs the control signal S.
When turned off, the output value at that time is memorized and retained.

ADコンバータ21のディジタル出力B/Aは乗算器2
2に供給され、光学式ギャップセンサ13の出力Aと乗
算され、その乗算結果が校正されたギャップ測定値とし
てフィードバック制御系(図示省略)に入力される。
The digital output B/A of the AD converter 21 is sent to the multiplier 2
2 and is multiplied by the output A of the optical gap sensor 13, and the multiplication result is input to a feedback control system (not shown) as a calibrated gap measurement value.

光学式ギャップセンサ13の校正はADコンバータ21
のデータを更新することで行われる。例えば、搬送車5
はほぼ定期的に充電ステーションで停止してバッテリの
充電を受けるが、その停止中においてADコンバータ2
1の制御信号Sを一時的にオンにし、その停止中の渦電
流ギャップセンサ14の出力で光学式ギャップセンサ1
3の出力を校正し、ADコンバータ21に最新の補正係
数B/Aをラッチする。次に校正を行うまでの間はその
補正係数B/Aが乗算器22で利用され、走行中のゼロ
パワーフィードバック制御は校正された光学式ギャップ
センサ13の出力に従って実行される。
The optical gap sensor 13 is calibrated using the AD converter 21.
This is done by updating the data. For example, transport vehicle 5
almost regularly stops at a charging station to charge the battery, but during that stop, the AD converter 2
The control signal S of the optical gap sensor 1 is temporarily turned on, and the output of the stopped eddy current gap sensor 14 is used to control the optical gap sensor 1.
3 and latches the latest correction coefficient B/A in the AD converter 21. Until the next calibration, the correction coefficient B/A is used by the multiplier 22, and zero power feedback control while the vehicle is running is performed according to the output of the calibrated optical gap sensor 13.

[発明の効果] 以上説明したように本発明によれば、経時変化は無いが
複合電磁石の影響を受けてしまう渦電流式ギャップセン
サ等と複合電磁石の影響は受けないが経時変化の大きな
光学式ギャップセンサ等の両者の特徴を組み合わせる事
によって経時変化があっても正しく補正を行う事ができ
長期に亘って安定に磁気浮上式搬送装置を制御する事が
できる。
[Effects of the Invention] As explained above, according to the present invention, eddy current type gap sensors, etc., which do not change over time but are affected by the composite electromagnet, and optical type sensors, which are not affected by the composite electromagnet but have a large change over time. By combining the features of both systems, such as a gap sensor, it is possible to correct correctly even if there is a change over time, and it is possible to control the magnetically levitated conveyance device stably over a long period of time.

【図面の簡単な説明】[Brief explanation of drawings]

第1図は本発明の一実施例を示す構成図、第2図は本発
明の一実施例を示す回路構成図、第3図は従来の磁気浮
上式搬送装置の構成図、第4図は従来の磁気浮上式搬送
車の複合電磁石を示す構成図、第5図は光学式ギャップ
センサの経時変化を示す一例である。 1・・・軌道枠 2・・・ガイドレール3・・・非常用
ガイドレール 4・・・リニアインダクションモータの固定子5・・・
搬送車 6・・・搬送車枠 7・・・複合電磁石 11・・・電磁石12・・・永久
磁石 13・・・光学式ギャップセンサ(第1のギャップセン
サ) 14・・・渦電流式ギャップセンサ(第2のギャップセ
ンサ) 20・・・除算器 1・・・アナログ。 ディジタルコンバータ 22・・・乗算器
Fig. 1 is a block diagram showing an embodiment of the present invention, Fig. 2 is a circuit block diagram showing an embodiment of the present invention, Fig. 3 is a block diagram of a conventional magnetic levitation transfer device, and Fig. 4 is a block diagram showing an embodiment of the present invention. FIG. 5, which is a block diagram showing a composite electromagnet of a conventional magnetically levitated carrier, is an example showing changes over time in an optical gap sensor. 1... Track frame 2... Guide rail 3... Emergency guide rail 4... Linear induction motor stator 5...
Conveyance vehicle 6... Conveyance vehicle frame 7... Composite electromagnet 11... Electromagnet 12... Permanent magnet 13... Optical gap sensor (first gap sensor) 14... Eddy current gap sensor ( 2nd gap sensor) 20...Divider 1...Analog. Digital converter 22...multiplier

Claims (1)

【特許請求の範囲】[Claims] 強磁性体のガイドレールが敷設された搬送路と、この搬
送路に長手方向に沿って所定間隔を置いて配設された一
次側固定子と、この固定子と組合わされてリニアインダ
クションモータを形成する二次側導体と、前記ガイドレ
ールとの間で磁力作用を生ずる複合電磁石と、この複合
磁石に流す電流を調整する制御装置と、前記二次側導体
、前記複合電磁石および前記制御装置を搭載し、前記磁
力作用により浮上し、かつ前記リニアインダクションモ
ータの形成により前記搬送路に沿って走行移動する搬送
車とを備えた磁気浮上式搬送装置に於て、前記搬送車と
前記搬送路との間の空隙長を前記複合電磁石の位置にて
測定する第1のギャップセンサと、前記搬送車と前記搬
送路との間の空隙長を前記複合電磁石から離れた位置に
て測定する第2のギャップセンサと、前記搬送車が停止
している状態にて前記第2のギャップセンサの出力を基
準にして前記第1のギャップセンサの出力を校正する手
段と、前記第1のギャップセンサの出力に基づいて前記
複合電磁石に流す電流を調整して前記空隙をフィードバ
ック制御する手段とを具備したことを特徴とする磁気浮
上式搬送装置。
A linear induction motor is formed by combining a conveyance path with ferromagnetic guide rails, a primary stator placed at a predetermined interval along the length of this conveyance path, and this stator. A composite electromagnet that generates a magnetic force between the secondary conductor and the guide rail, a control device that adjusts the current flowing through the composite magnet, and the secondary conductor, the composite electromagnet, and the control device. In a magnetically levitated conveyance device comprising a conveyance vehicle that levitates due to the magnetic force and travels along the conveyance path due to the formation of the linear induction motor, a connection between the conveyance vehicle and the conveyance path is provided. a first gap sensor that measures the gap length between the conveyor vehicle and the conveyance path at a position of the composite electromagnet; and a second gap sensor that measures the gap length between the conveyance vehicle and the conveyance path at a position away from the composite electromagnet. a sensor; a means for calibrating the output of the first gap sensor based on the output of the second gap sensor while the conveyance vehicle is stopped; and a means for calibrating the output of the first gap sensor based on the output of the first gap sensor. 1. A magnetic levitation type conveyance device, comprising: means for feedback controlling the air gap by adjusting a current flowing through the composite electromagnet.
JP17713789A 1989-07-11 1989-07-11 Magnetic levitation carrier Pending JPH0345106A (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP17713789A JPH0345106A (en) 1989-07-11 1989-07-11 Magnetic levitation carrier

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP17713789A JPH0345106A (en) 1989-07-11 1989-07-11 Magnetic levitation carrier

Publications (1)

Publication Number Publication Date
JPH0345106A true JPH0345106A (en) 1991-02-26

Family

ID=16025830

Family Applications (1)

Application Number Title Priority Date Filing Date
JP17713789A Pending JPH0345106A (en) 1989-07-11 1989-07-11 Magnetic levitation carrier

Country Status (1)

Country Link
JP (1) JPH0345106A (en)

Cited By (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US5249529A (en) * 1992-12-16 1993-10-05 Grumman Aerospace Corporation Self-nulling hybred MAGLEV suspension
KR100541563B1 (en) * 1998-12-24 2006-03-09 주식회사 로템 A folating controller of a maglev
JP2006122798A (en) * 2004-10-28 2006-05-18 Stolz Co Ltd Crushing blade and crusher using it

Cited By (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US5249529A (en) * 1992-12-16 1993-10-05 Grumman Aerospace Corporation Self-nulling hybred MAGLEV suspension
KR100541563B1 (en) * 1998-12-24 2006-03-09 주식회사 로템 A folating controller of a maglev
JP2006122798A (en) * 2004-10-28 2006-05-18 Stolz Co Ltd Crushing blade and crusher using it

Similar Documents

Publication Publication Date Title
KR910003999B1 (en) Transportation system or a floated-carrier type
JPH0624405B2 (en) Floating carrier
JP3235708B2 (en) Transfer equipment using linear motor
EP0246096B1 (en) Transportation system of a floated-carrier type
JPH02206306A (en) Linear motor type conveyor apparatus
JP7236981B2 (en) Transported object, container carrier and transport device
JPH0345106A (en) Magnetic levitation carrier
JP3209844B2 (en) Magnetic levitation transfer device
JPH01152905A (en) Magnetic levitation carrier
JP3147452B2 (en) Magnetic levitation transfer device
JPS61224808A (en) Levitating conveyor
JPH0669244B2 (en) Magnetic levitation transfer system
JPS61132005A (en) Levitating conveyor
JPS61224807A (en) Levitating conveyor
JPH04117111A (en) Magnetic levitation conveyor
JPS62225110A (en) Conveyor of levitation type
JPH06171754A (en) Transport device
JPH01190201A (en) Floating carrier
JPS61132004A (en) Levitating conveyor
JPS6277005A (en) Levitation type conveyor
JPS627301A (en) Levitating conveying apparatus
JPH06197412A (en) Magnetic levitation type conveyor
JP2976504B2 (en) Magnetic levitation transfer device
JPS62160004A (en) Magnetic levitating conveyor apparatus
JPH0847112A (en) Levitation type conveyor