JPH034158B2 - - Google Patents

Info

Publication number
JPH034158B2
JPH034158B2 JP24942083A JP24942083A JPH034158B2 JP H034158 B2 JPH034158 B2 JP H034158B2 JP 24942083 A JP24942083 A JP 24942083A JP 24942083 A JP24942083 A JP 24942083A JP H034158 B2 JPH034158 B2 JP H034158B2
Authority
JP
Japan
Prior art keywords
frequency
pulse
color signal
signal
low frequency
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Expired
Application number
JP24942083A
Other languages
Japanese (ja)
Other versions
JPS60136493A (en
Inventor
Yukio Nakagawa
Masao Tomita
Tokikazu Matsumoto
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Panasonic Holdings Corp
Original Assignee
Matsushita Electric Industrial Co Ltd
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Matsushita Electric Industrial Co Ltd filed Critical Matsushita Electric Industrial Co Ltd
Priority to JP24942083A priority Critical patent/JPS60136493A/en
Priority to KR1019840006876A priority patent/KR900004990B1/en
Publication of JPS60136493A publication Critical patent/JPS60136493A/en
Publication of JPH034158B2 publication Critical patent/JPH034158B2/ja
Granted legal-status Critical Current

Links

Classifications

    • HELECTRICITY
    • H04ELECTRIC COMMUNICATION TECHNIQUE
    • H04NPICTORIAL COMMUNICATION, e.g. TELEVISION
    • H04N9/00Details of colour television systems
    • H04N9/79Processing of colour television signals in connection with recording
    • H04N9/80Transformation of the television signal for recording, e.g. modulation, frequency changing; Inverse transformation for playback
    • H04N9/82Transformation of the television signal for recording, e.g. modulation, frequency changing; Inverse transformation for playback the individual colour picture signal components being recorded simultaneously only
    • H04N9/83Transformation of the television signal for recording, e.g. modulation, frequency changing; Inverse transformation for playback the individual colour picture signal components being recorded simultaneously only the recorded chrominance signal occupying a frequency band under the frequency band of the recorded brightness signal

Landscapes

  • Engineering & Computer Science (AREA)
  • Multimedia (AREA)
  • Signal Processing (AREA)

Description

【発明の詳細な説明】 産業上の利用分野 本発明は、回転ヘツド形VTRなどで磁気テー
プに記録された低域変換色信号を再生する際に、
隣接トラツクからのクロストーク除去方法として
用いられる、低域変換色信号の位相を隣り合うト
ラツク(以下Aトラツク、Bトラツクという)で
反対方向に1H毎に90゜シフトするPS処理を行なう
方法(以下PS方式という)、またAトラツクに対
しBトラツクの位相を1H毎に反転させるPI処理
を行なう方法(以下PI方式という)で記録され
た低域変換色信号を2つの色差信号に分離する色
信号処理装置に関するものである。
DETAILED DESCRIPTION OF THE INVENTION Field of Industrial Application The present invention is applicable to the reproduction of low frequency converted color signals recorded on a magnetic tape using a rotary head type VTR or the like.
A PS processing method (hereinafter referred to as "A track" and "B track") in which the phase of the low-frequency conversion color signal is shifted in the opposite direction by 90 degrees every 1H in the adjacent tracks (hereinafter referred to as "A track" and "B track") is used as a method for removing crosstalk from adjacent tracks. A color signal that separates a low-pass converted color signal recorded using a PI processing method (hereinafter referred to as the PI method) that inverts the phase of the B track with respect to the A track every 1H (hereinafter referred to as the PI method) into two color difference signals. It relates to a processing device.

従来例の構成とその問題点 従来の回転ヘツド形VTRにおいて、カラー映
像信号の記録再生を行なう場合、FM変調された
変調輝度信号と、低域搬送周波数fecのものに変
換された低域変換色信号とを混合して磁気テープ
に記録するようにしている。この場合、隣接する
トラツクの間にガードバンドを介在させない高密
度記録を行なうため、変調輝度信号に関しては、
傾斜アジマス記録を行ない、低域変換色信号に関
しては、隣り合うトラツク間で周波数インターリ
ーブの関係が成立するようにPS方式またはPI方
式が採用されている。上記したようにPS処理ま
たはPI処理が行なわれた低域変換色信号は、再
生時にシフトまたは反転された位相をもとに戻
し、さらにもとの高い搬送周波数fsc(NTSC方式
では3.58MHz)の周波数変換する事が必要であ
り、その方法としては、第1に、回路的にPS処
理またはPI処理が行なわれた低域搬送周波数c
の信号を作成し、前記低域搬送周波数cの信号と
周波数scの基準信号とを乗算回路にて乗算し、
周波数sc+cなる信号を作成し、さらにこの周
波数so+cの信号と低域変換色信号とを乗算回
路で乗算することにより、搬送周波数がsc+c
−c=scの搬送色信号を得る方法があるが、第
2の方法として、低域変換色信号は変調軸がPS
またはPI処理された直角二相平衡変調波と考え
られるため、低域変換色信号を一旦2つの色差信
号に復調し、復調後さらに基準周波数scの搬送
波で直角二相平衡変調を行なうことにより、所定
の搬送周波数scの搬送色信号を得る事も可能で
ある。
Conventional configuration and its problems When recording and reproducing color video signals in a conventional rotary head type VTR, a modulated luminance signal that is FM modulated and a low-frequency converted color that is converted to a low-frequency carrier frequency fec are used. The signals are mixed and recorded on magnetic tape. In this case, since high-density recording is performed without intervening guard bands between adjacent tracks, the modulated luminance signal is
Inclined azimuth recording is performed, and the PS system or PI system is adopted for the low frequency conversion color signal so that a frequency interleave relationship is established between adjacent tracks. The low-pass converted color signal that has been subjected to PS processing or PI processing as described above has its shifted or inverted phase returned to its original state during playback, and is then converted to the original high carrier frequency fsc (3.58MHz in the NTSC system). It is necessary to convert the frequency, and the first method is to convert the low carrier frequency c that has undergone PS processing or PI processing in the circuit.
Create a signal of
By creating a signal with frequency sc + c and further multiplying this signal with frequency so + c and the low-pass conversion color signal in a multiplier circuit, the carrier frequency becomes sc + c.
There is a method to obtain a carrier color signal with −c=sc, but the second method is to obtain a low-frequency conversion color signal whose modulation axis is PS.
Alternatively, since it is considered to be a quadrature two-phase balanced modulation wave that has undergone PI processing, the low-pass conversion color signal is once demodulated into two color difference signals, and after demodulation, quadrature two-phase balanced modulation is performed using a carrier wave of the reference frequency sc. It is also possible to obtain a carrier color signal with a predetermined carrier frequency sc.

上記第1の方法は従来最も一般的なものである
が、乗算回路が2つ必要で、さらにそれに付随し
て乗算により発生する上側波帯または下側波帯を
除去するためのバンドパスフイルタがおのおのの
乗算回路について必要で、回路規模が大きくなる
という欠点を有し、第2の方法においては、低域
変換色信号を直接復帰する際に、PS方式・PI方
式に従つた復調軸を作成する回路及び復調軸を基
準に低域変換色信号を復調する回路が新たに必要
である。
The first method described above is the most common conventional method, but requires two multiplication circuits and an accompanying bandpass filter to remove the upper sideband or lower sideband generated by multiplication. Each multiplication circuit is required, which has the disadvantage of increasing the circuit scale.In the second method, when directly restoring the low-frequency conversion color signal, a demodulation axis is created according to the PS method and PI method. A new circuit is required to demodulate the low frequency converted color signal based on the demodulation axis.

発明の目的 本発明は上記従来の欠点を解消するもので、低
域変換色信号の再生方法として上記第2の方法を
採用する場合に、比較的簡単なデジタル回路によ
り低域変換色信号の復調軸を作成し、さらにデジ
タル的に低域変換色信号を復調する事が可能でか
つ安価な色信号処理装置を提供することを目的と
する。
Purpose of the Invention The present invention solves the above-mentioned conventional drawbacks, and when the second method described above is adopted as a method for reproducing a low-frequency converted color signal, the present invention is capable of demodulating the low-frequency converted color signal using a relatively simple digital circuit. It is an object of the present invention to provide an inexpensive color signal processing device capable of creating an axis and digitally demodulating a low-frequency converted color signal.

発明の構成 上記目的を達成するため、本発明の色信号処理
装置は、位相シフトまたは位相反転の処理が行な
われ低域変換色信号を低域搬送周波数の4倍の周
波数をもつクロツクでサンプルホールドおよびア
ナログ・デジタル変換する変換手段と、前記クロ
ツクから水平同期パルスおよびフイールド判別信
号をもとに低域変換バーストと同周波数でかつ位
相同期した符号反転パルスおよびこの符号反転パ
ルスの2倍の周波数を有する色差信号分離パルス
を作成するパルス作成手段と、前記符号反転パル
スにより前記変換手段からのデジタル出力のDC
値成分のコードを中心に+/−の符号反転を行な
う手段と、この符号反転を行なつたデジタル出力
を前記色差信号分離パルスにより1データ毎に分
離し2系統のデジタルデータを得る処理手段とを
備え、前記低域変換色信号から2つの色差信号デ
ータを得る構成としたものである。
Structure of the Invention In order to achieve the above object, the color signal processing device of the present invention performs phase shift or phase inversion processing and samples and holds a low frequency converted color signal using a clock having a frequency four times as high as the low frequency carrier frequency. and converting means for analog-to-digital conversion, and a sign-inverted pulse having the same frequency and phase synchronization as the low-frequency conversion burst and a frequency twice the sign-inverted pulse, based on the horizontal synchronizing pulse and the field discrimination signal from the clock. a pulse generating means for generating a color difference signal separation pulse having a color difference signal;
means for performing +/- sign inversion around the code of the value component; and processing means for separating the sign-inverted digital output into data units using the color difference signal separation pulse to obtain two systems of digital data. and is configured to obtain two color difference signal data from the low frequency converted color signal.

実施例の説明 以下、本発明の一実施例について、図面に基づ
いて説明する。
DESCRIPTION OF EMBODIMENTS An embodiment of the present invention will be described below with reference to the drawings.

第1図は本発明の一実施例におけるPS処理が
行なわれた低域変換色信号を2つの色差信号デー
タに分離する色信号処理装置の回路ブロツク図、
第2図は第1図の回路に供給される低域変換色信
号のベクトル図、第3図は第1図の回路における
各部信号波形図である。
FIG. 1 is a circuit block diagram of a color signal processing device that separates a low frequency converted color signal subjected to PS processing into two color difference signal data in an embodiment of the present invention;
FIG. 2 is a vector diagram of a low frequency conversion color signal supplied to the circuit of FIG. 1, and FIG. 3 is a waveform diagram of various signals in the circuit of FIG. 1.

第1図において、1は低域変換色信号qが入力
される入力端子、2は低域変換搬送周波数の4倍
のクロツクbが入力される入力端子、3はAトラ
ツクとBトラツクとで論理値H,Lが反転するフ
イールド判別信号iが入力される端子、4は水平
同期パルスhが入力される端子である。まず入力
端子1から入力された低域変換色信号qは、A/
D変換器5により入力端子2から入力されたクロ
ツクbのタイミングでアナログ・デジタル変換さ
れる。低域変換色信号qは第2図に示すように色
差信号のR−Y成分oとB−Y成分pがベクトル
的に90゜の位相をもつており、クロツクbは例え
ば水平同期パルスhおよび低域変換バーストから
PLL回路によつて作成し、定常状態で第3図の
タイミングに示すようにAD変換出力データcが
色差信号成分p,o,−p−oの繰り返しデータ
になるようなクロツクとしている。次に変換され
たAD変換出力データcは、符号反転回路6によ
り、符号反転パルスfのタイミングによりデータ
が−p,−oの部分のみ符号反転が行なわれ、
AD変換データkはp,oの繰り返しデータとな
る。符号反転パルスfは、クロツクbと分周器9
で4分周したものからシフトレジスタ10により
1クロツクづつずらした4相のパルスを作成し、
これをデータセレクタ13により1H毎に切換え
て出力する事により得られる。符号反転パルスf
の切換えは、水平同期パルスhの立ち下がりでフ
イールド判別信号iをフリツプフロツプ11でラ
ツチした信号jを作成し、水平同期パルスhをカ
ウントするアツプダウンカウンタ12のアツプダ
ウン動作を前記信号jで切換え、このアツプダウ
ンカウンタ12の出力QA,QBにより行なう。上
記回路構成により、符号反転パルスfはフイール
ド判別信号iが論理値Hの場合に1H毎に位相が
クロツクbの1クロツク分進み、フイールド判別
信号iが論理値Lの場合は1H毎に1クロツク分
遅れることになり、サンプリング復調軸にそつた
符号反転が行なわれる。例えば、AD変換出力デ
ータCのDC成分のコードを8ビツトのデジタル
データ“10000000”とすれば、符号反転は出力デ
ータCのすべての反転出力=“01111111”の1
の補数+1=“10000000”で行なわれる。また、
前記DC成分のコードが“10000000”と
“01111111”の中間に位置すれば単にデータを反
転することで可能である。さらに詳細な具体例の
説明を加えればデータの符号反転とは例えばデジ
タルデータの最大値、Cが8ビツトの場合
“11111111”を反転して“00000000”の最小値に
することを意味しており、前記DC成分が
“10000000”と“10000000”の中間に位置しない
場合は前述の1の補数の場合のようにデジタルデ
ータを反転した後、前記DC成分のデジタル値に
対応する補数を加算することにより符号反転を行
なう。さらに符号反転パルスfは、フリツプフロ
ツプ14によりクロツクbの1クロツク分遅延さ
れた信号と排他的論理和回路15により排他的論
理和が作成される。フリツプフロツプ16により
排他的論理和回路15の出力をラツチして2つの
色差信号データd1,d2のO次ホールドおよび色差
信号分離パルスg1,g2としている。符号反転回路
6を通過したAD変換データkは、前記色差信号
分離パルスg1,g2をもとにラチ回路7a,7bで
それぞれラツチされ、2つの色差信号データd1
d2に分離される。この色差信号データd1,d2はタ
イミング的に他方の色差信号データをもつ部分が
あるため、最終的にフリツプフロツプ8a,8b
でさらにラツチをかけ、使用可能な色差信号成分
pまたはoに分離された色差信号データe1,e2
している。
In Fig. 1, 1 is an input terminal to which a low-band conversion color signal q is input, 2 is an input terminal to which a clock b having four times the low-band conversion carrier frequency is input, and 3 is a logic input terminal for A track and B track. A terminal 4 is inputted with a field discrimination signal i whose values H and L are inverted, and a terminal 4 is inputted with a horizontal synchronizing pulse h. First, the low frequency conversion color signal q input from input terminal 1 is A/
The D converter 5 performs analog-to-digital conversion at the timing of the clock b input from the input terminal 2. As shown in Fig. 2, the low-pass conversion color signal q has a RY component o and a B-Y component p of the color difference signal having a vectorial phase of 90°, and the clock b is, for example, a horizontal synchronizing pulse h and From low frequency conversion burst
It is created by a PLL circuit, and the clock is set such that in a steady state, AD conversion output data c becomes repeating data of color difference signal components p, o, -po, as shown in the timing diagram of FIG. Next, the converted AD conversion output data c is subjected to sign inversion by the sign inversion circuit 6 only for the data portions -p and -o according to the timing of the sign inversion pulse f.
The AD conversion data k is repeated data of p and o. The sign-inverted pulse f is generated by the clock b and the frequency divider 9.
Create 4-phase pulses shifted by 1 clock using the shift register 10 from the frequency divided by 4,
This can be obtained by switching and outputting this every 1H using the data selector 13. sign inversion pulse f
To switch, a signal j is created by latching the field discrimination signal i in the flip-flop 11 at the falling edge of the horizontal synchronization pulse h, and the up-down operation of the up-down counter 12 that counts the horizontal synchronization pulse h is switched by the signal j. This is done using the outputs Q A and Q B of the up-down counter 12. With the above circuit configuration, the sign-inverted pulse f advances in phase by one clock b every 1H when the field discrimination signal i is a logic value H, and by 1 clock every 1H when the field discrimination signal i has a logic value L. This results in a delay of 1 minute, and sign inversion along the sampling demodulation axis is performed. For example, if the code of the DC component of AD conversion output data C is 8-bit digital data "10000000", the sign inversion is 1 of all the inverted outputs of output data C = "01111111".
The complement of +1 = "10000000". Also,
If the code of the DC component is located between "10000000" and "01111111", it is possible to simply invert the data. To explain a more detailed example, inverting the sign of data means, for example, inverting the maximum value of digital data, ``11111111'' when C is 8 bits, to make it the minimum value of ``00000000''. , If the DC component is not located between "10000000" and "10000000", invert the digital data as in the case of the one's complement described above, and then add the complement corresponding to the digital value of the DC component. The sign is reversed by . Further, the sign-inverted pulse f is subjected to an exclusive OR with a signal delayed by one clock of the clock b by the flip-flop 14 and an exclusive OR circuit 15. The output of the exclusive OR circuit 15 is latched by the flip-flop 16 to be used as the O-order hold of the two color difference signal data d 1 and d 2 and the color difference signal separation pulses g 1 and g 2 . The AD converted data k that has passed through the sign inversion circuit 6 is latched by the latch circuits 7a and 7b based on the color difference signal separation pulses g 1 and g 2 , respectively, and the two color difference signal data d 1 and
d Separated into 2 . Since these color difference signal data d 1 and d 2 have a portion with the other color difference signal data due to timing, they are finally transferred to the flip-flops 8a and 8b.
A latch is further applied to obtain color difference signal data e 1 and e 2 separated into usable color difference signal components p or o.

第3図の各部の波形において、上記色信号処理
回路のある時点の低域変換バーストの期間のタイ
ミング(1H目)と次の水平期間におけるバース
ト期間のタイミング(2H目)とを示しているが、
低域変換色信号qの低域搬送周波数cは水平同期
周波数Hの1/2の整数倍に定められており、低域
変換色信号qは1H目と2H目とでPS処理により
90゜位相がシフトしており、低域変換バーストr
の位相も同様にシフトしている。また、2つの色
差信号データe1,e2は低域搬送周波数fcの2倍の
2fcで得られるため、一つの色差信号データに関
しては水平同期パルスhを基準にすると1H目と
2H目とでサンプリング点が180゜位相シフトし、
データが不連続とする。このため本実施例の回路
では、サンプリング点の中間データとして、前の
サンプリングの点のデータを補間するO次のホー
ルドフイルタで補間を行ない、各色差信号データ
とも連続でかつ1H当りのデータの出力タイミン
グがそろつたものとし、後の処理を行ないやすく
している。
In the waveforms of each part of FIG. 3, the timing of the low frequency conversion burst period at a certain point in time (1H) of the above-mentioned color signal processing circuit and the timing of the burst period in the next horizontal period (2H) are shown. ,
The low frequency carrier frequency c of the low frequency converted color signal q is determined to be an integral multiple of 1/2 of the horizontal synchronization frequency H , and the low frequency converted color signal q is determined by PS processing in the 1st and 2nd H.
90° phase shifted, low frequency conversion burst r
The phase of is also shifted in the same way. In addition, the two color difference signal data e 1 and e 2 have a frequency that is twice the low carrier frequency fc.
Since it is obtained with 2fc, one color difference signal data is the 1st H based on the horizontal synchronizing pulse h.
The sampling point has a 180° phase shift with the 2nd H,
Assume that the data is discontinuous. Therefore, in the circuit of this embodiment, interpolation is performed using an O-order hold filter that interpolates the data of the previous sampling point as intermediate data of the sampling point, and each color difference signal data is continuous and output of data per 1H. It is assumed that the timing is aligned, making subsequent processing easier.

上記説明では、PS処理が行なわれた低域変換
色信号qを2つの色差信号データe1,e2に分離す
る場合について述べたが、PI処理が行なわれた
低域変換色信号を扱う場合には、例えば第4図に
示すように、第1図のシフトレジスタ10をクロ
ツクbの4分周波とその反転出力との2つのパル
スを出力するインバータ17に置き換え、アツプ
ダウンカウンタ12をフリツプフロツプ18一個
の分周器に置き換え、さらにフリツプフロツプ1
1の出力信号jが論理値Lのとき水平同期パルス
hの分周波を作成するフリツプフロツプ18のク
ロツク入力に入る水平同期パルスhを禁止する論
理積回路19を付加し、フイールド判別信号iに
より符号反転パルスfを1H毎に反転させたり、
そのまま連続に出力する様に動作させることによ
り、PS処理の場合と同様な色差信号データe1
e2が得られる。なお20はデータセレクタであ
る。またPI処理においては低域搬送周波数が水
平同期周波数Hの1/4の奇数倍に定められており、
PS処理の場合と同様に、水平同期パルスhを基
準にすると1H目と2H目とでサンプリング点が
180゜位相シフトし、サンプリングが不連続となる
ため、O次ホールドでサンプリング点の中間のデ
ータの補間を行ない、色差信号データの標本化周
波数sが低域搬送周波数cの4倍で連続でありか
Hの整数倍のデータに変換している。また以上
はNTSC方式の搬送色信号PS、PI方式で記録再
生した場合のように、1H相関のある低域変換色
信号の場合について述べたが、PAL方式のよう
に2H相関のある場合、上記説明から明らかなよ
うに、サンプリング点の中間のデータを補間後の
各色差信号データの標本化周波数は、低域搬送周
波数の4倍でかつH/2の奇数倍になり、2H当
りのデータの出力タイミングがそろえられる。
In the above explanation, we have described the case where a low-pass converted color signal q that has been subjected to PS processing is separated into two color difference signal data e 1 and e 2 , but when dealing with a low-pass converted color signal that has been subjected to PI processing For example, as shown in FIG. 4, the shift register 10 in FIG. Replaced with one frequency divider and one flip-flop
An AND circuit 19 is added that inhibits the horizontal synchronizing pulse h entering the clock input of the flip-flop 18, which creates a frequency-divided wave of the horizontal synchronizing pulse h when the output signal j of No. 1 has a logical value L, and the sign is inverted by the field discrimination signal i. Invert the pulse f every 1H,
By operating it so that it is output continuously as it is, color difference signal data e 1 , similar to that in PS processing
e 2 is obtained. Note that 20 is a data selector. In addition, in PI processing, the low carrier frequency is set to an odd multiple of 1/4 of the horizontal synchronization frequency H.
As in the case of PS processing, when the horizontal synchronization pulse h is used as a reference, the sampling points are at the 1st and 2nd H.
Since there is a 180° phase shift and the sampling becomes discontinuous, interpolation of the data in the middle of the sampling point is performed using O-order hold, and the sampling frequency s of the color difference signal data is continuous at four times the low frequency carrier frequency c. And the data is converted to an integral multiple of H. In addition, the above description deals with the case of a low-frequency conversion color signal with a 1H correlation, such as when recording and reproducing the carrier color signal PS of the NTSC system and the PI system, but when there is a 2H correlation, such as with the PAL system, the above As is clear from the explanation, the sampling frequency of each color difference signal data after interpolating the data between the sampling points is four times the low carrier frequency and an odd multiple of H/2, and the sampling frequency of each color difference signal data after interpolating the data between the sampling points is four times the low carrier frequency and an odd multiple of H /2. Output timing can be aligned.

上記のような構成の色信号処理回路を使用して
搬送周波数scの搬送色信号を得るには、D/A
コンバータで2つの色差信号データをアナログ値
に変換した後に直角二相平衡変調する方法、また
は、得られた色差信号データをデジタルカラーエ
ンコーダにより搬送色信号データに変換後、D/
A変換し搬送色信号を得る方法が挙げられるが、
色差信号データをD/A変換したアナログ信号ま
たは得られた搬送色信号のクロストーク成分は本
来の信号に対して水平同期周波数の1/2ずれてい
るため、くし形フイルターにより除去でき、PS
処理、PI処理による効果は失なわれない。
To obtain a carrier color signal of carrier frequency sc using the color signal processing circuit configured as above, D/A
A converter converts the two color difference signal data into analog values and then performs quadrature two-phase balanced modulation, or a digital color encoder converts the obtained color difference signal data into carrier color signal data, and then
One method is to perform A conversion and obtain a carrier color signal.
The crosstalk component of the analog signal obtained by D/A conversion of color difference signal data or the obtained carrier color signal is shifted by 1/2 of the horizontal synchronization frequency with respect to the original signal, so it can be removed by a comb filter, and the PS
The effects of treatment and PI treatment are not lost.

発明の効果 以上説明したように本発明によれば、A/D変
換器によるサンプリング手段と、簡単な構成のデ
ジタル回路により、PS処理またはPI処理で不連
続となつた低域変換色信号をPS処理、PU処理の
ストローク除去効果を失なわないように連続なデ
ジタルの色差信号にできるので、後の信号処理を
簡単にすることができ、さらにアナログ的な周波
数変換を使用しないので、色信号処理のデジタル
化を容易にでき、回路の集積化、低価格化が可能
である。
Effects of the Invention As explained above, according to the present invention, low-frequency conversion color signals that have become discontinuous due to PS processing or PI processing are Since it can be converted into a continuous digital color difference signal without losing the stroke removal effect of processing and PU processing, subsequent signal processing can be simplified.Furthermore, since analog frequency conversion is not used, color signal processing can be easily digitized, making it possible to integrate circuits and reduce costs.

【図面の簡単な説明】[Brief explanation of the drawing]

第1図は本発明の一実施例における色信号処理
装置の回路ブロツク図、第2図は低域変換色信号
のベクトル図、第3図は第1図に示す回路の各部
信号波形図、第4図は本発明の別の実施例におけ
る色信号処理装置の回路ブロツク図である。 5…A/D変換器、6…符号反転回路、7a,
7b…ラツチ回路、8a,8b,11,14,1
6,18…フリツプフロツプ、9…分周器、10
…シフトレジスタ、12…アツプダウンカウン
タ、13,20…データセレクタ、15…排他的
論理和回路、17…インバータ、19…論理積回
路。
FIG. 1 is a circuit block diagram of a color signal processing device according to an embodiment of the present invention, FIG. 2 is a vector diagram of a low-frequency conversion color signal, and FIG. 3 is a signal waveform diagram of each part of the circuit shown in FIG. FIG. 4 is a circuit block diagram of a color signal processing device in another embodiment of the present invention. 5... A/D converter, 6... Sign inversion circuit, 7a,
7b...Latch circuit, 8a, 8b, 11, 14, 1
6, 18...Flip-flop, 9...Frequency divider, 10
... Shift register, 12... Up-down counter, 13, 20... Data selector, 15... Exclusive OR circuit, 17... Inverter, 19... AND circuit.

Claims (1)

【特許請求の範囲】 1 位相シフトまたは位相反転の処理が行なわれ
た低域変換色信号を低域搬送周波数の4倍の周波
数をもつクロツクでサンプルホールドおよびアナ
ログ・デジタル変換する変換手段と、前記クロツ
クから水平同期パルスおよびフイールド判別信号
をもとに低域変換バーストと同周波数でかつ位相
同期した符号反転パルスおよびこの符号反転パル
スの2倍の周波数を有する色差信号分離パルスを
作成するパルス作成手段と、前記符号反転パルス
により前記変換手段からのデジタル出力のDC値
成分のコードを中心に+/−の符号反転を行なう
手段と、この符号反転を行なつたデジタル出力を
前記色差信号分離パルスにより1データ毎に分離
し2系統のデジタルデータを得る処理手段とを備
え、前記低域変換色信号から2つの色差信号デー
タを得る構成とした色信号処理装置。 2 低域変換色信号は位相シフトの処理が行なわ
れており、パルス作成手段は、低域搬送周波数の
4倍の周波数をもつクロツクから前記低域搬送周
波数と周波数の4相のパルスを作成し、この4相
のパルスを1水平期間毎に順次切換えて符号反転
パルスを得る構成とした特許請求の範囲第1項記
載の色信号処理装置。 3 低域変換色信号は位相反転の処理が行なわれ
ており、パルス作成手段は、低域搬送周波数の4
倍の周波数をもつクロツクから前記低域搬送周波
数と同周波数のパルスとこのパルスを反転したパ
ルスとの2つのパルスを作成し、この2つのパル
スからなるクロツクを1H毎に切換えて符号反転
パルスを得る構成とした特許請求の範囲第1項記
載の色信号データ装置。
[Scope of Claims] 1. Conversion means for sample-holding and analog-to-digital conversion of a low frequency converted color signal that has been subjected to phase shift or phase inversion processing using a clock having a frequency four times as high as the low frequency carrier frequency; Pulse creation means for creating a sign inversion pulse having the same frequency and phase synchronization as the low frequency conversion burst and a color difference signal separation pulse having twice the frequency of the sign inversion pulse based on the horizontal synchronization pulse and field discrimination signal from the clock. means for inverting the sign of the DC value component of the digital output from the converting means by using the sign inversion pulse; A color signal processing device comprising processing means for separating each data to obtain two systems of digital data, and obtaining two color difference signal data from the low frequency converted color signal. 2. The low frequency conversion color signal is subjected to phase shift processing, and the pulse generating means creates four-phase pulses having frequencies equal to the low frequency carrier frequency from a clock having a frequency four times as high as the low frequency carrier frequency. 2. The color signal processing device according to claim 1, wherein the four-phase pulses are sequentially switched every horizontal period to obtain a sign-inverted pulse. 3. The low frequency conversion color signal is subjected to phase inversion processing, and the pulse generation means uses 4 of the low frequency carrier frequency.
Two pulses, one with the same frequency as the low carrier frequency and the other with the inverted pulse, are created from a clock with twice the frequency, and the clock consisting of these two pulses is switched every 1H to create a sign-inverted pulse. A color signal data device according to claim 1, which is configured to obtain a color signal.
JP24942083A 1983-11-01 1983-12-24 Chrominance signal processor Granted JPS60136493A (en)

Priority Applications (2)

Application Number Priority Date Filing Date Title
JP24942083A JPS60136493A (en) 1983-12-24 1983-12-24 Chrominance signal processor
KR1019840006876A KR900004990B1 (en) 1983-11-01 1984-11-01 Method of reproducing a chrominance signal

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP24942083A JPS60136493A (en) 1983-12-24 1983-12-24 Chrominance signal processor

Publications (2)

Publication Number Publication Date
JPS60136493A JPS60136493A (en) 1985-07-19
JPH034158B2 true JPH034158B2 (en) 1991-01-22

Family

ID=17192705

Family Applications (1)

Application Number Title Priority Date Filing Date
JP24942083A Granted JPS60136493A (en) 1983-11-01 1983-12-24 Chrominance signal processor

Country Status (1)

Country Link
JP (1) JPS60136493A (en)

Families Citing this family (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS6286996A (en) * 1985-10-14 1987-04-21 Hitachi Ltd Magnetic recording and reproducing device

Also Published As

Publication number Publication date
JPS60136493A (en) 1985-07-19

Similar Documents

Publication Publication Date Title
US5465071A (en) Information signal processing apparatus
KR900004990B1 (en) Method of reproducing a chrominance signal
JPH0557798B2 (en)
JPH0714218B2 (en) Digital color signal generator
EP0145376B1 (en) Carrier chrominance signal recording and/or reproducing apparatus
JPH034158B2 (en)
KR100353098B1 (en) Digital data sampling phase conversion circuit and conversion method
JPH0480595B2 (en)
JP3063480B2 (en) Digital color signal processing method
JPH0232836B2 (en)
JPH038634B2 (en)
CN100525472C (en) VTR signal processing circuit
JPS60111591A (en) Recording and reproducing method of color video signal
JPS60111590A (en) Digital processor of chrominance signal
JPS6412156B2 (en)
JP2602533B2 (en) Video signal processing device
JP2569584B2 (en) Color video signal conversion method
JPS63226192A (en) Color signal processor
EP0476922A2 (en) Circuit for processing the frequency of a signal for a video cassette recorder
JP2512021B2 (en) Digital signal recording / reproducing device
JP2503684B2 (en) Image reduction circuit
JPS61290894A (en) Digital processing chrominance signal processing device
JPH058629B2 (en)
JPS6257157B2 (en)
JPH02301286A (en) Color signal processor

Legal Events

Date Code Title Description
EXPY Cancellation because of completion of term