JPH0344030A - 半導体デバイスの製作方法 - Google Patents

半導体デバイスの製作方法

Info

Publication number
JPH0344030A
JPH0344030A JP2170356A JP17035690A JPH0344030A JP H0344030 A JPH0344030 A JP H0344030A JP 2170356 A JP2170356 A JP 2170356A JP 17035690 A JP17035690 A JP 17035690A JP H0344030 A JPH0344030 A JP H0344030A
Authority
JP
Japan
Prior art keywords
layer
aluminum
chlorine
trifluoromethane
titanium
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Granted
Application number
JP2170356A
Other languages
English (en)
Other versions
JP2505914B2 (ja
Inventor
Craig N Bredbenner
クレイグ エヌ.ブレッドベンナー
Troy A Giniecki
トロイ エー.ギニッキ
Nur Selamoglu
ヌア セラモグル
Hans J Stocker
ハンス ジェー.ストッカー
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
AT&T Corp
Original Assignee
American Telephone and Telegraph Co Inc
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Family has litigation
First worldwide family litigation filed litigation Critical https://patents.darts-ip.com/?family=23476680&utm_source=google_patent&utm_medium=platform_link&utm_campaign=public_patent_search&patent=JPH0344030(A) "Global patent litigation dataset” by Darts-ip is licensed under a Creative Commons Attribution 4.0 International License.
Application filed by American Telephone and Telegraph Co Inc filed Critical American Telephone and Telegraph Co Inc
Publication of JPH0344030A publication Critical patent/JPH0344030A/ja
Application granted granted Critical
Publication of JP2505914B2 publication Critical patent/JP2505914B2/ja
Anticipated expiration legal-status Critical
Expired - Lifetime legal-status Critical Current

Links

Classifications

    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01LSEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
    • H01L21/00Processes or apparatus adapted for the manufacture or treatment of semiconductor or solid state devices or of parts thereof
    • H01L21/02Manufacture or treatment of semiconductor devices or of parts thereof
    • H01L21/02041Cleaning
    • H01L21/02057Cleaning during device manufacture
    • H01L21/02068Cleaning during device manufacture during, before or after processing of conductive layers, e.g. polysilicon or amorphous silicon layers
    • H01L21/02071Cleaning during device manufacture during, before or after processing of conductive layers, e.g. polysilicon or amorphous silicon layers the processing being a delineation, e.g. RIE, of conductive layers
    • CCHEMISTRY; METALLURGY
    • C23COATING METALLIC MATERIAL; COATING MATERIAL WITH METALLIC MATERIAL; CHEMICAL SURFACE TREATMENT; DIFFUSION TREATMENT OF METALLIC MATERIAL; COATING BY VACUUM EVAPORATION, BY SPUTTERING, BY ION IMPLANTATION OR BY CHEMICAL VAPOUR DEPOSITION, IN GENERAL; INHIBITING CORROSION OF METALLIC MATERIAL OR INCRUSTATION IN GENERAL
    • C23FNON-MECHANICAL REMOVAL OF METALLIC MATERIAL FROM SURFACE; INHIBITING CORROSION OF METALLIC MATERIAL OR INCRUSTATION IN GENERAL; MULTI-STEP PROCESSES FOR SURFACE TREATMENT OF METALLIC MATERIAL INVOLVING AT LEAST ONE PROCESS PROVIDED FOR IN CLASS C23 AND AT LEAST ONE PROCESS COVERED BY SUBCLASS C21D OR C22F OR CLASS C25
    • C23F4/00Processes for removing metallic material from surfaces, not provided for in group C23F1/00 or C23F3/00

Landscapes

  • Engineering & Computer Science (AREA)
  • Chemical & Material Sciences (AREA)
  • Physics & Mathematics (AREA)
  • Mechanical Engineering (AREA)
  • Metallurgy (AREA)
  • Organic Chemistry (AREA)
  • Materials Engineering (AREA)
  • Condensed Matter Physics & Semiconductors (AREA)
  • General Physics & Mathematics (AREA)
  • Manufacturing & Machinery (AREA)
  • Computer Hardware Design (AREA)
  • Microelectronics & Electronic Packaging (AREA)
  • Power Engineering (AREA)
  • Drying Of Semiconductors (AREA)
  • Internal Circuitry In Semiconductor Integrated Circuit Devices (AREA)

Abstract

(57)【要約】本公報は電子出願前の出願データであるた
め要約のデータは記録されません。

Description

【発明の詳細な説明】 挟塑生竪 本発明は半導体集積回路の製作方法及び装置、より具体
的にはそのような回路中のパターン形成された導電体の
製作方法及び装置に係る。
本発明の背景 集積回路の製作において、各トランジスタはしばしば″
ランナ”とよばれる導電体で、通常相互接続される。相
互接続路は典型的な場合、導電性月料層の全面的な堆積
及びフォトレジストで導電性材料を被覆することを含む
プロセスによって形成される。次にフォトレジストは通
常光に露出され(フォトレジストが″ポジ形″又は″ネ
ガ形″フォ1〜レジスI−であるかに依存して)、フォ
トレジストの露出された部分又は露出されない部分が洗
い落される。残ったフォトレジストは全体を被覆した材
料の一部を被覆し、他の部分を露出したままにする。次
に、露出された導電性材料を各種の手段でエッチ除去し
、所望の導電性相互接続を残す。
アルミニウムはしばしば集積回路中の導電性相互接続を
形成するための材料として用いられる。各種のアルミニ
ウムエツチング技術が用いられている。−例はルピンシ
ュタイン(Levjnstein)らに承認された米国
特許筒4.256,534号に見出される。ルピンシュ
タイン(Leν1nstein)らの特許は、たとえば
三塩化ホウ素と塩素といったハロゲン化物とハロゲンの
組合せを用いることによるアルミニウム及びアルミニウ
ムを多く含む合金のエツチングについて明らかにしてい
る。
アルミニウム・エツチング技術のもう工つの例は、アリ
カド(Arikado)ら“サブミクロン多層レベル相
互接続プロセスへのAQ傾斜エツチングの応用”、IE
DM54−57頁、1986、中に含まれている。アリ
カド(Arikado)の論文は、傾斜した側壁を有す
るアルミニウムランナを生成するため、塩素とともにク
ロロフォルムを用いることを述べている。
杢11辻巧」−ケ 本発明は塩素とともに(″フレオン23”という商品名
で市販されている)トリフルオルメタンを用いることに
より、アルミニウムを含む各種材料及び層構造中に、傾
斜側壁を生成する。塩素と1〜リフルオルメタンの量を
調整することにより、傾斜角が制御できる。
もし必要ならば、主に(存在する時)酸化アルミニウム
を除去するために、エツチング反応に三塩化ホウ素を導
入してもよい。
詳細な説明 第1図中で、参照番号11は基板をさし、それはたとえ
ば本質的に二酸化シリコン、シリコン、シリコン窒化物
又は別の適当な材料から成る。
参照番号13は全面のアルミニウム層又はアルミニウム
を多く含む組成、たとえばアルミニウー銅合金、アルミ
ニウムーシリコン合金又はアルミニウムー銅−シリコン
合金の層をさす。参照番号工3はまた、チタン窒化物又
はチタン−タングステン又はチタンとともに、」二で述
べたアルミニウムを多く含む組成の1ないし複数の層を
有する層構造をさしてもよい。たとえば、参照番号13
はアルミニウムを多く含む組成の層の下のチタンータン
ゲステン層を示してもよい。あるいは参照番号工3はチ
タン・タングステンの2つの層間のアルミニウムを多く
含む組成を有する三層構造をさしてもよい。更にたとえ
ば、参照番号13はアルミニウムを多く含む組成の層上
のチタン−タングステン層をさしてもよい。
あるいは、上の列でチタン−タングステンの代りにチタ
ン窒化物を置きかえてもよい。簡単にするため、以下の
議論では、層13は単に″金属層”とよぶことにする。
上で述べた層構造は固着性が大きく、エレクトロマイグ
レーション抵抗が大きなランナを実現するため、半導体
集積回路の製作に使用される。アルミニウムの下のチタ
ン窒化物又はチタン−タングステン層は、下の酸化物へ
のアルミニウムの固着性を改善し、シリコン中へのアル
ミニウムのスパイク(そのような場所ではアルミニウム
はシリコンに接触する傾向がある)を防止する傾向があ
り、アルミニウムと下の酸化物間の固着性を改善する働
きをする。典型的な場合、5パ一セント以上のチタンが
タングステンに加えられ、おおよそ10パーセントのチ
タンが典型的である。加えて、チタン−タングステン又
はチタン窒化物の上の層は、反射防止膜として用いても
よい。チタン窒化物又はチタン窒化物層も全面に堆積さ
せるから、アルミニウムを通すとともに、それらを通し
てエッチする必要がある。ある種の用途では、チタン−
タングステン又はチタン窒化物の層の厚さは1000−
200OA (又はそれ以下)でよく、アルミニウムは
0.5μm又は1.0μmでよい。半導体技術の開発に
関心のある人は、化学的な変更を伴わずに上で述べたよ
うな層構造をエッチするエツチング法を常に探してきた
。以下で更に詳細に述べるように、本発明は傾斜した側
壁を有する構造を生成する一方、上の要件を満足する。
参照番号15はレジスト材料(又は他のマスク材料)を
さし、それはたとえばHPR8− 206フオトレジスト(フントケミカル社の適正な製品
で、基本的にはキノンジアゾ増感剤を有するノボラフレ
ジンである)でよい。
マスク15はパターン形成されており、金属層13の表
面17は露出されている。あるいは、必要ならば、三層
レジスト方式を用いてもよい。
次に、層13の露出された部分17を侵食させるため、
エツチングプロセスが行われる。典型的な場合、第1図
の構造はへキサゴナル・カソードエツチング装置の電力
を加えたカソードに移されるが、他のエツチング装置を
用いてもよい。容器を真空にしく後に述べる)、エッチ
ャントガスが導入される。
第2図に示された構造は、エツチングプロセスで生成す
るものの列を表わす。第2図を調べると、金属層13の
露出された表面17はエッチ除去され、傾斜側壁19が
残っていることがわかる。側壁表面19と基板表面11
間の測定された角Oは(後に述べる他のパラメータも働
きをするが)、エツチングプロセス中用いられるトリフ
ルオルメタンと塩素の相対的な比率に強く支配されるこ
とがわかる。ポリマ層23はエツチングプロセス中形酸
されることがわかるであろう。ポリマ層23は層13の
側壁19と接触し、レジスト15とも接触する。
更に以下で述べるように、ポリマ層23の形成により、
側壁の形成プロセス中、金属側壁19用のエッチャント
物質から保護される。従って、第2図に示された傾斜し
た側壁の形状が得られる。
第3図はマスク15及びポリマ薄膜23が除去された後
の第2図の構造を示す。構造は更に半導体プロセスを行
う準備ができている。
第4図はヘキサゴナル・カソードエツチング装置中にお
ける塩素及びトリフルオルメタンの相対的な流量と、全
属領斜角0間の(主なエツチング工程における)実験的
に決められた関係を示す。グラフのデータは約1.25
μmの間隔で、約2μmの厚さの最初のマスクフオトレ
ジス1−で分離されたアルミニウムランナについて得ら
れた(アルミニウムランナ間の間隔とフオI−レジスl
−の厚さの重要さについては、後に説明する。)。第4
図のグラフは、ゼロないし60sccm(1分当り標準
立方センチメートル)のトリフルオルメタンを用いて、
90ないし約70度の傾斜角が得られることを示してい
ることに気づくであろう。グラフに示された塩素の流速
は、60ないし16sccmの間である。ガス流はまた
、約95sccmの流速における三塩化ホウ素も含んだ
各種ガスの機能を説明すれば、第4図中に示されたデー
タがより理解できる。比較的純粋な塩素が、急速かつ幾
分非等方的にアルミニウムを侵食する。従って、もし塩
素のみが層工3中に存在する露出されたアルミニウム又
はアルミニウムを多く含む材料をエッチするために用い
られるならば、アンダーカットの形状が生じるであろう
(すなわち、アルミニウムはマスク端でエッチされるで
あろう。)。
1−リフルオルメタンは金属がエッチされるとき、明ら
かに金属の側壁上に、保護ポリマ薄膜を形成する傾向が
ある。エツチングプロセスが進むにつれ、より多くの保
護ポリマが形成され、塩素は次第に金属を侵食しにくく
なる。金属側壁上にポリマが横方向に成長すると、エツ
チング中マスク端を効果的に変え、それによって傾斜し
た金属形状が生ずる。
このように、第4図のグラフを調べると、一定の塩素流
量に対し、トリフルオルメタンの量が増すと、より小さ
な傾斜角○が生じる傾向にあることが示される。従って
、一定のトリフルオルメタン流量に対し、塩素の量を増
すと、より大きな傾斜角Oが生じる傾斜になる。このよ
うに、第4図のグラフは、約1 1.25μm間隔のランナの場合に、所望の傾斜角を得
るために設計されたプロセス条件を選択する際、助けと
なる。
予備的な結果は、第4図中に示されたデータは、外挿で
きることを示している。すなわち、10105eの塩素
流量に対する曲線は、グラフ上の16sccmと6 s
ccmの塩素流量に対する曲線間にある。
一般に、アルミニウム層は安定な自然酸化物表面を含む
。酸化物はしばしばアルミニウム層自身よりはるかに遅
くエッチされる。酸化物のエツチングが遅いために、エ
ツチングプロセスの開始時に、不規則な潜在期が生じる
。この潜在期は終了時を予測するために用いられる時間
計算の際、考慮に入れるのが難しい。他の点では、得ら
れるエッチ表面が粗くなることがある。その理由は、酸
化物の厚さがわずかに不均一なことである。そのため、
酸素及び水蒸気を除去し、アルミニウム酸化物を確実に
除去するために、エッチプロセスの少くとも開始時に、
三塩化ホウ素を添加する。
上で述べた傾斜エツチングプロセスは、各種の状況下で
有用な傾斜アルミニウム形状を生成するために用いてよ
い。たとえば、本発明と同し譲渡人に譲渡され、この中
に参考文献として含まれるエフ・エイチ・フィッシャー
 (F 、 H、Fischer) らによる審査中の
特許4−10−2−1は、後のレーザ切断に対し、各ラ
ンナ中に厚さが減少した領域をもつアルミニウムランナ
を形成するため、本発明を用いると有利となる可能性が
ある。加えて、本発明は近接した金属ランナ上に、傾斜
した側壁を形成するために用いてもよい。傾斜した側壁
は誘電体層のその後の堆積を容易にする。
第5図は測定された傾斜角と金属ランナ間の間隔との間
の、実験的に決められた関係を示す。上の曲線は第4図
中のブセス点11 A I+に対応し、一方、下の曲線
は第4図中のプロセス点ztB″′に対応する。従って
、プロセス“A ”で加工されているウェハ上では、1
.25μmの間隔のランナは、約80度の傾斜角を示す
。しかし、10μm以上離以上前ンナは、約70度の傾
斜角を示す。同様に、もしプロセスrrB”を用いるな
ら、約10μm以上前れたランナは約60度の傾斜角を
示す。このように、第5図のグラフは与えられたランナ
間の間隔に対する所望の傾斜角を得るためのプロセス条
件を選択する上で助けとなる。もし第4図中のプロセス
点”A”又はIIB”′に対応するのとは著しく異るガ
ス流量を用いた時は、第5図に対応して、新しい曲線の
組を作らなくてはならない。そのような作成は、当業者
には容易に実行できる。
第4図及び第5図中に示された結果は、フォトレジスト
の一定の厚さ(2μmHPR206)に対して得られた
ものである。予備的な検討により、傾斜角はフォトレジ
ストの厚さとともに、わずかに減少することが示された
。しかし、フォトレジストの厚さが小さい場合に得られ
た曲線の一般的な形は、第4図及び第5図に示されたも
のと同様である。
以下の例は本発明の実施例である。
第1例 約1.25μmの間隔のアルミニウムランナ上に約80
度の傾斜角を得るため。
5000Aのアルミニウムー銅−シリコン(1/2%銅
;o、’7!5%シリコン)の全面の層を、化学気相堆
積させたシリコン酸化物上に形成した。金属は120人
の反射防止被膜で被覆し、次に2.0 μm HPR2
06フオトレジストでパターン形成した。
試料はアルミナトレイを有する(アプライド・マテリア
ルズ社製の)AME8130ヘキサオード反応容器中に
置いた。カソードの温度は60℃であった。反応容器の
使わない位置は、シリコンダミーウェハで満たした。
容器は真空にし、三塩化ホウ素(95sccm )及び
ヘリウム(160sccm)を導入し、161b− m Torrの圧力を保った。ヘリウムはキャリヤガス
の働きをした。13.56 MHzのRF周波数と約6
10ワツトのパワーを用い、230ボルトの自己誘発バ
イアスを生じさせることにより、プラズマを形成した。
三塩化ホウ素は反射防止被膜及び金属上の自然酸化物被
膜を破った。
プラズマは1今後消滅した。16mTorrの圧力を保
ちながら、他の2つのガスとともに、16sccmの流
量で塩素を導入した。プラズマが形成され、1分後に消
滅した。塩素を導入することにより、金属エッチプロセ
スが始まった。
次に主要なエッチプロセスが始められた。
トリフルオルメタンを24sccmで容器中の他のガス
に加え、同じ圧力を保った(プロセスは第4図中の”A
”と印したプロセス点に対応する。)。再びプラズマが
形成され、金属がエッチされ下の酸化物が最初に露出さ
れるまで保たれた。金属が完全にエッチされ、下の酸化
物が露出される終了点は(スペクトル的な測定も許され
るが)、視察により検出した。主要なエッチプロセスに
必要な時間を測定した。
次に20パーセントのオーバーエッチを行った。視察に
よりエツチングプロセスでアルミニウムが除去されたこ
とがわかった時、トリフルオルメタン及び塩素の流量は
それぞれ18及び12sccmに減少し、全圧は12m
Torr に低下させた。主要なエッチ時間の20パー
セントに等しい時間の後、プラズマは消滅させた。容器
を真空にした。
最後に(同じ反応容器中で)灰化/不活性化プロセスを
行った。灰化/不活性化プロセスにより、マスク15及
びほとんどのポリマ層23が除去される。そのプロセス
により、ある種の残留塩素物質もとり除かれる。それら
はアルミニウムと直接接触する可能性があり、後にアル
ミニウムが侵食されることになる。従って、酸素/テト
ラフルオルメタン混合気体を300 sccmで容器中
に導入し、200 m、 Torrの圧力が保たれる。
650ワツトの電力でプラズマが形成され、25分後に
消滅した。次に、試料は残留フォトレジスト及び残留ポ
リマを除去するため、標準の湿式浄化液で清浄化した。
第2例 1.25μmの間隔のアルミニウムランナ上に、70度
の傾斜角が必要で、第」−例で述べたものと同様のプロ
セスを行った。しかし、主要なエッチプロセスは40s
ccmのトリフルオルメタンと6 sccmの塩素を含
む(すなわち、第4図中の′B”と印されたプロセス点
1こ対応する。)ように修正した。終了点に達した時、
オーバーエッチプロセスには、18sccmのフレオン
と6 sccmの塩素の使用が含まれた。
第3例 10μmというような比較的大きな距離(そのような大
きな距離は第5図の曲線上でみたところ゛無限″に対応
する。)の間隔のアルミニウムランナ上で、約60度の
傾斜角が望ましい。第5図のグラフを調べると、第2例
で用いたのと同じプロセス(1,25μm間隔のランナ
中に、70度の傾斜角を生成する。)を用いると成功で
きることが示される。
各ランナ中に厚さの減少した領域を形成するのが望まし
い上で述べた審査中の特許(ニ)・エイチ・フィッシャ
(F 、 H、Fischer)ら、4−10−2−1
. )を実施する際、厚さの小さい領域のおおよその半
径(約10μm)に対応するデータを、用いてもよい。
従って、上で述べたフィッシャー(F 1scher)
の特許を実施する際、約60度の傾斜角を生成したいと
思うならば、第2例のプロセスを用いてよい。
ここで述べた本発明のプロセスは、アルミニウムエツチ
ングに塩素を使うことに比べ、いくつかの利点をもつ6
1−リフルオルメタンは気体で、一般に無毒であるが、
クロロフォ9 ルムは液体で有毒である。従って、クロロフォルムの扱
いにはより大きな注意を払わなければならない。上で述
べたプロセスは化学的な変化を伴わず、ある種の積層金
属構造を傾斜エッチするのに用いてもよい。
本発明は塩素に対するトリフルオルメタンの0.75以
上、好ましくは1.0以上の流量比は、実際に関心のも
たれる構造中に望ましい傾斜角を生成する傾向にあるこ
とを示した。
タングステン層のエツチングを行うには、ある程度化学
的な変化を必要とする可能性があるが、アルミニウム、
タングステン及びチタン−タングステンを含む層構造を
エツチングするのにも有用である。
【図面の簡単な説明】
第工図、第2図及び第3図は本発明を実施するプロセス
の例を示す一部分が断面となった図、 第4図及び第5図は傾斜角とエツチングパラメータの関
係を示すグラブである。 く主要部分の符号の説明〉 11  ・・・・ 基板  3 屑 レジスト材料 傾斜側壁 ポリマ屑 FIG、 4 トリフルオルメタン流量(SCCM)

Claims (1)

  1. 【特許請求の範囲】 1、基板上に第1の層(たとえば11)を形成する工程
    : 前記第1の層上にアルミニウムを含んだ第 2の層(たとえば13)を形成する工程 ガス混合体で前記第1及び第2の層の両方 をエッチングする工程 を含む半導体デバイスの製作方法において、前記ガス混
    合体は塩素及びトリフルオルメ タンを含み、前記エッチング工程により傾斜した形状(
    たとえば19)を生成することを特徴とする半導体デバ
    イスの製作方法 2、請求項1記載の方法において、前記 ガス混合体は更に三塩化ホウ素を含むことを特徴とする
    半導体デバイスの製作方法。 3、請求項1記載の方法において、前記 エッチングはプラズマ雰囲気中で起ることを特徴とする
    半導体デバイスの製作方法。 4、請求項1記載の方法において、前記 第1の層はチタン−タングステン及びチタン窒化物から
    成るグループから選択された材料で造られることを特徴
    とする半導体デバイスの製作方法。 5、請求項1記載の方法において、前記 トリフルオルメタンと塩素の流量比は、少くとも0.7
    5であることを特徴とする半導体デバイスの製作方法。 6、請求項1記載の方法において、前記 第1の層(たとえば11)は重量にして少くとも5パー
    セントのチタン−タングステンを含み; 前記第2の層(たとえば13)は反射防止 被膜で被覆され、 前記反射防止被膜はパターンマスクで被覆 され、前記マスクは2μmかそれ以下の厚さをもち、 前記アルミニウムを含む層(たとえば13)は三塩化ホ
    ウ素に露出され、 塩素とトリフルオルメタンの前記ガス混合 体は、プラズマ中に存在し、前記塩素は16ないし6s
    ccmの流速をもち、前記トリフルオルメタンは60s
    ccmより小さな流速をもち、前記ガス混合体は前記ア
    ルミニウムを含む層と前記チタン−タングステンを含む
    層に接触して、ポリマ層を生成し、前記アルミニウムを
    含む層及び前記チタン−タングステンを含む層上に、傾
    斜した側壁(たとえば19)を生成することを特徴とす
    る半導体デバイスの製作方法。
JP2170356A 1989-06-30 1990-06-29 半導体デバイスの製作方法 Expired - Lifetime JP2505914B2 (ja)

Applications Claiming Priority (3)

Application Number Priority Date Filing Date Title
US374408 1989-06-30
US374,408 1989-06-30
US07/374,408 US4919748A (en) 1989-06-30 1989-06-30 Method for tapered etching

Publications (2)

Publication Number Publication Date
JPH0344030A true JPH0344030A (ja) 1991-02-25
JP2505914B2 JP2505914B2 (ja) 1996-06-12

Family

ID=23476680

Family Applications (1)

Application Number Title Priority Date Filing Date
JP2170356A Expired - Lifetime JP2505914B2 (ja) 1989-06-30 1990-06-29 半導体デバイスの製作方法

Country Status (3)

Country Link
US (1) US4919748A (ja)
EP (1) EP0405848A3 (ja)
JP (1) JP2505914B2 (ja)

Cited By (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH06104217A (ja) * 1992-09-18 1994-04-15 Hitachi Ltd エッチング方法

Families Citing this family (74)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH0383335A (ja) * 1989-08-28 1991-04-09 Hitachi Ltd エッチング方法
US4975146A (en) * 1989-09-08 1990-12-04 Motorola Inc. Plasma removal of unwanted material
US5024722A (en) * 1990-06-12 1991-06-18 Micron Technology, Inc. Process for fabricating conductors used for integrated circuit connections and the like
JPH04288828A (ja) * 1991-03-18 1992-10-13 Sony Corp ドライエッチング方法
JP3225532B2 (ja) * 1991-03-29 2001-11-05 ソニー株式会社 ドライエッチング方法
US5200031A (en) * 1991-08-26 1993-04-06 Applied Materials, Inc. Method for removal of photoresist over metal which also removes or inactivates corrosion-forming materials remaining from one or more previous metal etch steps
JPH05109728A (ja) * 1991-10-16 1993-04-30 Nec Corp 半導体装置の製造方法
US5275695A (en) * 1992-12-18 1994-01-04 International Business Machines Corporation Process for generating beveled edges
DE4317722C2 (de) * 1993-05-27 1996-12-05 Siemens Ag Verfahren zum anisotropen Ätzen einer aluminiumhaltigen Schicht und Verwendung einer hierzu geeigneten Ätzgasmischung
US5699605A (en) * 1994-05-23 1997-12-23 Seagate Technology, Inc. Method for forming a magnetic thin film head with recessed basecoat
US7294578B1 (en) * 1995-06-02 2007-11-13 Micron Technology, Inc. Use of a plasma source to form a layer during the formation of a semiconductor device
US6139647A (en) * 1995-12-21 2000-10-31 International Business Machines Corporation Selective removal of vertical portions of a film
US5767017A (en) * 1995-12-21 1998-06-16 International Business Machines Corporation Selective removal of vertical portions of a film
US6565721B1 (en) * 1996-04-04 2003-05-20 Micron Technology, Inc. Use of heavy halogens for enhanced facet etching
JPH09321053A (ja) * 1996-05-31 1997-12-12 Toshiba Corp 半導体装置及びその製造方法
US6177337B1 (en) 1998-01-06 2001-01-23 International Business Machines Corporation Method of reducing metal voids in semiconductor device interconnection
US5968711A (en) * 1998-04-28 1999-10-19 Vanguard International Semiconductor Corporation Method of dry etching A1Cu using SiN hard mask
US6107208A (en) * 1998-06-04 2000-08-22 Advanced Micro Devices, Inc. Nitride etch using N2 /Ar/CHF3 chemistry
US6316169B1 (en) * 1999-06-25 2001-11-13 Lam Research Corporation Methods for reducing profile variation in photoresist trimming
US6873087B1 (en) * 1999-10-29 2005-03-29 Board Of Regents, The University Of Texas System High precision orientation alignment and gap control stages for imprint lithography processes
EP1303792B1 (en) * 2000-07-16 2012-10-03 Board Of Regents, The University Of Texas System High-resolution overlay alignement methods and systems for imprint lithography
AU2001277907A1 (en) 2000-07-17 2002-01-30 Board Of Regents, The University Of Texas System Method and system of automatic fluid dispensing for imprint lithography processes
EP1309897A2 (en) * 2000-08-01 2003-05-14 Board Of Regents, The University Of Texas System Methods for high-precision gap and orientation sensing between a transparent template and substrate for imprint lithography
AU2001286573A1 (en) * 2000-08-21 2002-03-04 Board Of Regents, The University Of Texas System Flexure based macro motion translation stage
US6444531B1 (en) 2000-08-24 2002-09-03 Infineon Technologies Ag Disposable spacer technology for device tailoring
JP2004523906A (ja) * 2000-10-12 2004-08-05 ボード・オブ・リージエンツ,ザ・ユニバーシテイ・オブ・テキサス・システム 室温かつ低圧マイクロおよびナノ転写リソグラフィのためのテンプレート
US20050274219A1 (en) * 2004-06-01 2005-12-15 Molecular Imprints, Inc. Method and system to control movement of a body for nano-scale manufacturing
US6599437B2 (en) 2001-03-20 2003-07-29 Applied Materials Inc. Method of etching organic antireflection coating (ARC) layers
US6964793B2 (en) * 2002-05-16 2005-11-15 Board Of Regents, The University Of Texas System Method for fabricating nanoscale patterns in light curable compositions using an electric field
US7037639B2 (en) * 2002-05-01 2006-05-02 Molecular Imprints, Inc. Methods of manufacturing a lithography template
US20030228755A1 (en) * 2002-06-07 2003-12-11 Esry Thomas Craig Method for metal patterning and improved linewidth control
US20030235787A1 (en) * 2002-06-24 2003-12-25 Watts Michael P.C. Low viscosity high resolution patterning material
US6926929B2 (en) 2002-07-09 2005-08-09 Molecular Imprints, Inc. System and method for dispensing liquids
US7077992B2 (en) 2002-07-11 2006-07-18 Molecular Imprints, Inc. Step and repeat imprint lithography processes
US7019819B2 (en) 2002-11-13 2006-03-28 Molecular Imprints, Inc. Chucking system for modulating shapes of substrates
US6932934B2 (en) 2002-07-11 2005-08-23 Molecular Imprints, Inc. Formation of discontinuous films during an imprint lithography process
US6908861B2 (en) * 2002-07-11 2005-06-21 Molecular Imprints, Inc. Method for imprint lithography using an electric field
US6900881B2 (en) 2002-07-11 2005-05-31 Molecular Imprints, Inc. Step and repeat imprint lithography systems
US7027156B2 (en) 2002-08-01 2006-04-11 Molecular Imprints, Inc. Scatterometry alignment for imprint lithography
US6916584B2 (en) 2002-08-01 2005-07-12 Molecular Imprints, Inc. Alignment methods for imprint lithography
US7070405B2 (en) * 2002-08-01 2006-07-04 Molecular Imprints, Inc. Alignment systems for imprint lithography
US7071088B2 (en) * 2002-08-23 2006-07-04 Molecular Imprints, Inc. Method for fabricating bulbous-shaped vias
US8349241B2 (en) * 2002-10-04 2013-01-08 Molecular Imprints, Inc. Method to arrange features on a substrate to replicate features having minimal dimensional variability
US6980282B2 (en) 2002-12-11 2005-12-27 Molecular Imprints, Inc. Method for modulating shapes of substrates
US6929762B2 (en) * 2002-11-13 2005-08-16 Molecular Imprints, Inc. Method of reducing pattern distortions during imprint lithography processes
US6871558B2 (en) * 2002-12-12 2005-03-29 Molecular Imprints, Inc. Method for determining characteristics of substrate employing fluid geometries
US7452574B2 (en) * 2003-02-27 2008-11-18 Molecular Imprints, Inc. Method to reduce adhesion between a polymerizable layer and a substrate employing a fluorine-containing layer
US20040168613A1 (en) * 2003-02-27 2004-09-02 Molecular Imprints, Inc. Composition and method to form a release layer
US7122079B2 (en) * 2004-02-27 2006-10-17 Molecular Imprints, Inc. Composition for an etching mask comprising a silicon-containing material
US7179396B2 (en) * 2003-03-25 2007-02-20 Molecular Imprints, Inc. Positive tone bi-layer imprint lithography method
US7396475B2 (en) * 2003-04-25 2008-07-08 Molecular Imprints, Inc. Method of forming stepped structures employing imprint lithography
US20050160934A1 (en) * 2004-01-23 2005-07-28 Molecular Imprints, Inc. Materials and methods for imprint lithography
US7157036B2 (en) * 2003-06-17 2007-01-02 Molecular Imprints, Inc Method to reduce adhesion between a conformable region and a pattern of a mold
US7136150B2 (en) * 2003-09-25 2006-11-14 Molecular Imprints, Inc. Imprint lithography template having opaque alignment marks
US7090716B2 (en) * 2003-10-02 2006-08-15 Molecular Imprints, Inc. Single phase fluid imprint lithography method
US8211214B2 (en) * 2003-10-02 2012-07-03 Molecular Imprints, Inc. Single phase fluid imprint lithography method
US20050084804A1 (en) * 2003-10-16 2005-04-21 Molecular Imprints, Inc. Low surface energy templates
US8076386B2 (en) * 2004-02-23 2011-12-13 Molecular Imprints, Inc. Materials for imprint lithography
US7906180B2 (en) 2004-02-27 2011-03-15 Molecular Imprints, Inc. Composition for an etching mask comprising a silicon-containing material
US20050275311A1 (en) * 2004-06-01 2005-12-15 Molecular Imprints, Inc. Compliant device for nano-scale manufacturing
US20050276919A1 (en) * 2004-06-01 2005-12-15 Molecular Imprints, Inc. Method for dispensing a fluid on a substrate
US20060145398A1 (en) * 2004-12-30 2006-07-06 Board Of Regents, The University Of Texas System Release layer comprising diamond-like carbon (DLC) or doped DLC with tunable composition for imprint lithography templates and contact masks
US7906058B2 (en) * 2005-12-01 2011-03-15 Molecular Imprints, Inc. Bifurcated contact printing technique
US7803308B2 (en) * 2005-12-01 2010-09-28 Molecular Imprints, Inc. Technique for separating a mold from solidified imprinting material
US7670530B2 (en) * 2006-01-20 2010-03-02 Molecular Imprints, Inc. Patterning substrates employing multiple chucks
KR101324549B1 (ko) * 2005-12-08 2013-11-01 몰레큘러 임프린츠 인코퍼레이티드 기판의 양면 패턴화를 위한 방법 및 시스템
US8142850B2 (en) 2006-04-03 2012-03-27 Molecular Imprints, Inc. Patterning a plurality of fields on a substrate to compensate for differing evaporation times
US8850980B2 (en) 2006-04-03 2014-10-07 Canon Nanotechnologies, Inc. Tessellated patterns in imprint lithography
WO2007117524A2 (en) * 2006-04-03 2007-10-18 Molecular Imprints, Inc. Method of concurrently patterning a substrate having a plurality of fields and alignment marks
US7802978B2 (en) 2006-04-03 2010-09-28 Molecular Imprints, Inc. Imprinting of partial fields at the edge of the wafer
US8012395B2 (en) * 2006-04-18 2011-09-06 Molecular Imprints, Inc. Template having alignment marks formed of contrast material
US7547398B2 (en) * 2006-04-18 2009-06-16 Molecular Imprints, Inc. Self-aligned process for fabricating imprint templates containing variously etched features
US8546048B2 (en) 2010-10-29 2013-10-01 Skyworks Solutions, Inc. Forming sloped resist, via, and metal conductor structures using banded reticle structures
US8703619B2 (en) * 2012-01-19 2014-04-22 Headway Technologies, Inc. Taper-etching method and method of manufacturing near-field light generator

Citations (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS53124979A (en) * 1977-04-07 1978-10-31 Fujitsu Ltd Plasma etching method
JPS5745310A (en) * 1980-09-01 1982-03-15 Kubota Ltd Method for detecting failure of diaphragm in filter press
JPS61247032A (ja) * 1985-04-24 1986-11-04 Toshiba Corp テ−パエツチング方法
JPS61255027A (ja) * 1985-05-07 1986-11-12 Toshiba Corp ドライエツチング方法
JPS62232926A (ja) * 1986-04-03 1987-10-13 Anelva Corp ドライエツチング方法

Family Cites Families (10)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US4082604A (en) * 1976-01-05 1978-04-04 Motorola, Inc. Semiconductor process
JPS54158343A (en) * 1978-06-05 1979-12-14 Hitachi Ltd Dry etching method for al and al alloy
US4256534A (en) * 1978-07-31 1981-03-17 Bell Telephone Laboratories, Incorporated Device fabrication by plasma etching
EP0099558A3 (en) * 1982-07-22 1985-07-31 Texas Instruments Incorporated Fast plasma etch for aluminum
US4412885A (en) * 1982-11-03 1983-11-01 Applied Materials, Inc. Materials and methods for plasma etching of aluminum and aluminum alloys
US4569124A (en) * 1984-05-22 1986-02-11 Hughes Aircraft Company Method for forming thin conducting lines by ion implantation and preferential etching
US4784719A (en) * 1985-06-28 1988-11-15 American Telephone And Telegraph Company, At&T Bell Laboratories Dry etching procedure
JPS63114214A (ja) * 1986-09-11 1988-05-19 フェアチャイルド セミコンダクタ コーポレーション 二層マスクを使用するプラズマエッチング
US4838992A (en) * 1987-05-27 1989-06-13 Northern Telecom Limited Method of etching aluminum alloys in semi-conductor wafers
EP0317770A1 (en) * 1987-11-23 1989-05-31 Texas Instruments Incorporated Self aligned planar metal interconnection for a VLSI device

Patent Citations (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS53124979A (en) * 1977-04-07 1978-10-31 Fujitsu Ltd Plasma etching method
JPS5745310A (en) * 1980-09-01 1982-03-15 Kubota Ltd Method for detecting failure of diaphragm in filter press
JPS61247032A (ja) * 1985-04-24 1986-11-04 Toshiba Corp テ−パエツチング方法
JPS61255027A (ja) * 1985-05-07 1986-11-12 Toshiba Corp ドライエツチング方法
JPS62232926A (ja) * 1986-04-03 1987-10-13 Anelva Corp ドライエツチング方法

Cited By (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH06104217A (ja) * 1992-09-18 1994-04-15 Hitachi Ltd エッチング方法

Also Published As

Publication number Publication date
JP2505914B2 (ja) 1996-06-12
EP0405848A3 (en) 1991-03-06
US4919748A (en) 1990-04-24
EP0405848A2 (en) 1991-01-02

Similar Documents

Publication Publication Date Title
JPH0344030A (ja) 半導体デバイスの製作方法
US5160407A (en) Low pressure anisotropic etch process for tantalum silicide or titanium silicide layer formed over polysilicon layer deposited on silicon oxide layer on semiconductor wafer
JP2711538B2 (ja) 傾斜コンタクトエッチ方法
US5925577A (en) Method for forming via contact hole in a semiconductor device
US6017826A (en) Chlorine containing plasma etch method with enhanced sidewall passivation and attenuated microloading effect
JPS59134833A (ja) アルミニウムおよびアルミニウム合金をプラズマエツチングするための材料および方法
JPH08172077A (ja) ビアのプラズマエッチング改良方法
JPH0670989B2 (ja) 臭化水素によるシリコンの反応性イオンエッチング
JPH06295886A (ja) 塩化水素、塩素含有エッチャントおよび窒素を使用するアルミニウムおよびその合金のエッチング方法
JPH0665753B2 (ja) プラズマエッチングしたアルミニウム膜のエッチング処理後の侵食を防止するプラズマパッシベ−ション技術
JP2001521282A (ja) 有機化合物含有絶縁層の異方性エッチング
JP3236225B2 (ja) 半導体装置及びその製造方法
JPH04180652A (ja) 半導体装置の製造方法
US6057240A (en) Aqueous surfactant solution method for stripping metal plasma etch deposited oxidized metal impregnated polymer residue layers from patterned metal layers
JP2001127050A (ja) 連続プラズマによる高融点金属上のアルミニウムのエッチング
JPH1060658A (ja) 化学気相堆積およびスパッタリング装置と方法
JPH11145112A (ja) パターニング方法
JPH0472724A (ja) ドライエッチング方法
JPH10189594A (ja) 半導体素子の金属配線形成方法
JPS61189643A (ja) アルミニウム/銅合金膜のエツチング法
FR2772290A1 (fr) Procede de nettoyage d'un polymere brome sur une plaquette de silicium
JPS58100684A (ja) ドライ・エツチング方法
Booth et al. Application of plasma etching techniques to metal-oxide-semiconductor (MOS) processing
JPH0432228A (ja) ドライエッチング方法およびこれを用いた半導体装置の製造方法
JPS62154628A (ja) ドライエツチング方法

Legal Events

Date Code Title Description
R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20080402

Year of fee payment: 12

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20090402

Year of fee payment: 13

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20100402

Year of fee payment: 14

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20110402

Year of fee payment: 15

EXPY Cancellation because of completion of term
FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20110402

Year of fee payment: 15