JPH0343469B2 - - Google Patents

Info

Publication number
JPH0343469B2
JPH0343469B2 JP61155845A JP15584586A JPH0343469B2 JP H0343469 B2 JPH0343469 B2 JP H0343469B2 JP 61155845 A JP61155845 A JP 61155845A JP 15584586 A JP15584586 A JP 15584586A JP H0343469 B2 JPH0343469 B2 JP H0343469B2
Authority
JP
Japan
Prior art keywords
differential
wind turbine
shaft
tower
output shaft
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Expired - Lifetime
Application number
JP61155845A
Other languages
Japanese (ja)
Other versions
JPS6312887A (en
Inventor
Hachiro Mizutani
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
National Institute of Advanced Industrial Science and Technology AIST
Original Assignee
Agency of Industrial Science and Technology
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Agency of Industrial Science and Technology filed Critical Agency of Industrial Science and Technology
Priority to JP61155845A priority Critical patent/JPS6312887A/en
Publication of JPS6312887A publication Critical patent/JPS6312887A/en
Publication of JPH0343469B2 publication Critical patent/JPH0343469B2/ja
Granted legal-status Critical Current

Links

Classifications

    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F16ENGINEERING ELEMENTS AND UNITS; GENERAL MEASURES FOR PRODUCING AND MAINTAINING EFFECTIVE FUNCTIONING OF MACHINES OR INSTALLATIONS; THERMAL INSULATION IN GENERAL
    • F16HGEARING
    • F16H1/00Toothed gearings for conveying rotary motion
    • F16H1/28Toothed gearings for conveying rotary motion with gears having orbital motion
    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y02TECHNOLOGIES OR APPLICATIONS FOR MITIGATION OR ADAPTATION AGAINST CLIMATE CHANGE
    • Y02EREDUCTION OF GREENHOUSE GAS [GHG] EMISSIONS, RELATED TO ENERGY GENERATION, TRANSMISSION OR DISTRIBUTION
    • Y02E10/00Energy generation through renewable energy sources
    • Y02E10/70Wind energy
    • Y02E10/72Wind turbines with rotation axis in wind direction

Landscapes

  • Wind Motors (AREA)

Description

【発明の詳細な説明】 [産業上の利用分野] 本発明は、風車によつて風力から変換された機
械的回転エネルギーを、電気、熱等のエネルギー
に変換するエネルギー変換システム等において利
用するのに適した風車用動力伝達機構に関するも
のである。
[Detailed Description of the Invention] [Industrial Application Field] The present invention is applicable to an energy conversion system that converts mechanical rotational energy converted from wind power by a wind turbine into energy such as electricity or heat. This invention relates to a wind turbine power transmission mechanism suitable for use in wind turbines.

[従来の技術] 従来から知られている水平軸形風力発電システ
ムなどでは、一般に、タワーの上端に取付けたナ
セル内に、風車ブレードに連結された風車ロータ
ー、増速機、発電機等を水平に配置して、それら
を相互に連結している。しかしながら、このよう
な構成では、タワー上部の積載重量が大きいた
め、それだけタワー自体の剛性を高める必要があ
り、それに伴つてタワーを構成する材料の重量も
大きくなる。従つて、システムの製作費が比較的
高価なものになる。
[Prior Art] In conventionally known horizontal axis wind power generation systems, the wind turbine rotor, speed increaser, generator, etc. connected to the wind turbine blades are generally mounted horizontally in a nacelle attached to the top of the tower. are arranged and interconnected. However, in such a configuration, since the loaded weight of the upper part of the tower is large, it is necessary to increase the rigidity of the tower itself, and accordingly, the weight of the material forming the tower also increases. Therefore, the manufacturing cost of the system is relatively high.

このような問題を解決するため、第3図に示す
ように、タワー1上において回転軸3を水平方向
に向けて支持されている風車ブレード2の回転
を、一対の傘歯車4,5により鉛直の回転軸6に
伝達し、タワー1の基部に増速機や発電機等の重
量の大きい機器7を配置するようにした風車が、
既に知られている。
In order to solve this problem, as shown in FIG. A wind turbine that transmits power to a rotating shaft 6 of
Already known.

しかるに、このような風車においては、風車ブ
レード2の回転軸3に対して、一対の傘歯車の噛
合いに伴うヨーモーメントが作用し、そのため、
通常は風車の回転軸3をタワー中心からオフセツ
トすることにより、上記付加的ヨーモーメントを
避けているが、この場合、機械的に釣合つている
わけではないので、不安定になるという問題があ
る。
However, in such a wind turbine, a yaw moment due to the meshing of the pair of bevel gears acts on the rotating shaft 3 of the wind turbine blade 2, and therefore,
Normally, the above-mentioned additional yaw moment is avoided by offsetting the rotation axis 3 of the wind turbine from the center of the tower, but in this case, there is a problem of instability because it is not mechanically balanced. .

[発明が解決しようとする課題] 本発明の技術的課題は、タワー上部におけるナ
セル等の積載重量を軽減することにより、タワー
の必要剛性及び重量を軽減して、システムの経済
性を向上させるようにした上述の風車において、
簡単な手段により、動力伝達に伴う付加的ヨーモ
ーメントを小さく抑えると同時に、出力軸に所要
の増速出力を伝達できるようにした機構を提供
し、それによつてシステムの安定な運転状態を保
持できるようにした風車用動力伝達機構を得るこ
とにある。
[Problems to be Solved by the Invention] A technical problem to be solved by the present invention is to reduce the required rigidity and weight of the tower by reducing the loading weight of nacelles, etc. in the upper part of the tower, thereby improving the economic efficiency of the system. In the above-mentioned windmill with
Provides a mechanism that uses simple means to suppress the additional yaw moment associated with power transmission while simultaneously transmitting the required accelerating output to the output shaft, thereby maintaining a stable operating state of the system. An object of the present invention is to obtain a power transmission mechanism for a wind turbine.

[課題を解決するための手段] 上記課題を解決するため、本発明の風車用動力
伝達機構は、タワーの上端において鉛直軸のまわ
りに回転可能なハウジングに、風車ブレードの回
転軸を水平に支持させ、上記回転軸に取付けた傘
歯車に、2個の傘歯車を対向位置において噛合さ
せ、これらの2個の傘歯車にそれぞれ取付けた差
動軸をタワーに沿つて垂下させ、それらの下端
に、各回転軸線を鉛直方向に向けて回転し、且つ
上記差動軸の差動回転力を一方向回転する一つの
出力軸に伝達する差動遊星増速機構を接続するこ
とによつて構成される。
[Means for Solving the Problems] In order to solve the above problems, the power transmission mechanism for a wind turbine of the present invention includes a housing that is rotatable around a vertical axis at the upper end of a tower, and a rotating shaft of a wind turbine blade is horizontally supported. Then, two bevel gears are meshed with the bevel gear attached to the rotating shaft at opposing positions, and the differential shafts attached to these two bevel gears are made to hang down along the tower, and a bevel gear is attached to their lower end. , is configured by connecting a differential planetary speed increasing mechanism that rotates with each rotational axis directed in the vertical direction and transmits the differential rotational force of the differential shaft to one output shaft that rotates in one direction. Ru.

[作 用] 上記構成の風車用動力伝達機構においては、風
車ブレードの回転軸の傘歯車及びそれと噛合する
2個の傘歯車を介して、差動軸に方向の異なる回
転力が二分して伝えられ、それらの回転力が差動
遊星増速機構において1本の出力軸に集合し、発
電機、熱発生機器等の負荷が駆動される。
[Function] In the power transmission mechanism for a wind turbine having the above configuration, rotational forces in different directions are transmitted to the differential shaft in two parts through the bevel gear on the rotating shaft of the wind turbine blade and the two bevel gears meshing with the bevel gear. These rotational forces are collected on one output shaft in the differential planetary speed increasing mechanism, and loads such as generators and heat generating equipment are driven.

特に、上記差動軸の下端に連結した差動遊星増
速機構においては、差動軸の回転速度が適当な速
度まで増速されると同時に、その増速に伴つて出
力軸のトルクが小さくなるので、ハウジングとタ
ワーとの間に作用する偏向ヨーモーメントが十分
に小さく抑えられ、また、差動遊星増速機構の機
構上、それ以外にヨーモーメントに影響を与える
ことはなく、風向の変動に伴つてヨーの方向を任
意に追尾しながら、システムの安定な運転状態が
保持される。
In particular, in the differential planetary speed increase mechanism connected to the lower end of the differential shaft, the rotational speed of the differential shaft is increased to an appropriate speed, and at the same time, the torque of the output shaft is reduced due to the speed increase. As a result, the deflection yaw moment acting between the housing and the tower can be suppressed to a sufficiently small level, and due to the mechanism of the differential planetary speed increase mechanism, there is no other effect on the yaw moment, and fluctuations in wind direction can be suppressed. The stable operating state of the system is maintained while arbitrarily tracking the direction of yaw.

[実施例] 第1図は本発明に係る動力伝達機構を備えた風
車の第1実施例を示すものである。同図に示す風
車においては、タワー11の上端に、ハウジング
12をヨー軸受13により鉛直軸のまわりに回転
可能に取付け、このハウジング12に風車ブレー
ド15の回転軸16を水平に支持させている。ハ
ウジング12内においては、上記回転軸16の他
端に傘歯車17を取付け、この傘歯車17に対し
て上端位置と下端位置において同時に噛合う2個
の傘歯車19,20を、それぞれ鉛直で同心状に
配置した差動軸21,22の上端に取付けてい
る。上記両差動軸21,22は、一方の差動軸2
1が他方の中空の差動軸22内を貫通するように
して、相互に同心状に配置すると共に、タワー1
1の上端においてヨー軸受13により回転可能に
取付けられているハウジング12の回転の軸線と
も、同心に配置したものである。
[Embodiment] FIG. 1 shows a first embodiment of a wind turbine equipped with a power transmission mechanism according to the present invention. In the wind turbine shown in the figure, a housing 12 is attached to the upper end of a tower 11 so as to be rotatable around a vertical axis by a yaw bearing 13, and a rotating shaft 16 of a wind turbine blade 15 is horizontally supported by the housing 12. Inside the housing 12, a bevel gear 17 is attached to the other end of the rotating shaft 16, and two bevel gears 19 and 20 that mesh with the bevel gear 17 simultaneously at the upper and lower end positions are vertically concentric with each other. It is attached to the upper end of the differential shafts 21 and 22 arranged in a shape. Both differential shafts 21 and 22 are connected to one differential shaft 2.
1 passes through the hollow differential shaft 22 of the other, and are arranged concentrically with each other, and the tower 1
The housing 12 is also arranged concentrically with the axis of rotation of the housing 12, which is rotatably mounted at the upper end of the housing 12 by a yaw bearing 13.

上記差動軸21,22は、タワー11に沿つて
垂下させ、それらの下端には、タワー11内にお
いて、各歯車の回転軸線を鉛直方向に向けて回転
する差動遊星増速機構25を連結している。この
差動遊星増速機構25は、回転方向を異にする上
記差動軸21,22の差動回転力を、一方向回転
する一つの出力軸27に伝達するためのものであ
る。この出力軸27の回転力は、発電機、熱発生
機器等の負荷28を駆動するように接続され、ま
た負荷28にはそれを制御するための制御盤29
が接続されている。
The differential shafts 21 and 22 are suspended along the tower 11, and a differential planetary speed increase mechanism 25 is connected to their lower ends, which rotates within the tower 11 with the rotation axis of each gear facing the vertical direction. are doing. This differential planetary speed increasing mechanism 25 is for transmitting the differential rotational force of the differential shafts 21 and 22 that rotate in different directions to one output shaft 27 that rotates in one direction. The rotational force of this output shaft 27 is connected to drive a load 28 such as a generator or heat generating equipment, and the load 28 has a control panel 29 for controlling it.
is connected.

上記差動遊星増速機構25として第1図の実施
例に例示しているものは、差動軸22の下端に内
歯歯車31を固定し、また差動軸21の下端に上
記内歯歯車31と噛合する複数の遊星歯車32,
……の回転軸33を支持させ、中心において各遊
星歯車32,……と噛合する太陽歯車35を出力
軸27に連結している。
In the differential planetary speed increasing mechanism 25 illustrated in the embodiment of FIG. 1, an internal gear 31 is fixed to the lower end of the differential shaft 22, and the internal gear a plurality of planetary gears 32 meshing with 31;
A sun gear 35 is connected to the output shaft 27, which supports rotating shafts 33 of .

第2図に示す第2実施例は、上記差動遊星増速
機構25の異なる構成例を示すもので、差動軸2
2の下端に内歯歯車41を固定し、また差動軸2
1の下端に上記内歯歯車41と噛合する複数の遊
星歯車42,……の回転軸43を支持させ、それ
らの遊星歯車42,……の各回転軸43に固定し
た遊星小歯車44と噛合する太陽歯車45を出力
軸27に連結している。このような構成は、出力
軸27の増速割合を調整するのに有利なものであ
る。
The second embodiment shown in FIG. 2 shows a different configuration example of the differential planetary speed increasing mechanism 25, in which the differential shaft 2
An internal gear 41 is fixed to the lower end of the differential shaft 2.
1 supports rotating shafts 43 of a plurality of planetary gears 42, . A sun gear 45 is connected to the output shaft 27. Such a configuration is advantageous for adjusting the speed increase rate of the output shaft 27.

このような構成を有する風車においては、風力
エネルギーによつて回転する風車ブレード15の
回転軸16から、傘歯車17及び傘歯車19,2
0を介して、差動軸21,22に方向の異なる回
転力が二分して伝えられ、それらの回転力が差動
遊星増速機構25において1本の出力軸27に集
合し、発電機、熱発生機器等の負荷28が駆動さ
れる。
In a wind turbine having such a configuration, the bevel gear 17 and the bevel gears 19, 2 are connected from the rotating shaft 16 of the wind turbine blade 15 rotated by wind energy.
0, rotational forces in different directions are transmitted to the differential shafts 21 and 22 in two parts, and these rotational forces are collected in one output shaft 27 in the differential planetary speed increasing mechanism 25, and the generator, A load 28 such as a heat generating device is driven.

上記傘歯車列及び差動遊星増速機構25におい
ては、回転速度の増速が可能であり、それによつ
てエネルギーの変換効率を高く維持することがで
きる。また、上記増速に伴い、出力軸27のトル
クは、風車ブレード15の回転軸16に比べた増
速の割合に応じて小さくなる。そのトルクは、ハ
ウジング12とタワー11との間に偏向ヨーモー
メントとして作用するが、上述のようにして十分
に小さく抑えることができ、また、差動遊星増速
機構の機構上、それ以外にヨーモーメントに影響
を与えることはなく、風向の変動に伴つてヨーの
方向を任意に追尾し、それによつてヨーの駆動制
御の簡素化、システムの安定な運転状態が保持さ
れる。
In the bevel gear train and the differential planetary speed increasing mechanism 25, the rotational speed can be increased, thereby maintaining high energy conversion efficiency. Further, as the speed increases, the torque of the output shaft 27 becomes smaller in accordance with the rate of speed increase compared to the rotation shaft 16 of the wind turbine blade 15. The torque acts as a deflection yaw moment between the housing 12 and the tower 11, but it can be suppressed to a sufficiently low level as described above. The yaw direction is arbitrarily tracked as the wind direction changes without affecting the moment, thereby simplifying yaw drive control and maintaining a stable operating state of the system.

[発明の効果] 以上に詳述した本発明の風車用動力伝達機構に
よれば、タワー上部における積載重量を軽減する
ようにした前述の風車において、動力伝達に伴う
付加的ヨーモーメントを小さく抑え、システムの
安定な運転状態を保持することができる。
[Effects of the Invention] According to the wind turbine power transmission mechanism of the present invention detailed above, in the above-mentioned wind turbine in which the load weight at the top of the tower is reduced, the additional yaw moment accompanying power transmission can be suppressed to a small level, A stable operating state of the system can be maintained.

また、風車ブレードの回転をタワーの上部から
一対の差動軸を介して伝達するようにしているた
め、低速で大きなトルクの伝達を行うことが可能
であり、この場合には、剛性の高い長い軸により
容易に長距離間のトルク伝達を行うことができ、
しかも簡単な手段により上記付加的ヨーモーメン
トを小さく抑えると同時に、出力軸に所要の増速
出力を伝達できるようにした機構を提供すること
ができる。
In addition, since the rotation of the wind turbine blades is transmitted from the top of the tower through a pair of differential shafts, it is possible to transmit large torque at low speeds. The shaft allows for easy torque transmission over long distances.
Moreover, it is possible to provide a mechanism that can suppress the additional yaw moment to a small value by simple means and at the same time transmit the required speed-up output to the output shaft.

【図面の簡単な説明】[Brief explanation of drawings]

第1図は本発明に係る風車用動力伝達機構の第
1実施例の断面図、第2図は同第2実施例の要部
断面図、第3図は従来例の構成図である。 11……タワー、12……ハウジング、15…
…風車ブレード、16……回転軸、17,19,
20……傘歯車、21,22……差動軸、25…
…差動遊星増速機構、27……出力軸。
FIG. 1 is a sectional view of a first embodiment of a power transmission mechanism for a wind turbine according to the present invention, FIG. 2 is a sectional view of a main part of the second embodiment, and FIG. 3 is a configuration diagram of a conventional example. 11...Tower, 12...Housing, 15...
...Windmill blade, 16...Rotating shaft, 17, 19,
20...Bevel gear, 21, 22...Differential shaft, 25...
...Differential planetary speed increase mechanism, 27...Output shaft.

Claims (1)

【特許請求の範囲】[Claims] 1 タワーの上端において鉛直軸のまわりに回転
可能なハウジングに、風車ブレードの回転軸を水
平に支持させ、上記回転軸に取付けた傘歯車に、
2個の傘歯車を対向位置において噛合させ、これ
らの2個の傘歯車にそれぞれ取付けた差動軸をタ
ワーに沿つて垂下させ、それらの下端に、各回転
軸線を鉛直方向に向けて回転し、且つ上記差動軸
の差動回転力を一方向回転する一つの出力軸に伝
達する差動遊星増速機構を接続したことを特徴と
する風車用動力伝達機構。
1. A housing rotatable around a vertical axis at the upper end of the tower horizontally supports the rotating shaft of the wind turbine blade, and a bevel gear attached to the rotating shaft,
Two bevel gears are meshed at opposite positions, and the differential shafts attached to these two bevel gears are suspended along the tower, and each rotation axis is rotated vertically at the lower end of the differential shaft. A power transmission mechanism for a wind turbine, further comprising a differential planetary speed increasing mechanism that transmits the differential rotational force of the differential shaft to one output shaft rotating in one direction.
JP61155845A 1986-07-02 1986-07-02 Power transmission mechanism for windmill Granted JPS6312887A (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP61155845A JPS6312887A (en) 1986-07-02 1986-07-02 Power transmission mechanism for windmill

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP61155845A JPS6312887A (en) 1986-07-02 1986-07-02 Power transmission mechanism for windmill

Publications (2)

Publication Number Publication Date
JPS6312887A JPS6312887A (en) 1988-01-20
JPH0343469B2 true JPH0343469B2 (en) 1991-07-02

Family

ID=15614752

Family Applications (1)

Application Number Title Priority Date Filing Date
JP61155845A Granted JPS6312887A (en) 1986-07-02 1986-07-02 Power transmission mechanism for windmill

Country Status (1)

Country Link
JP (1) JPS6312887A (en)

Families Citing this family (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH05970U (en) * 1991-06-19 1993-01-08 周 金木 Wind turbine
JP6261025B2 (en) * 2013-05-23 2018-01-17 大洋プラント株式会社 Wind energy equipment
TWI685611B (en) 2018-10-04 2020-02-21 南臺學校財團法人南臺科技大學 Kinetic energy extraction mechanism

Citations (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS595886A (en) * 1982-07-02 1984-01-12 Mitsubishi Electric Corp Wind power generating device

Patent Citations (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS595886A (en) * 1982-07-02 1984-01-12 Mitsubishi Electric Corp Wind power generating device

Also Published As

Publication number Publication date
JPS6312887A (en) 1988-01-20

Similar Documents

Publication Publication Date Title
KR960007401B1 (en) Multi-unit rotor blade system integrated wind turbine
KR101377818B1 (en) Novel architecture for Horizontal-axis wind turbine system and operation methods thereof
US7259472B2 (en) Wind turbine generator
CN101660499B (en) Grid-connected hybrid-driven variable-pitch variable-speed constant-frequency wind turbine generator set
US10451029B2 (en) Dual rotor wind power assembly (variants)
CN103075308B (en) Wind turbine with single-stage compact drive train
KR20030066299A (en) Wind powered generator
JP2004353637A (en) Self-rotating blade/vertical shaft type wind mill
EP3640473B1 (en) Transmission system for semi-direct wind power generating set
CN201496204U (en) Grid-connected hybrid-driven variable-pitch variable-speed constant frequency wind turbine generator system
GB2464132A (en) Multiple rotor vertical axis wind turbine
CN102003348A (en) Wind generating set
CN107100796A (en) A kind of model wind generating device with real time temperature monitoring function
CN109751186A (en) The control method and high power wind-driven generator of wind-driven generator
JPH0343469B2 (en)
CN203627080U (en) Double-blade type wind power generation apparatus
JP4546097B2 (en) Wind power generator
JP2003278639A (en) Wind power generator
CN114263563A (en) Wind power generation system capable of automatically adjusting windward angle
CN112302878A (en) Semi-direct-drive serial double-wind-wheel wind turbine generator set
CN116677559B (en) Variable pitch equipment of wind driven generator
KR200271513Y1 (en) Double Hub Attached Propeller Type Wind Power Generator
CN202718814U (en) Direct grid wind turbine generating set of synchronous generator
CN221003014U (en) Novel vertical axis wind turbine
CN117536795A (en) Double-rotor horizontal-axis wind driven generator synthetic transmission chain based on differential mechanism

Legal Events

Date Code Title Description
EXPY Cancellation because of completion of term