JPH0339578B2 - - Google Patents

Info

Publication number
JPH0339578B2
JPH0339578B2 JP19123783A JP19123783A JPH0339578B2 JP H0339578 B2 JPH0339578 B2 JP H0339578B2 JP 19123783 A JP19123783 A JP 19123783A JP 19123783 A JP19123783 A JP 19123783A JP H0339578 B2 JPH0339578 B2 JP H0339578B2
Authority
JP
Japan
Prior art keywords
light
solid compound
gas
hydrogen
metal
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Expired
Application number
JP19123783A
Other languages
Japanese (ja)
Other versions
JPS6082836A (en
Inventor
Kentaro Ito
Tetsuya Kubo
Yukio Yamauchi
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Hochiki Corp
Original Assignee
Hochiki Corp
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Hochiki Corp filed Critical Hochiki Corp
Priority to JP19123783A priority Critical patent/JPS6082836A/en
Publication of JPS6082836A publication Critical patent/JPS6082836A/en
Publication of JPH0339578B2 publication Critical patent/JPH0339578B2/ja
Granted legal-status Critical Current

Links

Classifications

    • GPHYSICS
    • G01MEASURING; TESTING
    • G01NINVESTIGATING OR ANALYSING MATERIALS BY DETERMINING THEIR CHEMICAL OR PHYSICAL PROPERTIES
    • G01N21/00Investigating or analysing materials by the use of optical means, i.e. using sub-millimetre waves, infrared, visible or ultraviolet light
    • G01N21/75Systems in which material is subjected to a chemical reaction, the progress or the result of the reaction being investigated
    • G01N21/77Systems in which material is subjected to a chemical reaction, the progress or the result of the reaction being investigated by observing the effect on a chemical indicator
    • G01N21/78Systems in which material is subjected to a chemical reaction, the progress or the result of the reaction being investigated by observing the effect on a chemical indicator producing a change of colour
    • G01N21/783Systems in which material is subjected to a chemical reaction, the progress or the result of the reaction being investigated by observing the effect on a chemical indicator producing a change of colour for analysing gases

Landscapes

  • Physics & Mathematics (AREA)
  • Chemical & Material Sciences (AREA)
  • Engineering & Computer Science (AREA)
  • Chemical Kinetics & Catalysis (AREA)
  • Plasma & Fusion (AREA)
  • Health & Medical Sciences (AREA)
  • Life Sciences & Earth Sciences (AREA)
  • Analytical Chemistry (AREA)
  • Biochemistry (AREA)
  • General Health & Medical Sciences (AREA)
  • General Physics & Mathematics (AREA)
  • Immunology (AREA)
  • Pathology (AREA)
  • Investigating Or Analysing Materials By The Use Of Chemical Reactions (AREA)

Description

【発明の詳細な説明】 本発明は、触媒金属中に吸着解離した水素原子
により還元される固体化合物の光吸収率の変化を
光学的に検出して水素ガスまたは含水素化合物ガ
スを検知するようにしたガスセンサに関する。
DETAILED DESCRIPTION OF THE INVENTION The present invention provides a method for detecting hydrogen gas or hydrogen-containing compound gas by optically detecting a change in the light absorption rate of a solid compound reduced by hydrogen atoms adsorbed and dissociated in a catalyst metal. related to gas sensors.

従来、この種のガスセンサとしては、接触燃焼
式もしくは半導体式のものが主流であつたが、い
ずれもヒータ等により加熱した状態で使用され、
安全性の点で問題があり、更に検知素子を加熱し
ているため劣化が早く、特性も不安定で信頼性が
充分でなかつた。
Conventionally, this type of gas sensor has been mainly catalytic combustion type or semiconductor type, but both are used after being heated with a heater etc.
There were problems in terms of safety, and since the sensing element was heated, it deteriorated quickly, and its characteristics were unstable, making it insufficiently reliable.

そこで、本願発明者等は、水素または含水素化
合物ガスを吸着解離する触媒金属と、この金属中
に生成した水素原子により還元されて光吸収率が
変化する固体化合物、例えば3酸化タングステン
WO3との積層構造をもつ検知素子を開発し、固
体化合物の光吸収率の変化を光学的に検出してガ
ス濃度を知るようにしたガスセンサを提案してい
る(特願昭58−147749号)。
Therefore, the inventors of the present application developed a catalyst metal that adsorbs and dissociates hydrogen or hydrogen-containing compound gas, and a solid compound, such as tungsten trioxide, whose light absorption rate changes when reduced by the hydrogen atoms generated in the metal.
We developed a sensing element with a laminated structure with WO 3 and proposed a gas sensor that can detect gas concentration by optically detecting changes in the light absorption rate of solid compounds (Japanese Patent Application No. 147749/1983). ).

ところで、各種の実験を繰り返したところ触媒
金属と固体化合物の積層構造をもつ素子の光吸収
特性は、素子の温度変化や経時変化等により影響
を受け、検出特性が変つてしまうことが判明し
た。
By the way, after repeated various experiments, it was found that the light absorption characteristics of an element having a layered structure of a catalytic metal and a solid compound are affected by changes in the temperature of the element, changes over time, etc., and the detection characteristics change.

本発明は、このような問題点に鑑みてなされた
もので、温度や経時変化等で検出特性が変化しな
い、安定性および信頼性の高いガスセンサを提供
することを目的とする。
The present invention has been made in view of these problems, and an object of the present invention is to provide a highly stable and reliable gas sensor whose detection characteristics do not change due to changes in temperature or changes over time.

この目的を達成するため本発明は、水素または
含水素化合物ガスを吸着解離する金属と該金属中
に生成された水素原子による還元で光吸収率が変
化する固体化合物との積層構造をもつ第1の素子
からの光を検出すると共に、前記固体化合物と同
一材質を用いた第2の固体化合物を備えた第2の
素子からの光を基準値として検出し、第1素子か
らの光検出信号と第2の素子からの光検出信号と
の比較演算により温度や経時変化等の影響を受け
ずに水素または含水素ガスの有無を検知するよう
にしたものである。
To achieve this object, the present invention provides a first method having a laminated structure of a metal that adsorbs and dissociates hydrogen or hydrogen-containing compound gas and a solid compound whose light absorption rate changes due to reduction by hydrogen atoms generated in the metal. At the same time, light from a second element including a second solid compound made of the same material as the solid compound is detected as a reference value, and a light detection signal from the first element is detected. The presence or absence of hydrogen or hydrogen-containing gas is detected by comparison with the photodetection signal from the second element without being affected by temperature or changes over time.

以下、本発明の実施例を図面に基づいて説明す
る。
Embodiments of the present invention will be described below based on the drawings.

第1図は本発明の一実施例を示した説明図であ
る。
FIG. 1 is an explanatory diagram showing an embodiment of the present invention.

まず構成を説明すると、1は外気が流入可能な
センサ筐体であり、センサ筐体1の内部には第1
の素子2と、第2の素子3が同じ環境条件を受け
るように近接して配置され、第1の素子2および
第2の素子3に対しては電源4により駆動される
発光ダイオード等の光源5よりの光が略同じ割合
となるように透過光として与えられている。
First, to explain the configuration, reference numeral 1 is a sensor housing into which outside air can flow, and inside the sensor housing 1 there is a first
The element 2 and the second element 3 are arranged close to each other so as to receive the same environmental conditions, and the first element 2 and the second element 3 are provided with a light source such as a light emitting diode driven by a power source 4. The light from 5 is given as transmitted light so that the ratio is approximately the same.

ここで、第1の素子2は被検知ガスとなる水素
ガス、もしくは含水素化合物ガスとして知られた
アンモニアガスNH3、硫化水素ガスH2S、シラ
ンガスSiH4等が接触したときに、これらガス分
子を吸着解離して水素原子を生成する触媒金属6
と、触媒金属6中で生成された水素原子の還元作
用により光吸収率が変化する固体化合物7との積
層構造を備える。ここで、触媒金属6としてはパ
ラジウムPdが用いられ、また固体化合物7とし
ては3酸化タングステンWO3が用いられる。
Here, the first element 2 detects hydrogen gas, or ammonia gas NH3 , hydrogen sulfide gas H2S , silane gas SiH4 , etc. known as hydrogen-containing compound gases, when they come into contact with each other. Catalytic metal 6 that adsorbs and dissociates molecules to generate hydrogen atoms
and a solid compound 7 whose light absorption rate changes due to the reduction action of hydrogen atoms generated in the catalyst metal 6. Here, palladium Pd is used as the catalyst metal 6, and tungsten trioxide WO3 is used as the solid compound 7.

この触媒金属6と固体化合物7の積層構造でな
る第1の素子2の製造は、透明なガラス基板上に
WO3でなる固体化合物7を所定の厚さに蒸着し、
続いて固体化合物7の上にPdでなる触媒金属6
を透明性を保つ程度に薄く蒸着することで作り出
すことができる。
The first element 2, which has a laminated structure of the catalyst metal 6 and the solid compound 7, is manufactured on a transparent glass substrate.
A solid compound 7 made of WO 3 is deposited to a predetermined thickness,
Next, a catalyst metal 6 made of Pd is placed on the solid compound 7.
It can be created by depositing it thinly enough to maintain transparency.

一方、第2の素子3は第1の素子2の固体化合
物7と同一材質、例えば3酸化タングステン
WO3を使用した第2の固体化合物8と、この固
体化合物8に透明性を保つ程度に薄く蒸着した金
属9との積層構造をもち、金属9としては水素ま
たは含水素化合物ガスから水素原子を吸着解離す
ることのない金属、例えば銅Cu、アルミニウム
Al等を使用している。
On the other hand, the second element 3 is made of the same material as the solid compound 7 of the first element 2, for example, tungsten trioxide.
It has a laminated structure of a second solid compound 8 using WO 3 and a metal 9 deposited thinly on the solid compound 8 to maintain transparency. Metals that do not adsorb and dissociate, such as copper, aluminum
Al etc. are used.

センサ筐体1内に設置された第1の素子2と第
2の素子3の透過光を受ける位置には第1の検出
部としての受光素子10と、第2の検出部として
の受光素子11が設けられ、第1の素子2および
第2の素子3を透過した光を電気信号に変換して
いる。この受光素子10,11の検出信号は比較
検出回路12に与えられ、比較検出回路12は受
光素子10の検出信号をE1、受光素子11の検
出信号をE2とすると、例えば、(E2−E1)/E2
=Esとなる比較検出を行ない、検出出力Esが所
定の閾値以上のときガス検出出力を生ずる。
A light-receiving element 10 as a first detection part and a light-reception element 11 as a second detection part are located at positions receiving the transmitted light of the first element 2 and the second element 3 installed in the sensor housing 1. is provided to convert the light transmitted through the first element 2 and the second element 3 into electrical signals. The detection signals of the light receiving elements 10 and 11 are given to the comparison detection circuit 12, and if the detection signal of the light receiving element 10 is E1 and the detection signal of the light receiving element 11 is E2, then, for example, (E2 - E1) /E2
=Es is performed, and when the detection output Es is greater than or equal to a predetermined threshold value, a gas detection output is generated.

次に、第1図の実施例の作用を説明する。 Next, the operation of the embodiment shown in FIG. 1 will be explained.

まず、第1の素子に水素ガスが接触したときの
作用としては、水素ガスの接触に対し触媒金属6
により水素を吸着解離して水素原子を触媒金属6
中に生成し、この水素原子が固体化合物7の中に
注入される。触媒金属6によるプロトンH+の注
入を受けた固体化合物7は還元されて色中心密度
が変化し、その光吸収率が変化する。この実施例
では固体化合物7として3酸化タングステン
WO3を使用していることから、固体化合物7は
光吸収率を増大させ、その増大の度合はガス濃度
の増加に応じて強くなる。勿論、水素ガスがなく
なれば固体化合物7に注入されたプロトンH+
再び抜け出して固体化合物7は光吸収率を減じ、
元のより透明な状態に戻る。
First, when hydrogen gas comes into contact with the first element, the catalytic metal 6
adsorbs and dissociates hydrogen and converts hydrogen atoms into catalytic metal 6
This hydrogen atom is injected into the solid compound 7. The solid compound 7 into which protons H + have been injected by the catalyst metal 6 is reduced, its color center density changes, and its light absorption rate changes. In this example, tungsten trioxide is used as the solid compound 7.
Since WO 3 is used, the solid compound 7 increases the light absorption rate, and the degree of increase becomes stronger as the gas concentration increases. Of course, when the hydrogen gas disappears, the protons H + injected into the solid compound 7 escape again, and the solid compound 7 decreases its light absorption rate.
Return to the original, more transparent state.

このような第1の素子2の光吸収現象は、水素
ガスの他に前記したNH3、H2S、SiH4等の含水
素化合物ガスの接触に対しても同様である。ま
た、第1の素子2の光吸収率の変化は常温におい
て数百ppmの水素ガスに対し応答を充分に示し、
水素ガスの接触後の応答速度も早いことが実験的
に確認されている。この応答速度はヒータにより
第1の素子2を加熱することにより更に早めるこ
とができる。
Such a light absorption phenomenon of the first element 2 is similar to contact with hydrogen-containing compound gases such as NH 3 , H 2 S, and SiH 4 as described above in addition to hydrogen gas. In addition, the change in the light absorption rate of the first element 2 shows a sufficient response to several hundred ppm of hydrogen gas at room temperature.
It has been experimentally confirmed that the response speed after contact with hydrogen gas is also fast. This response speed can be further increased by heating the first element 2 with a heater.

一方、水素ガスまたは含水素化合物ガスの接触
で光吸収率が変化する第1の素子2に近接して設
けた第2の素子3においては、金属9が水素ガス
を解離吸着しないCu、Al等の金属であるため、
第1の素子2の固体化合物7と同じ材質、例えば
WO3を用いた第2の固体化合物8の光吸収率は
変化しない。
On the other hand, in the second element 3 provided close to the first element 2 whose light absorption rate changes upon contact with hydrogen gas or hydrogen-containing compound gas, the metal 9 is made of Cu, Al, etc. that do not dissociate and adsorb hydrogen gas. Since it is a metal of
The same material as the solid compound 7 of the first element 2, e.g.
The light absorption of the second solid compound 8 using WO 3 remains unchanged.

このような、水素ガス又は含水素化合物ガスの
接触に対する第1の素子2および第2の素子3の
光吸収特性により、まず水素ガスの流入がない定
常監視状態にあつては第1の素子2および第2の
素子3における同一材質の固体化合物7,8の光
吸収率は同じであり、光源5より素子2,3に対
し同一光量の光が入射し、検出信号E1とE2は同
じになる。
Due to the light absorption characteristics of the first element 2 and the second element 3 in response to contact with hydrogen gas or hydrogen-containing compound gas, in the steady monitoring state where there is no inflow of hydrogen gas, the first element 2 The light absorption rates of the solid compounds 7 and 8 made of the same material in the second element 3 are the same, and the same amount of light enters the elements 2 and 3 from the light source 5, so that the detection signals E1 and E2 are the same. .

一方、水素ガスが流入した場合には、第1の素
子2の触媒金属6による吸着解離で生成された水
素原子が固体化合物7に注入され、固体化合物7
の還元により光吸収率が変化する。例えば固体化
合物7として3酸化タングステンWO3を使用し
た場合には、還元により光吸収率が増大し、受光
素子10に対する透過光量が減少する。一方、第
2の素子3では金属9が水素ガスを吸着解離する
機能をもたないことから固体化合物8は還元され
ず、水素ガスが流入しても固体化合物8の光吸収
率は変化せず、平常時と同じ透過光が受光素子1
1に入射する。
On the other hand, when hydrogen gas flows in, hydrogen atoms generated by adsorption and dissociation by the catalyst metal 6 of the first element 2 are injected into the solid compound 7, and the solid compound 7
The light absorption rate changes due to the reduction of . For example, when tungsten trioxide WO 3 is used as the solid compound 7, the light absorption rate increases due to reduction, and the amount of transmitted light to the light receiving element 10 decreases. On the other hand, in the second element 3, since the metal 9 does not have the function of adsorbing and dissociating hydrogen gas, the solid compound 8 is not reduced, and the light absorption rate of the solid compound 8 does not change even if hydrogen gas flows in. , the same transmitted light as in normal times reaches the light receiving element 1.
1.

このため、水素ガスが流入したときには受光素
子10の検出信号E1が、基準となる受光素子1
1の検出信号E2よりガス濃度に応じて信号レベ
ルが低下し、比較検出回路12ではEs=(E2−
E1)/E2としてガス濃度に応じた検出出力が得
られ、所定の閾値以上でガス検出出力を生ずる。
Therefore, when hydrogen gas flows in, the detection signal E1 of the light receiving element 10 is detected by the reference light receiving element 1.
The signal level decreases from the detection signal E2 of 1 according to the gas concentration, and in the comparison detection circuit 12, Es=(E2−
A detection output corresponding to the gas concentration is obtained as E1)/E2, and a gas detection output is generated above a predetermined threshold.

次に、素子の温度もしくは経時変化に対する補
償機能を説明する。
Next, a compensation function for element temperature or changes over time will be explained.

周囲温度の影響を受けて第1の素子2の光吸収
特性が変動したとすると、第1の素子2の固体化
合物7と同じ材質の固体化合物8を用いた第2の
素子3においても同様に周囲の温度変化に応じた
固体化合物8の光吸収特性の変化を生ずる。この
場合、水素ガスの流入がない平常時にあつては、
温度変化で第1の素子2および第2の素子3の透
過光量が変つても、温度による第1の素子2と第
2の素子3の間における相対的な透過光量の変化
はなく、検出信号E1とE2は温度変化を受けて
も等しく、比較検出回路12でガス検出が行なわ
れることはない。
If the light absorption characteristics of the first element 2 change due to the influence of the ambient temperature, the same will happen in the second element 3 using the solid compound 8 made of the same material as the solid compound 7 of the first element 2. This results in a change in the light absorption characteristics of the solid compound 8 in response to changes in ambient temperature. In this case, during normal times when there is no inflow of hydrogen gas,
Even if the amount of transmitted light of the first element 2 and the second element 3 changes due to temperature change, the relative amount of transmitted light between the first element 2 and the second element 3 does not change due to temperature, and the detection signal E1 and E2 are equal even when subjected to temperature changes, and gas detection is not performed by the comparison detection circuit 12.

一方、水素ガスが流入した場合には、温度によ
る第1および第2の素子2,3の透過光量に相対
変化はなく、第1の素子が温度変化にガス接触に
よる光吸収の変化を加え合せた分の透過光量の変
化をもたらし、比較検出回路12は常に第2の素
子3の透過光量を基準としたガスの接触による第
1の素子2の光吸収率の変化による信号変化分の
みを検出する。
On the other hand, when hydrogen gas flows in, there is no relative change in the amount of light transmitted through the first and second elements 2 and 3 due to temperature, and the first element adds the change in light absorption due to gas contact to the temperature change. The comparison detection circuit 12 always detects only the signal change due to the change in the light absorption rate of the first element 2 due to contact with the gas, based on the amount of transmitted light of the second element 3. do.

このような補償機能は温度のみならず経時変化
についても、第1および第2の素子2,3が略同
じ経時変化を起こすことから、第2の素子3の透
過光を基準とした第1の素子2の透過光検出信号
の比較演算により経時変化の影響を受けない検出
出力を得ることができる。
Such a compensation function is effective not only with respect to temperature but also with respect to changes over time, since the first and second elements 2 and 3 undergo approximately the same changes over time. By comparing and calculating the transmitted light detection signals of the element 2, a detection output that is not affected by changes over time can be obtained.

尚、第1図の実施例では触媒金属6としてパラ
ジウムPd、固体化合物7,8としてWO3を例に
とるものであつたが、この他に触媒金属6として
は白金Ptを使用することができ、また固体化合
物7,8としては3酸化モリブデンMO3、2酸
化チタンTiO2、水酸化イリジウムIr(OH)n、
5酸化バナジウムV2O5を用いても固体化合物7
により定まる光波長帯域に光吸収率の変化を起こ
す第1の素子2を得ることができる。
In the example shown in FIG. 1, palladium Pd is used as the catalyst metal 6 and WO 3 is used as the solid compounds 7 and 8, but platinum Pt can also be used as the catalyst metal 6. , solid compounds 7 and 8 include molybdenum trioxide MO 3 , titanium dioxide TiO 2 , iridium hydroxide Ir(OH)n,
Solid compound 7 even with vanadium pentoxide V 2 O 5
It is possible to obtain the first element 2 which causes a change in optical absorption rate in the optical wavelength band determined by the above.

第2図は本発明の他の実施例を示したセンサの
主要構造説明図であり、この実施例は基準光を得
る第2の素子3として、第1の素子2の固体化合
物7と同じ材質、例えばWO3を用いた第2の固
体化合物8のみとし、第2の素子3にはCu、Al
等の金属9を蒸着しないことを特徴とする。
FIG. 2 is an explanatory diagram of the main structure of a sensor showing another embodiment of the present invention. In this embodiment, the second element 3 for obtaining the reference light is made of the same material as the solid compound 7 of the first element 2. For example, only the second solid compound 8 using WO 3 is used, and the second element 3 contains Cu, Al.
It is characterized by not depositing metal 9 such as.

この第2図の実施例においても、水素ガスもし
くは含水素ガス化合物ガスが流入した場合には、
第1の素子2での光吸収率の変化により受光素子
10に対する透過光は変化するが、固体化合物8
のみでなる第2の素子3の光吸収率は変化せず、
受光素子10と11の検出信号の比較演算により
温度や経時変化の影響を受けない検出出力を得る
ことができる。
Also in the embodiment shown in FIG. 2, when hydrogen gas or hydrogen-containing gas compound gas flows in,
Although the transmitted light to the light receiving element 10 changes due to a change in the light absorption rate in the first element 2, the solid compound 8
The light absorption rate of the second element 3 made of only does not change,
By comparing and calculating the detection signals of the light receiving elements 10 and 11, a detection output that is not affected by temperature or changes over time can be obtained.

第3図は、本発明の他の実施例を示したセンサ
主要部の説明図であり、この実施例は同じ固体化
合物7に触媒金属6と触媒作用をもたない金属9
を隣接して蒸着したことを特徴とし、単一の素子
構造で第1および第2の素子を形成することがで
きる。
FIG. 3 is an explanatory view of the main part of a sensor showing another embodiment of the present invention, in which the same solid compound 7 contains a catalytic metal 6 and a non-catalytic metal 9.
are deposited adjacent to each other, and the first and second elements can be formed with a single element structure.

第4図は、第1図の実施例に示した第1および
第2の素子2,3をセンサ筐体4に設け、光フア
イバによる伝送で遠隔的にガス検出を行なうこと
を特徴とする。
FIG. 4 is characterized in that the first and second elements 2 and 3 shown in the embodiment of FIG. 1 are provided in a sensor housing 4, and gas is detected remotely by transmission through an optical fiber.

即ち、光源5と受光素子10,11を受信機1
3に設け、警戒区域に第1および第2の素子2,
3を内蔵したセンサ筐体1を設置し、センサ筐体
1の素子2,3に対しては一対の光フアイバケー
ブル14によつて光源5よりの光を伝送し、素子
2,3のそれぞれを通過した光も同様に一対の光
フアイバケーブル14′により伝送して受信機1
3の受光素子10,11に入射させるようにした
ものである。勿論、受信機13には受光素子1
0,11の検出信号を比較演算する図示しない比
較演算回路が設けられている。
That is, the light source 5 and the light receiving elements 10 and 11 are connected to the receiver 1.
3, and the first and second elements 2,
3 is installed, and light from a light source 5 is transmitted to the elements 2 and 3 of the sensor housing 1 through a pair of optical fiber cables 14. The passed light is similarly transmitted via a pair of optical fiber cables 14' to the receiver 1.
The light is made incident on the light receiving elements 10 and 11 of No. 3. Of course, the receiver 13 includes the light receiving element 1.
A comparison calculation circuit (not shown) for comparing and calculating the detection signals of 0 and 11 is provided.

第5図は、本発明の他の実施例を示した説明図
である。この実施例は第1および第2の素子2,
3を一対の光フアイバケーブル14を介して入射
する光源5よりの光の反射体として設け、第1の
素子2にあつては固体化合物7を通過して触媒金
属6で反射した光を光フアイバケーブル14′を
介して受信機13の受光素子10に入射させ、一
方、第2の素子3についても固体化合物8を通過
して金属9で反射された光を光フアイバケーブル
14′を介して受信機13の受光素子11に入射
させるようにしたことを特徴とする。
FIG. 5 is an explanatory diagram showing another embodiment of the present invention. In this embodiment, the first and second elements 2,
3 is provided as a reflector for the light from the light source 5 that enters through a pair of optical fiber cables 14, and in the case of the first element 2, the light that has passed through the solid compound 7 and is reflected by the catalyst metal 6 is reflected by the optical fiber. The light is incident on the light receiving element 10 of the receiver 13 via the cable 14', and the second element 3 also receives the light that has passed through the solid compound 8 and was reflected by the metal 9 via the optical fiber cable 14'. It is characterized in that the light is made incident on the light receiving element 11 of the device 13.

その作用は、第1および第2の素子2,3に被
検知ガスが接触していない状態では、素子2,3
のそれぞれにおける光吸収率は小さく、素子2,
3で反射して受光素子10,11に入射する受光
光量は多い。一方、被検知ガスが流入したとする
と、素子2の光吸収率が増加し、受光素子10へ
の反射光量が減少し、素子3にあつては光吸収率
は変化せず平常時と同じ反射光量が受光素子11
に入射するようになる。
The effect is that when the gas to be detected is not in contact with the first and second elements 2 and 3, the elements 2 and 3
The light absorption rate in each of element 2,
The amount of light reflected by the light receiving element 3 and incident on the light receiving elements 10 and 11 is large. On the other hand, if the gas to be detected flows in, the light absorption rate of element 2 increases, the amount of light reflected to the light receiving element 10 decreases, and the light absorption rate of element 3 does not change and the reflection is the same as normal. The amount of light is determined by the light receiving element 11
becomes incident on .

第6図は、本発明の他の実施例を示したもの
で、この実施例は光フアイバの端面に直接第1図
に示す第1および第2素子構造を蒸着したことを
特徴とする。
FIG. 6 shows another embodiment of the present invention, which is characterized in that the first and second element structures shown in FIG. 1 are deposited directly on the end face of an optical fiber.

即ち、一方の光フアイバケーブル14の端面に
は、第1の素子2を形成するWO3等の固体化合
物7とPd等の触媒金属6が蒸着され、また他方
の光フアイバケーブル14′の端面には、第2の
素子3を形成するWO3等の固体化合物8と触媒
作用をもたないCu、Al等の金属9を蒸着し、フ
アイバ端面に蒸着形成した第1および第2の素子
2,3をセンサ筐体1内に設ける。
That is, a solid compound 7 such as WO 3 forming the first element 2 and a catalyst metal 6 such as Pd are deposited on the end face of one optical fiber cable 14, and a catalytic metal 6 such as Pd is deposited on the end face of the other optical fiber cable 14'. The first and second elements 2 are formed by vapor-depositing a solid compound 8 such as WO 3 forming the second element 3 and a metal 9 such as Cu or Al that does not have a catalytic action, and forming the same on the end face of the fiber. 3 is provided inside the sensor housing 1.

一方、受信機13には光源5および受光素子1
0,11が設けられ、光源5からの照射光を光フ
アイバケーブル14,14′を介してフアイバ端
面の素子2,3に与え、素子2,3の反射光を方
向性結合器15,15′で分離してそれぞれ受光
素子1,11に入射させている。
On the other hand, the receiver 13 includes a light source 5 and a light receiving element 1.
0 and 11 are provided, the irradiated light from the light source 5 is applied to the elements 2 and 3 on the fiber end face via the optical fiber cables 14 and 14', and the reflected light from the elements 2 and 3 is applied to the directional couplers 15 and 15'. The light is separated and made incident on the light receiving elements 1 and 11, respectively.

この実施例におけるガス検出の作用は第5図の
反射方式と同じであり、更に光フアイバケーブル
14,14′の端面に一対の素子2,3を蒸着形
成しているため、コンパクトな構造で遠方監視を
可能とする素子構造を得ることができる。
The gas detection function in this embodiment is the same as that of the reflection method shown in FIG. An element structure that allows monitoring can be obtained.

第7図は本発明の実施例を示した説明図であ
り、この実施例は第1図に示した本発明の素子構
造を光フアイバのクラツドに使用したことを特徴
とする。
FIG. 7 is an explanatory diagram showing an embodiment of the present invention, and this embodiment is characterized in that the element structure of the present invention shown in FIG. 1 is used for the cladding of an optical fiber.

即ち、中心に配置した一対の光フアイバ16,
16′の外周に同一材質の固体化合物7,8を蒸
着し、更に光フアイバ16側については触媒金属
6を蒸着し、光フアイバ16′側については触媒
作用をもたない金属9を蒸着してそれぞれ光フア
イバ16,16′のクラツド層を形成し、光フア
イバ16,16′内に光源5よりの光を通過させ、
受光素子10,11に入射させており、光フアイ
バ16側が第1の素子、光フアイバ16′側が第
2の素子となる。
That is, a pair of optical fibers 16 arranged in the center,
Solid compounds 7 and 8 of the same material are deposited on the outer periphery of the optical fiber 16', a catalyst metal 6 is deposited on the optical fiber 16 side, and a metal 9 having no catalytic action is deposited on the optical fiber 16' side. Forming a cladding layer of the optical fibers 16 and 16' respectively, allowing light from the light source 5 to pass through the optical fibers 16 and 16',
The light enters the light receiving elements 10 and 11, with the optical fiber 16 side serving as the first element and the optical fiber 16' side serving as the second element.

この第7図のガスセンサ構造にあつては、被検
知ガスの接触がない状態で光フアイバ16のクラ
ツド形成する固体化合物7および触媒金属6の光
吸収率が小さく、また光フアイバ16′のクラツ
ドを形成する固体化合物8および金属9の光吸収
率も小さく、光フアイバ16,16′内を反射し
て進行する光源5よりの光は効率よく伝送され、
受光素子10,11のそれぞれに充分な光量が到
達する。一方、被検知ガスが接触すると、触媒金
属6で生成した水素原子が固体化合物7を還元し
て固体化合物7がWO3であるときには光吸収率
が増大し、クラツドの透過率が低下することで光
フアイバ16内を伝送する光量が減少し、受光素
子10の受光出力が低下する。一方、光フアイバ
16′にあつては被検知ガスの接触を受けても金
属9が触媒作用をもたないことから固体化合物7
は還元されず、光吸収率に変化がないことから受
光素子11の受光出力は一定に保たれる。
In the gas sensor structure shown in FIG. 7, the light absorption rate of the solid compound 7 and catalyst metal 6 that form the cladding of the optical fiber 16 is small in the absence of contact with the gas to be detected, and the cladding of the optical fiber 16' is small. The light absorption rate of the solid compound 8 and metal 9 formed is also small, and the light from the light source 5 that reflects and travels within the optical fibers 16, 16' is efficiently transmitted.
A sufficient amount of light reaches each of the light receiving elements 10 and 11. On the other hand, when the gas to be detected comes into contact, the hydrogen atoms generated in the catalyst metal 6 reduce the solid compound 7, and when the solid compound 7 is WO3 , the light absorption rate increases and the transmittance of the clad decreases. The amount of light transmitted through the optical fiber 16 decreases, and the light receiving output of the light receiving element 10 decreases. On the other hand, in the case of the optical fiber 16', since the metal 9 does not have a catalytic effect even if it comes into contact with the gas to be detected, the solid compound 7
is not reduced and there is no change in light absorption rate, so the light receiving output of the light receiving element 11 is kept constant.

第8図は透過光方式を採る本発明の他の実施例
を示した説明図であり、第1,2および3図の実
施例では素子2,3の積層方向に光を透過させて
いるが、この実施例では光フアイバよりの透過光
を薄膜光導波路を形成する固体化合物内を通過さ
せるようにしたことを特徴とする。
FIG. 8 is an explanatory diagram showing another embodiment of the present invention that employs a transmitted light method. In the embodiments shown in FIGS. 1, 2, and 3, light is transmitted in the stacking direction of elements 2 and 3. This embodiment is characterized in that the transmitted light from the optical fiber is made to pass through the solid compound forming the thin film optical waveguide.

即ち、光源5よりの光を光フアイバケーブル1
4,14′を介して隣接配置した第1の素子2お
よび第2の素子3に入射し、第1および第2の素
子2,3内には破線で示すWO3等の固体化合物
7,8でなる薄膜光導波路が形成され、光導波路
を通つた光を光フアイバケーブル14,14′よ
り受光素子10,11に入射させている。
That is, the light from the light source 5 is transmitted to the optical fiber cable 1.
4, 14' to the first element 2 and second element 3 which are arranged adjacent to each other, and solid compounds 7, 8 such as WO 3 shown by broken lines are injected into the first and second elements 2, 3. A thin film optical waveguide is formed, and the light that has passed through the optical waveguide is made incident on the light receiving elements 10 and 11 via optical fiber cables 14 and 14'.

この素子構造の詳細は、第8図のA−Aおよび
B−Bの断面を示した第9,10図から明らかな
ように、まず第9図に示す第1の素子2にあつて
は、基板17上にWO3等の固体化合物7とPd等
の触媒金属6を蒸着して素子構造を作り、固体化
合物7は基板17および触媒金属6の間に薄膜光
導波路を形成し、固体化合物7の両端には光フア
イバケーブル14を結合し、光源よりの光を固体
化合物7で成る薄膜光導波路内を伝搬させるよう
にしたものである。
The details of this element structure are clear from FIGS. 9 and 10, which show cross sections along lines A-A and B-B in FIG. 8. First, in the case of the first element 2 shown in FIG. A solid compound 7 such as WO 3 and a catalyst metal 6 such as Pd are deposited on a substrate 17 to form an element structure, and the solid compound 7 forms a thin film optical waveguide between the substrate 17 and the catalyst metal 6. Optical fiber cables 14 are connected to both ends of the optical fiber cable 14 so that light from a light source is propagated through a thin film optical waveguide made of a solid compound 7.

また第10図に示す第2の素子3にあつても、
同様に基板17上にWO3等の固体化合物8と触
媒作用をもたないCu、Al等の金属9を蒸着し、
固体化合物8は基板17および金属9の間に薄膜
光導波路内を伝搬させるようにしたものである。
Also, in the case of the second element 3 shown in FIG.
Similarly, a solid compound 8 such as WO 3 and a metal 9 such as Cu or Al having no catalytic action are deposited on the substrate 17,
The solid compound 8 is made to propagate within the thin film optical waveguide between the substrate 17 and the metal 9.

この構造によれば、第1の素子2側については
被検知ガスによる固体化合物7の光吸収率の増加
でガス濃度に応じて透過光量を減少させることが
でき、一方、第2の素子3にあつては固体化合物
8の光吸収率に変化がないことから常に一定の透
過光量を得ることができる。
According to this structure, on the first element 2 side, the amount of transmitted light can be reduced according to the gas concentration by increasing the light absorption rate of the solid compound 7 due to the detected gas, while on the second element 3 side, the amount of transmitted light can be reduced according to the gas concentration. Since there is no change in the light absorption rate of the solid compound 8, a constant amount of transmitted light can always be obtained.

第11図は本発明の他の実施例を示したもの
で、そのC−C断面を第12図に示す。
FIG. 11 shows another embodiment of the present invention, and FIG. 12 shows a cross section along the line CC.

この実施例は第8図の実施例における光フアイ
バケーブルによる光伝送の代りに発光ダイオード
等の光源5とフオトダイオード等の受光素子1
0,11を直接素子2,3に設け、光源5よりの
光を固体化合物7,8で形成される薄膜光導波路
の光分配器18で分離し、触媒金属6および触媒
作用をもたない金属9を蒸着した破線で示す薄膜
光導波路内に伝搬し、受光素子10,11へ入射
させるようにしたものであり、素子、光源、受光
素子を一体化できる利点を有する。
This embodiment uses a light source 5 such as a light emitting diode and a light receiving element 1 such as a photodiode instead of the optical fiber cable used in the embodiment shown in FIG.
0 and 11 are provided directly on the elements 2 and 3, and the light from the light source 5 is separated by an optical distributor 18 of a thin film optical waveguide formed of solid compounds 7 and 8. The light is propagated into a thin film optical waveguide shown by a broken line in which a light beam 9 is vapor-deposited, and is made to enter the light receiving elements 10 and 11, which has the advantage that the element, the light source, and the light receiving element can be integrated.

次に、本発明の効果を説明すると、水素または
含水素化合物ガスを吸着解離する触媒金属と、こ
の触媒金属中に生成された水素原子による還元で
光吸収率が変化する固体化合物との積層構造をも
つ第1の素子からの光を検出すると共に、第1の
素子の固体化合物と同一材質の固体化合物を用い
た第2の素子からの光を検出し、第1および第2
の素子からの光の検出信号の比較演算により被検
知ガスの有無を検出するようにしたため、温度お
よび経時変化による光吸収特性への影響は第1お
よび第2の素子で共通に生じ、被検知ガスが接触
しても光吸収率の変化がない第2の素子からの光
を基準として第1の素子からの光量の変化を検知
しているため、温度や経時変化によつてガス濃度
の検出出力が変動せず、安定性および信頼性に優
れたガスセンサを得ることができる。
Next, to explain the effects of the present invention, the laminated structure includes a catalyst metal that adsorbs and dissociates hydrogen or hydrogen-containing compound gas, and a solid compound whose light absorption rate changes due to reduction by the hydrogen atoms generated in the catalyst metal. Detecting the light from the first element having the same material as the solid compound of the first element, detecting the light from the second element using the same material as the solid compound of the first element,
Since the presence or absence of the detected gas is detected by comparing the light detection signals from the first and second elements, the effects of temperature and changes over time on the light absorption characteristics occur in both the first and second elements. Changes in the amount of light from the first element are detected based on the light from the second element, which has no change in light absorption rate even when gas comes into contact with it, so gas concentration can be detected based on temperature and changes over time. A gas sensor with excellent stability and reliability without fluctuation in output can be obtained.

【図面の簡単な説明】[Brief explanation of drawings]

第1図は本発明の一実施例を示した説明図、第
2図は本発明の他の素子構造の実施例を示した説
明図、第3図は素子構造を一体化した本発明の他
の実施例を示した説明図、第4図は光フアイバケ
ーブルによる遠隔監視の実施例を示した説明図、
第5,6図は光フアイバケーブルによる遠隔監視
の他の実施例を示した説明図、第7図は光フアイ
バのクラツドにセンサ構造を備えた本発明の他の
実施例の説明図、第8図は薄膜光導波路を有する
本発明の他の実施例を示した説明図、第9図は第
8図のA−A断面図、第10図は第8図のB−B
断面図、第11図は光源、センサおよび受光素子
を一体化した本発明の他の実施例を示した説明
図、第12図は第11図のC−C断面図である。 1:センサ筐体、2:第1の素子、3:第2の
素子、4:電源、5:光源、6:触媒金属、7:
第1の固体化合物、8:第2の固体化合物、9:
金属、10:受光素子(第1の検出部)、11:
受光素子(第2の検出部)、12:比較検出回路、
13:受信機、14,14′:光フアイバケーブ
ル、15,15′:方向性結合器、16,16′:
光フアイバ、17:基板、18:光分配器。
FIG. 1 is an explanatory diagram showing one embodiment of the present invention, FIG. 2 is an explanatory diagram showing an embodiment of another element structure of the present invention, and FIG. 3 is an explanatory diagram showing another embodiment of the element structure of the present invention. FIG. 4 is an explanatory diagram showing an example of remote monitoring using an optical fiber cable,
5 and 6 are explanatory diagrams showing another embodiment of remote monitoring using an optical fiber cable, FIG. 7 is an explanatory diagram of another embodiment of the present invention in which a sensor structure is provided in the cladding of the optical fiber, and FIG. The figure is an explanatory diagram showing another embodiment of the present invention having a thin film optical waveguide, FIG. 9 is a sectional view taken along the line AA in FIG. 8, and FIG. 10 is a sectional view taken along the line BB in FIG. 8.
A cross-sectional view, FIG. 11 is an explanatory view showing another embodiment of the present invention in which a light source, a sensor, and a light-receiving element are integrated, and FIG. 12 is a cross-sectional view taken along line CC in FIG. 1: Sensor housing, 2: First element, 3: Second element, 4: Power source, 5: Light source, 6: Catalyst metal, 7:
First solid compound, 8: Second solid compound, 9:
metal, 10: light receiving element (first detection section), 11:
Light receiving element (second detection section), 12: comparison detection circuit,
13: Receiver, 14, 14': Optical fiber cable, 15, 15': Directional coupler, 16, 16':
Optical fiber, 17: substrate, 18: optical distributor.

Claims (1)

【特許請求の範囲】 1 水素または含水素化合物ガスを吸着解離する
金属と該金属中の水素原子により還元される第1
の固体化合物との積層構造を備えた第1の素子
と、 前記第1の固体化合物と同一材質でなる第2の
固体化合物を備えた第2の素子と、 前記第1の素子からの光を検出する第1の検出
部と、 前記第2の素子からの光を検出する第2の検出
部と、 前記第1の検出部からの信号と第2の検出部か
らの信号との比較演算により前記水素または含水
素ガスの有無を検出する比較検出回路とを設けた
ことを特徴とするガスセンサ。
[Claims] 1. A metal that adsorbs and dissociates hydrogen or hydrogen-containing compound gas, and a first metal that is reduced by hydrogen atoms in the metal.
a first element having a laminated structure with a solid compound; a second element having a second solid compound made of the same material as the first solid compound; and a second element comprising a second solid compound made of the same material as the first solid compound; A first detection section that detects the light, a second detection section that detects the light from the second element, and a comparison operation between the signal from the first detection section and the signal from the second detection section. A gas sensor comprising: a comparison detection circuit for detecting the presence or absence of the hydrogen or hydrogen-containing gas.
JP19123783A 1983-10-13 1983-10-13 Gas sensor Granted JPS6082836A (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP19123783A JPS6082836A (en) 1983-10-13 1983-10-13 Gas sensor

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP19123783A JPS6082836A (en) 1983-10-13 1983-10-13 Gas sensor

Publications (2)

Publication Number Publication Date
JPS6082836A JPS6082836A (en) 1985-05-11
JPH0339578B2 true JPH0339578B2 (en) 1991-06-14

Family

ID=16271177

Family Applications (1)

Application Number Title Priority Date Filing Date
JP19123783A Granted JPS6082836A (en) 1983-10-13 1983-10-13 Gas sensor

Country Status (1)

Country Link
JP (1) JPS6082836A (en)

Also Published As

Publication number Publication date
JPS6082836A (en) 1985-05-11

Similar Documents

Publication Publication Date Title
US4661320A (en) Gas sensor
US8547553B2 (en) Fiber optic hydrogen purity sensor and system
US6535658B1 (en) Hydrogen sensor apparatus and method of fabrication
US7623245B2 (en) Differential pressure measuring system and differential pressure measuring method
JPS59206745A (en) Infrared absorption gas detecting monitor head and detector
JPH11148899A (en) Detecting device for waterdrop on transparent substrate
WO2000011440A1 (en) Ultraviolet detector
CA2250688C (en) Fiber-optic sensing device
Eguchi Optical gas sensors
JPH0339578B2 (en)
JPH07128231A (en) Infrared gas sensor
JPH0223826B2 (en)
JPH05196569A (en) Hydrogen sensor
JPH046895B2 (en)
JPH0339579B2 (en)
JPS6349713Y2 (en)
WO2006109408A1 (en) Total-reflection attenuation optical probe and far-ultraviolet spectrophotometer
JPS62170838A (en) Optical sensor for reflection type hydrogen detection
JPH0772080A (en) Gas detector
JPH0210375B2 (en)
WO2024116593A1 (en) Concentration measurement device
JP2009250858A (en) Sensor chip and gas sensor
JPS58190743A (en) Infrared ray gas analyser
JPH051897B2 (en)
JP2003279474A (en) Gas sensor