JPH0342420Y2 - - Google Patents

Info

Publication number
JPH0342420Y2
JPH0342420Y2 JP8235885U JP8235885U JPH0342420Y2 JP H0342420 Y2 JPH0342420 Y2 JP H0342420Y2 JP 8235885 U JP8235885 U JP 8235885U JP 8235885 U JP8235885 U JP 8235885U JP H0342420 Y2 JPH0342420 Y2 JP H0342420Y2
Authority
JP
Japan
Prior art keywords
optical
light
delay
transmitting
delay control
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Expired
Application number
JP8235885U
Other languages
Japanese (ja)
Other versions
JPS61198930U (en
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed filed Critical
Priority to JP8235885U priority Critical patent/JPH0342420Y2/ja
Publication of JPS61198930U publication Critical patent/JPS61198930U/ja
Application granted granted Critical
Publication of JPH0342420Y2 publication Critical patent/JPH0342420Y2/ja
Expired legal-status Critical Current

Links

Description

【考案の詳細な説明】 「産業上の利用分野」 この考案は光ビームを電気的に偏向させ、ある
いは受光軸を電気的に偏向させることができる光
ビーム偏向装置に関する。
[Detailed Description of the Invention] "Industrial Application Field" This invention relates to a light beam deflection device capable of electrically deflecting a light beam or electrically deflecting a light receiving axis.

「従来の技術」 従来の光ビームを偏向送受信する偏向装置とし
ては、機械的な光ビーム偏向手段が主として用い
られてきた。例えば、ボイス・コイルにより鏡を
制御して鏡の向きを変化させ、その鏡に入射して
くる光ビームの反射する方向を変えるようにして
偏向させていた。
"Prior Art" As a conventional deflection device for deflecting and transmitting/receiving a light beam, mechanical light beam deflection means have been mainly used. For example, a voice coil was used to control a mirror to change the direction of the mirror, thereby changing the direction in which a beam of light incident on the mirror was reflected.

或いはモータなどにより鏡を回転させ回転鏡と
し、その回転に光ビームを同期させるようにして
偏向させていた。
Alternatively, the mirror was rotated by a motor or the like to form a rotating mirror, and the light beam was deflected in synchronization with the rotation.

「考案が解決しようとする問題点」 このような機械的な光ビームの偏向制御手段で
は、反射鏡を動かして光ビームの反射する方向を
制御するために高速の偏向制御が難しい。
``Problems to be Solved by the Invention'' With such mechanical light beam deflection control means, high-speed deflection control is difficult because the direction in which the light beam is reflected is controlled by moving a reflecting mirror.

偏向手段に機械的な可動部があるため、機械的
な振動などもあり、故障の発生することも多く信
頼性の面でも悪い。
Since the deflection means has mechanically moving parts, there is also mechanical vibration, which often causes failures and is poor in reliability.

また機械的可動部は必然的に摩耗、変形などが
避けられず、それらによる経時変化も大きいな
ど、幾つもの問題がある。
In addition, mechanically movable parts inevitably suffer from wear and deformation, and these also cause large changes over time, which poses a number of problems.

「問題点を解決するための手段」 この考案では光ビームを放射する光ビーム送受
波器は複数の光送受波端が所定の間隔を保つて配
列され、かつそれぞれの放射軸が互いに平行する
ように配置させ、これら複数の光送受波端のそれ
ぞれからコーヒーレント光が前記放射軸方向に放
射されるように構成し、これら複数の光送受波端
に、それぞれ各別の光伝送路の一端を結合し、こ
れら複数の光伝送路のそれぞれに光遅延制御素子
を挿入し、各光遅延制御素子を伝播する光を電気
信号によつて遅延制御させる。
``Means for solving the problem'' In this invention, the optical beam transducer that emits a light beam has a plurality of optical transceiver ends arranged at a predetermined interval, and their respective emission axes are parallel to each other. The configuration is such that coherent light is emitted from each of the plurality of optical transmitting/receiving ends in the direction of the radiation axis, and one end of each separate optical transmission line is connected to each of the plurality of optical transmitting/receiving ends. An optical delay control element is inserted into each of the plurality of optical transmission lines, and the delay of light propagating through each optical delay control element is controlled by an electrical signal.

一方、これらの光遅延制御素子を含む光伝送路
の各他端を光結合器に結合し、複数の光伝送路を
1つに接続し、1つとされた伝送路をコーヒーレ
ントな光の発生器、或いは又受光素子に結合させ
る。
On the other hand, each other end of the optical transmission line including these optical delay control elements is coupled to an optical coupler, the plurality of optical transmission lines are connected to one, and the single transmission line is used to generate coherent light. or a light-receiving element.

更に、この考案では光遅延制御器に対する制御
器を設け、この制御器により複数の光伝送路内の
光遅延制御素子の遅延量を制御し、光ビーム送受
波器から放射される光ビームの指向方向を偏向制
御するように構成する。
Furthermore, in this invention, a controller for the optical delay controller is provided, and this controller controls the amount of delay of the optical delay control elements in the plurality of optical transmission lines, and controls the direction of the optical beam emitted from the optical beam transducer. The device is configured to control the direction of deflection.

「実施例」 第1図はこの考案による光ビーム偏向装置の実
施例を示す図である。この例ではコーヒーレント
光源11を有し、このコーヒーレント光源から出
射される光を放射端14A〜14Nから放射し、
その放射ビームを電気的に偏向させる場合につい
て説明する。
Embodiment FIG. 1 is a diagram showing an embodiment of a light beam deflection device according to this invention. This example has a coherent light source 11, and emits light emitted from the coherent light source from radiation ends 14A to 14N,
A case will be described in which the radiation beam is electrically deflected.

偏向制御される光ビームはレーザなど位相の揃
つたコーヒーレント光であり、コーヒーレント光
発生器11により発光される。発光制御されたコ
ーヒーレント光は光導波路12に導かれ光ビーム
送受波器13に送られ、この光ビーム送受波器1
3から放射される。
The light beam whose deflection is controlled is phase-aligned coherent light from a laser or the like, and is emitted by the coherent light generator 11 . The coherent light whose emission has been controlled is guided to the optical waveguide 12 and sent to the optical beam transducer 13.
It is radiated from 3.

この考案では、光ビーム送受波器13には複数
の光送受波端14A,14B,14C,…14N
を設ける。それら光送受波端14A〜14Nのそ
れぞれからコーヒーレント光が各放射軸M方向に
放射される。この例では光送受波端14A〜14
Nを一列にほゞ等しい間隔dに配列した場合を示
す。またこれら各光送受波端14A〜14Nの各
コーヒーレント光の放射軸Mは互いに平行となる
ように光送受波端14A〜14Nを配列する。
In this invention, the optical beam transducer 13 has a plurality of optical transceiver ends 14A, 14B, 14C,...14N.
will be established. Coherent light is emitted from each of the optical transmitting/receiving ends 14A to 14N in the direction of each radiation axis M. In this example, optical transmitting/receiving ends 14A to 14
A case is shown in which N are arranged in a line at approximately equal intervals d. Further, the optical transmitting/receiving ends 14A to 14N are arranged so that the emission axes M of the respective coherent lights of these optical transmitting/receiving ends 14A to 14N are parallel to each other.

各光送受波端14A〜14Nにはそれぞれ各別
の光伝送路15A〜15Nの各一端を接続する。
この考案ではこれら光伝送路15A〜15N内に
それぞれ光遅延制御素子16A〜16Nが設けら
れる。即ち、それら光遅延制御素子16A〜16
N内をコーヒーレント光が伝播するとき、光は光
遅延制御素子16A〜16Nのそれぞれの光遅延
特性により位相遅延を受ける。
One end of each optical transmission line 15A-15N is connected to each optical transmitting/receiving end 14A-14N, respectively.
In this invention, optical delay control elements 16A to 16N are provided in these optical transmission lines 15A to 15N, respectively. That is, these optical delay control elements 16A to 16
When coherent light propagates within N, the light undergoes a phase delay due to the optical delay characteristics of each of the optical delay control elements 16A to 16N.

これら各光遅延制御素子16A〜16Nは伝播
する光に位相遅延させる光遅延量φiが電気的に変
えることが可能なように例えば音響光学素子等を
用いることができる。各光遅延量φiは制御器17
により制御する。
For each of these optical delay control elements 16A to 16N, an acousto-optic element or the like can be used so that the optical delay amount φi for causing a phase delay in the propagating light can be electrically changed. Each optical delay amount φi is determined by the controller 17
Controlled by

各光伝送路15A〜15Nの他の一端は光結合
器18の光分配端18A〜18Nにそれぞれ接続
する。この光結合器18はコーヒーレント光発生
器11からのコーヒーレント光を光導波路12を
介してその光入射端から入力され、入力された光
を各光分配端18A〜18Nのそれぞれから光伝
送路15A〜15Nへほゞ等しい強さで分配供給
する構造になつている。
The other end of each of the optical transmission lines 15A to 15N is connected to the optical distribution ends 18A to 18N of the optical coupler 18, respectively. The optical coupler 18 receives the coherent light from the coherent light generator 11 through the optical waveguide 12 from its light input end, and sends the input light from each of the optical distribution ends 18A to 18N to the optical transmission path. The structure is such that it is distributed and supplied to 15A to 15N with approximately equal strength.

「作用」 以上のような構成において、コーヒーレント光
発生器11からの光は光導波路12を介して光結
合器18の光入射端に入射される。光結合器18
はその入射光をほゞ等しい光強度に分割し、その
光分配端18A〜18Nから各光伝送路15A〜
15Nに分配する。各光伝送路15A〜15Nに
分配されたコーヒーレント光は、各光伝送路15
A〜15Nの途中に挿入されている光遅延制御素
子16A〜16Nにより、それぞれ位相遅延φiを
受け、各光伝送路15A〜15Nに接続されてい
る光送受波端14A〜14Nからその放射光軸M
の方向にそれぞれ放射される。
"Operation" In the above configuration, the light from the coherent light generator 11 is input to the light input end of the optical coupler 18 via the optical waveguide 12. Optical coupler 18
divides the incident light into approximately equal light intensities, and connects each optical transmission line 15A to 15N from the light distribution ends 18A to 18N.
Distribute into 15N. The coherent light distributed to each optical transmission line 15A to 15N is
The optical delay control elements 16A to 16N inserted in the middle of the optical transmission lines 15A to 15N each receive a phase delay φi, and the emitted optical axis is emitted from the optical transmitting/receiving ends 14A to 14N connected to each optical transmission line 15A to 15N. M
are radiated in the respective directions.

光送受波端14A〜14Nから放射されたコー
ヒーレント光は、放射された各光送受波端14A
〜14Nを中心とする半円状の波面を形成して伝
播する。光送受波端14A〜14Nから進むにつ
れ、それぞれの光の進行波面は拡がり、互いに重
なり合うようになり、重なり合つた各波面は干渉
し合うようになる。この波面の干渉によつて同位
相になつた波面は強め合い、逆位相になつた波面
は弱め合う。
The coherent light emitted from the optical transmitting/receiving ends 14A to 14N is transmitted to each emitted optical transmitting/receiving end 14A.
It propagates by forming a semicircular wavefront centered at ~14N. As the light travels from the optical transmitting/receiving ends 14A to 14N, the traveling wavefronts of the respective lights expand and overlap each other, and the overlapping wavefronts interfere with each other. Due to this wavefront interference, wavefronts that are in the same phase strengthen each other, and wavefronts that are in opposite phases weaken each other.

この考案では、光送受波端14A〜14Nから
放射される前に、各コーヒーレント光は光遅延制
御素子16A〜16Nによりそれぞれ所定の位相
遅延φiを受けているが、光送受波端14A〜14
Nから放射される放射光が光送受波端14A〜1
4Nの配列順に従つて例えば14A,14B,1
4C,…14Nの順に位相遅延量がφずつ小さく
なるように設定した場合には第2図に示すように
各光送受波端14A〜14Nから放射軸Mの方向
に放射された各コーヒーレント光はA1,A2
A3,…ANを結ぶ一つの合成波面Pを形成し、コ
ーヒーレント光はこの合成波面Pと直交する方向
に主成分が振り向けられ放射軸Mから角度θだけ
かたよつた方向に偏向される。この偏向角θはθ
=sin-1〔(λ/d)・(φ/2π)〕で表すことができ
る。
In this invention, each coherent light is subjected to a predetermined phase delay φi by the optical delay control elements 16A to 16N before being emitted from the optical transmitting and receiving ends 14A to 14N.
The synchrotron radiation emitted from the optical transmitter/receiver ends 14A to 1
For example, 14A, 14B, 1 according to the arrangement order of 4N.
When the phase delay amount is set to decrease by φ in the order of 4C, ...14N, each coherent beam radiated from each optical transmitting/receiving end 14A to 14N in the direction of the radiation axis M as shown in FIG. are A 1 , A 2 ,
One composite wavefront P connecting A 3 ,...A N is formed, and the main component of the coherent light is directed in a direction perpendicular to this composite wavefront P, and is deflected in a direction deviated by an angle θ from the radiation axis M. . This deflection angle θ is θ
It can be expressed as = sin -1 [(λ/d)・(φ/2π)].

ここで、dは光送受波端14A〜14Nの配列
の間隔、φは隣接する光遅延制御素子16A〜1
6Nの相互の間の光の位相遅延量φiの差を表す。
Here, d is the spacing between the optical transmitting/receiving ends 14A to 14N, and φ is the adjacent optical delay control element 16A to 1
6N represents the difference in phase delay amount φi of light.

つまり、光遅延制御素子16A〜16Nの持つ
光遅延量を制御器17により変化させることで、
光ビームの偏向角θを制御することが可能にな
る。例えば、互いに隣接する光送受波端14A〜
14Nから放射される光の位相差φを連続的に変
わるように制御すれば、偏向角θを連続的に変化
させることができる。つまり光ビームの偏向走査
制御が可能となる。
That is, by changing the amount of optical delay of the optical delay control elements 16A to 16N using the controller 17,
It becomes possible to control the deflection angle θ of the light beam. For example, mutually adjacent optical transmitting/receiving ends 14A~
By controlling the phase difference φ of the light emitted from the 14N so that it changes continuously, the deflection angle θ can be changed continuously. In other words, it becomes possible to control the deflection and scanning of the light beam.

「考案の変形実施例」 第3図は光ビーム送受波器13の他の例を示す
図である。
"Modified Embodiment of the Invention" FIG. 3 is a diagram showing another example of the optical beam transducer 13.

この例では光伝送路15に複数の光遅延制御素
子16A〜16Nを直列に配列し、各光遅延制御
素子16A〜16Nは等しい位相遅延特性φを持
つように制御される。この光ビーム送受波器13
では、その一端13aからコーヒーレント光が入
射され、その一部が第1光送受波端14Aより放
射され、他の一部は第1光遅延制御素子16Aに
よりφの位相遅延を受け、このφの位相遅延を受
けたコーヒーレント光の一部は第2光送受波端1
4Bから放射され、他の一部は更に次の第2光遅
延制御素子16Bを通つてφの位相遅延を受け
る。
In this example, a plurality of optical delay control elements 16A to 16N are arranged in series on the optical transmission line 15, and each optical delay control element 16A to 16N is controlled to have the same phase delay characteristic φ. This optical beam transducer 13
Then, coherent light is incident from one end 13a, a part of which is emitted from the first optical transmitting/receiving end 14A, and the other part is subjected to a phase delay of φ by the first optical delay control element 16A. A part of the coherent light that has undergone a phase delay is transferred to the second optical transmitter/receiver end 1.
4B, and the other part further passes through the next second optical delay control element 16B and undergoes a phase delay of φ.

このように、次々にφの位相遅延を受けなが
ら、その一部を順次放射してゆくように構成され
る。
In this way, it is configured to sequentially radiate a portion of the radiation while undergoing a phase delay of φ one after another.

この場合も、各光遅延制御素子16A〜16N
の位相遅延特性は制御器17により時間的に同一
の特性を保持させながら変化するように制御さ
れ、前の実施例と同様に放射される光ビームの指
向方向θを制御することできる。ただし、この場
合、各放射時間の遅延関係は一定方向になるので
偏向角θは放射軸に対し一方の側への偏向に限ら
れる。
Also in this case, each optical delay control element 16A to 16N
The phase delay characteristic is controlled by the controller 17 so as to change while maintaining the same characteristic over time, and the directional direction θ of the emitted light beam can be controlled in the same way as in the previous embodiment. However, in this case, since the delay relationship between each radiation time is in a fixed direction, the deflection angle θ is limited to deflection to one side with respect to the radiation axis.

第1図の例では、光ビーム送受波器13には光
送受波端14A〜14Nが等しい間隔で1列に配
列されているが、そのような1次元配置でなく、
第4図に示すように、光送受波端14A〜14N
を平面上の2次元で、かつ等しい間隔に配列して
も良い。この光ビーム送受波器13によれば、光
ビームは1次元のX方向への偏向走査制御ばかり
ではなく、Y方向に隣接して配列された光送受波
端14A〜14Nに接続される光遅延制御素子1
6A〜16Nの光遅延特性の位相差がφになるよ
うに、かつ、その位相差φが変化するように光遅
延制御素子16A〜16Nを制御すれば、Y方向
への偏向走査制御も可能となり、2次元の平面偏
向走査制御が可能になる。
In the example of FIG. 1, the optical beam transducer/receiver 13 has the optical transceiver ends 14A to 14N arranged in a row at equal intervals, but this is not a one-dimensional arrangement.
As shown in FIG. 4, optical transmitting/receiving ends 14A to 14N
may be arranged two-dimensionally on a plane at equal intervals. According to this optical beam transmitter/receiver 13, the optical beam is not only subjected to one-dimensional deflection scanning control in the X direction, but also optical delay control connected to the optical transmitter/receivers 14A to 14N arranged adjacently in the Y direction. Control element 1
If the optical delay control elements 16A to 16N are controlled so that the phase difference of the optical delay characteristics of 6A to 16N becomes φ and the phase difference φ changes, deflection scanning control in the Y direction is also possible. , two-dimensional plane deflection scanning control becomes possible.

この場合、X方向とY方向との光送受波端14
A〜14Nの配列間隔は必ずしも同一でなくても
よい。
In this case, the optical transmitting/receiving ends 14 in the X direction and the Y direction
The arrangement intervals of A to 14N do not necessarily have to be the same.

以上では、光ビーム送受波器13で光ビームを
放射して偏向走査することだけを説明したが、こ
の光ビーム送受波器13ではコーヒーレント光を
選択して受光することもできる。
In the above description, only the light beam transducer 13 emits a light beam and performs deflection scanning, but the light beam transducer 13 can also select and receive coherent light.

つまり、これまでの説明を逆に考えれば良い。
光ビーム送受波器13の各光送受波端14A〜1
4Nに入射したコーヒーレント光はその光送受波
端14A〜14Nに接続された光伝送路内15A
〜15Nのそれぞれの光遅延制御素子16A〜1
6Nによりそれぞれの位相遅延特性により位相遅
延φiを受け、光結合器18の光分配端18A〜1
8Nから光結合器18に入射し1つの光とされ
る。
In other words, consider the previous explanation in reverse.
Each optical transceiver end 14A to 1 of the optical beam transducer 13
The coherent light incident on 4N is transmitted to the optical transmission line 15A connected to the optical transmitting/receiving ends 14A to 14N.
~15N respective optical delay control elements 16A~1
6N receives a phase delay φi due to the respective phase delay characteristics, and the optical distribution ends 18A to 1 of the optical coupler 18
8N enters the optical coupler 18 and is combined into one light beam.

図には示されていないがこの際、光結合器18
の光結合端で、1つの光とされた各コーヒーレン
ト光は干渉し合う。つまり、隣接する光遅延制御
素子16A〜16Nの遅延特性の差をφとすれば
前記の式で表される方向θからきた光は、光結合
器18の光結合端で互いに同じ位相となり互いに
強め合うのが、他の方向から入射した光は互いに
位相がずれ、強め合うことができない。従つて、
各方向から光ビーム送受波器13にやつて来る光
を選択して受光することができる。
Although not shown in the figure, at this time, the optical coupler 18
At the optical coupling end of the light beam, each coherent beam of light interferes with each other. In other words, if the difference in the delay characteristics of the adjacent optical delay control elements 16A to 16N is φ, then the lights coming from the direction θ expressed by the above equation will have the same phase at the optical coupling end of the optical coupler 18, and will become stronger than each other. However, light incident from other directions is out of phase with each other and cannot be strengthened. Therefore,
Light coming to the optical beam transducer 13 from each direction can be selectively received.

「考案の効果」 従来の機械的な偏向手段による光ビームの偏向
走査に比べ、可動部が無いので、機械的な振動
や、それによる故障の発生などが無く、また摩
耗、変形等の経時変化も少なく、信頼性の高い光
ビーム偏向装置が実現される。
``Effects of the invention'' Compared to conventional optical beam deflection scanning using mechanical deflection means, there are no moving parts, so there is no mechanical vibration or malfunction caused by it, and there is no change over time such as wear or deformation. Therefore, a highly reliable optical beam deflection device can be realized.

また、レーザ増幅器を光結合器以降の各光伝送
路にそれぞれ設けるようにすれば、大出力の光ビ
ームの偏向走査を可能とする光ビーム偏向装置が
比較的容易に実現できる。
Further, by providing a laser amplifier in each optical transmission path after the optical coupler, it is possible to relatively easily realize an optical beam deflection device that enables deflection scanning of a high-output optical beam.

更にまた、光ビームの偏向走査制御ばかりでな
く、種々な方向からやつてくる多くのコーヒーレ
ントな光の中から特定の方向からくるコーヒーレ
ントな光を選択的に受光することが可能であり、
しかも前記光遅延量φ,φなどを電気的に制御し
て任意の光を受光可能となり、光マルチプレクサ
として応用もでき、その効果は大である。
Furthermore, it is possible not only to control the deflection and scanning of the light beam, but also to selectively receive coherent light coming from a specific direction from among many coherent lights coming from various directions.
Moreover, it is possible to receive any light by electrically controlling the optical delay amounts φ, φ, etc., and it can also be applied as an optical multiplexer, which is highly effective.

【図面の簡単な説明】[Brief explanation of drawings]

第1図はこの考案による光ビーム偏向装置の構
成を示す図、第2図は光ビーム送受波器の光送受
波端からコーヒーレントな光が放射される様子を
示す図、第3図は光遅延制御素子を直列に配列し
て光ビーム送受波器を構成した例を示す図、第4
図は光送受波端を2次元に配列し、平面の偏向走
査制御を可能にさせた例を示す図である。 11:コーヒーレント光発生器、12:光導波
波路、13:光ビーム送受波器、14:光送受波
端、15:光伝送路、16:光遅延制御素子、1
7:制御器、18:光結合器。
Fig. 1 is a diagram showing the configuration of the optical beam deflection device according to this invention, Fig. 2 is a diagram showing how coherent light is emitted from the optical transceiver end of the optical beam transducer, and Fig. 3 is a diagram showing the configuration of the optical beam deflection device according to this invention. FIG. 4 shows an example of an optical beam transducer configured by arranging delay control elements in series.
The figure shows an example in which optical transmitting/receiving ends are arranged two-dimensionally to enable plane deflection scanning control. 11: Coherent light generator, 12: Optical waveguide, 13: Optical beam transmitter/receiver, 14: Optical transmitter/receiver end, 15: Optical transmission line, 16: Optical delay control element, 1
7: Controller, 18: Optical coupler.

Claims (1)

【実用新案登録請求の範囲】 A 所定の間隔を保つて配列され、放射軸が互い
に平行するように配置された複数の光送受波端
と、 B この複数の光送受波端に結合した複数の光伝
送路と、 C この複数の光伝送路のそれぞれに挿入され、
各光伝送路を伝播する光を遅延させ、その遅延
量を電気信号によつて制御することができる光
遅延制御素子と、 D この光遅延制御素子を含む光伝送路を一つに
結合し、一つのコーヒレント光発生器又は一つ
の受光素子に結合する光結合器と、 E 上記光遅延制御素子の遅延量を所定の順序に
従つて制御し、上記光送受波端の配列によつて
定まる光ビームの指向方向を制御する制御器
と、 から成る光ビーム偏向装置。
[Claims for Utility Model Registration] A. A plurality of optical transmitting/receiving ends arranged at predetermined intervals so that their radiation axes are parallel to each other; B. A plurality of optical transmitting/receiving ends coupled to the plurality of optical transmitting/receiving ends. an optical transmission line, and C inserted into each of the plurality of optical transmission lines,
an optical delay control element capable of delaying light propagating through each optical transmission line and controlling the amount of delay by an electrical signal; D coupling the optical transmission lines including this optical delay control element into one; an optical coupler coupled to one coherent light generator or one light receiving element; A light beam deflection device consisting of a controller that controls the direction of the beam.
JP8235885U 1985-05-31 1985-05-31 Expired JPH0342420Y2 (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP8235885U JPH0342420Y2 (en) 1985-05-31 1985-05-31

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP8235885U JPH0342420Y2 (en) 1985-05-31 1985-05-31

Publications (2)

Publication Number Publication Date
JPS61198930U JPS61198930U (en) 1986-12-12
JPH0342420Y2 true JPH0342420Y2 (en) 1991-09-05

Family

ID=30629999

Family Applications (1)

Application Number Title Priority Date Filing Date
JP8235885U Expired JPH0342420Y2 (en) 1985-05-31 1985-05-31

Country Status (1)

Country Link
JP (1) JPH0342420Y2 (en)

Families Citing this family (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP6363619B2 (en) * 2013-01-08 2018-07-25 マサチューセッツ インスティテュート オブ テクノロジー Optical phased array
JP6424801B2 (en) * 2014-11-19 2018-11-21 株式会社豊田中央研究所 Laser radar device and light receiving method of laser radar device
JP2017219560A (en) * 2016-06-02 2017-12-14 日本電信電話株式会社 Light beam control device
JP7018564B2 (en) * 2017-02-09 2022-02-14 パナソニックIpマネジメント株式会社 Optical scanning device, optical receiving device, and optical detection system

Also Published As

Publication number Publication date
JPS61198930U (en) 1986-12-12

Similar Documents

Publication Publication Date Title
US4814774A (en) Optically controlled phased array system and method
US6337660B1 (en) Fiber optic true time-delay array antenna feed system
US8779977B2 (en) Electro optical scanning phased array antenna for pulsed operation
US5365239A (en) Fiber optic feed and phased array antenna
JP2706630B2 (en) Wavelength selectable optical signal processor
US11486979B2 (en) Light receiving array and LiDAR device
US5367305A (en) Method and apparatus for controlling an active antenna
EP0793291A3 (en) Millimeter wave arrays using Rotman lens and optical heterodyne system
US5274385A (en) Optical time delay units for phased array antennas
JPH0342420Y2 (en)
CN112673273A (en) Laser radar device
JP2605023B2 (en) Fiber laser
US5227624A (en) Optical sensing systems with plural wavelengths and wavelength sensitive sensors
JPH07505027A (en) time delay beamforming
US5400038A (en) High signal to noise ratio optical signal processing system
CN113985603B (en) Light beam scanning system
US20230258861A1 (en) Serpentine Optical Phased Array with Dispersion Matched Waveguides
WO2023034465A2 (en) Multi-beam scanning systems
JPH10233615A (en) Optically controlled phased array antenna
US4852106A (en) Optical system for producing controlled beat frequency
JP2006323175A (en) Light output method and light output device
JP3069703B1 (en) Optical branching method
JPS5934176A (en) Phased array vibrator driving system
JPH0727850A (en) Ultrasonic sensor
JP3204416B2 (en) Spatial optical encoder