JPH0335201A - Phase difference plate and production thereof - Google Patents

Phase difference plate and production thereof

Info

Publication number
JPH0335201A
JPH0335201A JP1170783A JP17078389A JPH0335201A JP H0335201 A JPH0335201 A JP H0335201A JP 1170783 A JP1170783 A JP 1170783A JP 17078389 A JP17078389 A JP 17078389A JP H0335201 A JPH0335201 A JP H0335201A
Authority
JP
Japan
Prior art keywords
layers
vapor
transparent substrate
orientation direction
light
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Pending
Application number
JP1170783A
Other languages
Japanese (ja)
Inventor
Suguru Yamamoto
山本 英
Seiji Umemoto
清司 梅本
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Nitto Denko Corp
Original Assignee
Nitto Denko Corp
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Nitto Denko Corp filed Critical Nitto Denko Corp
Priority to JP1170783A priority Critical patent/JPH0335201A/en
Publication of JPH0335201A publication Critical patent/JPH0335201A/en
Pending legal-status Critical Current

Links

Abstract

PURPOSE:To obtain the optically active phase difference plate which is thin and has excellent light transmittance by providing vapor-deposited layers consisting of a double refractive material on a light transparent substrate and forming the vapor-deposited layers with the superposed layers of the layers which vary in orientation direction. CONSTITUTION:The light transparent substrate 2 is disposed diagonally with a vapor deposition source having the double refractive material 1 and a vacuum vapor deposition is executed under the continuous or intermittent rotation of the light transparent substrate 2 to form the superposed layers 11 to 14 of the vapor-deposited layers which vary in the orientation direction on the light transparent substrate 2. The orientation direction can be controlled by rotating the light transparent substrate 2 at this time and the superposed layers 11 to 14 of the vapor-deposited layers which are different in the orientation direction are formed. The superposed layers 11 to 14 of the vapor-deposited layers formed in such a manner vary in the orientation direction and, therefore, exhibit the optical rotatory power and since these layers are the vapor-deposited layers, the layers are excellent in small thickness and light transmittability.

Description

【発明の詳細な説明】 産業上の利用分野 本発明は、配向方向が異なる蒸着層の重畳層を有して旋
光性を示し、STN液晶表示装置等に好適な位相差板及
びその製造方法に関する。
DETAILED DESCRIPTION OF THE INVENTION Field of the Invention The present invention relates to a retardation plate having a superimposed layer of vapor deposited layers with different alignment directions, exhibiting optical rotation, and suitable for STN liquid crystal display devices, etc., and a method for manufacturing the same. .

発明の背景 STN (Super  Twisted Ne5at
ic)液晶を用いて時分割駆動の特性を向上させた液晶
表示装置がOA機器等の大型デイスプレィに使用されて
いる。
Background of the invention STN (Super Twisted Ne5at)
ic) Liquid crystal display devices that use liquid crystals and have improved time-division drive characteristics are used in large displays in office automation equipment and the like.

STN液晶は複屈折性のため偏光板を介したデイスプレ
ィ(背景部又は表示部)が着色する問題があり、その着
色を防止して白黒表示を達成すべく複屈折による位相差
を補償する手段が講じられている。
Due to birefringence of STN liquid crystals, there is a problem in that the display (background area or display area) is colored through the polarizing plate.In order to prevent this coloration and achieve black and white display, there is a means to compensate for the phase difference due to birefringence. It is being taught.

従来の技術 従来、前記の手段として、液晶セルを重ね合わせるD−
3TN方式が提案されている。しかしながら、複数の液
晶セルを用いるため、嵩高になることを避は得ないと共
に重いものとなり、かつ補完関係を満足する液晶セルの
組合せの形成が困難で量産性に劣る問題点があった。
BACKGROUND OF THE INVENTION Conventionally, as the above-mentioned means, the D-
A 3TN system has been proposed. However, since a plurality of liquid crystal cells are used, it is unavoidably bulky and heavy, and it is difficult to form a combination of liquid crystal cells that satisfy a complementary relationship, resulting in poor mass productivity.

かかる問題点を克服するものとして、液晶セルと偏光板
の間に位相差板を介在させるBFTN方式が提案されて
おり、液晶セルの単層化を達成して嵩高、高重量問題や
量産性問題を解消している。
To overcome these problems, a BFTN method has been proposed in which a retardation plate is interposed between the liquid crystal cell and the polarizing plate, which achieves a single-layer liquid crystal cell and solves the problems of bulkiness, high weight, and mass production. are doing.

発明が解決しようとする課題 しかしながらBFTN方式には、D−8TN方式に比べ
て白黒表示のコントラスト比に劣る難点があった。
Problems to be Solved by the Invention However, the BFTN system has a disadvantage in that it is inferior to the D-8TN system in terms of contrast ratio in black and white display.

本発明者らはかかる難点を克服すべく鋭意研究を重ねた
結果、位相差板に旋光性を持たせることにより前記の目
的を達成できることを見出した。
The inventors of the present invention have conducted extensive research to overcome these difficulties, and have discovered that the above object can be achieved by imparting optical rotation to the retardation plate.

そのため、複数の位相差板をその光軸をズラせて粘着剤
を介し接着して、積層体を形成することを試みたが、嵩
の増大問題と共に、透光率の低下でコントラスト比が満
足に向上しないことがわかった。
Therefore, attempts were made to form a laminate by adhering multiple retardation plates with an adhesive with their optical axes shifted, but the contrast ratio was not satisfactory due to the problem of increased bulk and a decrease in light transmittance. It was found that there was no improvement in

前記に鑑み、本発明は薄くてかつ透光率に優れる旋光性
の位相差板の開発を課題とする。
In view of the above, an object of the present invention is to develop a optically active retardation plate that is thin and has excellent light transmittance.

課題を解決するための手段 本発明は、配向方向が異なる蒸着層の重畳層により旋光
性を付与して上記の課題を克服したものである。
Means for Solving the Problems The present invention overcomes the above problems by imparting optical rotation using a superimposed layer of vapor deposited layers having different orientation directions.

すなわち本発明は、透光性基板に複屈折性物質の蒸着層
を設けてなり、その蒸着層が配向方向の異なる層の重畳
層で形成されて旋光性を有することを特徴とする位相差
板、及び 複屈折性物質を装備した蒸着源に対して透光性基板を斜
め配置し、かつその透光性基板の連続的又は断続的な回
転下に真空蒸着処理して、透光性基板の上に配向方向が
異なる蒸着層の重畳層を形成することを特徴とする前記
した位相差板の製造方法を提供するものである。
That is, the present invention provides a retardation plate characterized in that a vapor-deposited layer of a birefringent substance is provided on a light-transmitting substrate, and the vapor-deposited layer is formed of a superimposed layer of layers with different orientation directions, and has optical rotation. A transparent substrate is placed obliquely to a deposition source equipped with a birefringent material, and vacuum deposition is performed while the transparent substrate is rotated continuously or intermittently. The present invention provides a method for manufacturing the above-mentioned retardation plate, characterized in that a superimposed layer of vapor deposited layers having different orientation directions is formed thereon.

作用 斜め蒸着方式により配向性のよい蒸着層を形成すること
ができ、その際、透光性基板を回転させることにより配
向方向を制御できて、配向方向が興なる蒸着層の重畳層
を形成することができる。
It is possible to form a vapor deposited layer with good orientation using the action oblique vapor deposition method, and at this time, the orientation direction can be controlled by rotating the translucent substrate, forming a superimposed layer of vapor deposited layers with different alignment directions. be able to.

形成された蒸着層の重畳層は、配向方向が異なることに
基づいて旋光性を示し、蒸着層であることに基づいて薄
さと透光性に優れる。
The formed superimposed layer of vapor deposited layers exhibits optical rotation due to the different orientation directions, and is excellent in thinness and translucency based on the fact that it is a vapor deposited layer.

実施例 本発明の位相差板は、第1図に例示した如く、透光性基
板2に複屈折性物質からなる蒸着層11〜14を配向方
向(矢印)が異なるように重畳させて旋光性を付与した
ものである。
Example As illustrated in FIG. 1, the retardation plate of the present invention has optical rotation by superimposing vapor deposited layers 11 to 14 made of birefringent substances on a transparent substrate 2 so that their orientation directions (arrows) are different. is given.

その製造は例えば、第2図のように複屈折性物質1を装
備した蒸着源に対して透光性基板2を斜め配置し、かつ
その透光性基板2の連続的又は断続的な回転下に真空蒸
着処理して、透光性基板2の上に配向方向が異なる蒸着
層の重畳層(11〜14〉を形成することにより行うこ
とができる。
For example, as shown in FIG. 2, the light-transmitting substrate 2 is disposed obliquely with respect to a vapor deposition source equipped with a birefringent substance 1, and the light-transmitting substrate 2 is rotated continuously or intermittently. This can be done by performing a vacuum evaporation process to form a superimposed layer (11 to 14) of evaporated layers with different orientation directions on the transparent substrate 2.

なお、図中の3は真空チャンバーである。Note that 3 in the figure is a vacuum chamber.

本発明において透光性基板としては、光を透過する適宜
なものを用いてよい。一般には例えば、透明なプラスチ
ックフィルムやガラス板などが用いられる。また、偏光
板なども用いることができる。偏光板を用いた場合には
楕円偏光板を形成することができる。透光性基板上に予
めシリカ、アルミナ、チタニアなどからなる無機膜を設
けて蒸着層が形成されやすくしてもよい。なお、用いる
プラスチックフィルムやガラス板などとしては等方性の
ものが通例であるが、複屈折性を示すものなど、異方性
のものも用いてよい。透光性基板の厚さは通例5閣以下
であるが、透光率等に応じ適宜に決定してよい。
In the present invention, as the light-transmitting substrate, any suitable material that transmits light may be used. Generally, for example, a transparent plastic film or a glass plate is used. Moreover, a polarizing plate etc. can also be used. When a polarizing plate is used, an elliptically polarizing plate can be formed. An inorganic film made of silica, alumina, titania, etc. may be provided on the transparent substrate in advance to facilitate formation of the vapor deposition layer. The plastic film or glass plate used is usually isotropic, but anisotropic ones such as those exhibiting birefringence may also be used. The thickness of the light-transmitting substrate is usually less than 5 mm, but may be determined as appropriate depending on the light transmittance and the like.

複屈折性物質としては、真空蒸着処理で複屈折性の蒸着
層を形成するものが用いられる。一般には有機高分子、
金属やセラミック等の無機物などからなり、透明性に優
れる蒸着層を形成する複屈折性物質が用いられる。就中
、耐久性や透明性、複屈折の発現性等の点より、例えば
Ta205、Ti0z 、A1203 、Fe2O3の
如き酸化物系無機化合物が好ましく用いられる。
As the birefringent substance, one that forms a birefringent deposited layer by vacuum deposition treatment is used. Generally, organic polymers,
A birefringent substance is used that is made of an inorganic material such as metal or ceramic and forms a vapor deposited layer with excellent transparency. Among these, oxide-based inorganic compounds such as Ta205, TiOz, A1203, and Fe2O3 are preferably used from the viewpoint of durability, transparency, birefringence, and the like.

真空蒸着処理に際する透光性基板の蒸着源に対する斜め
配置の角度は、蒸着層の配向性等に応じて適宜に決定し
てよい。一般には、垂直方向に対し20〜80度とされ
る。
The angle of the oblique arrangement of the light-transmitting substrate with respect to the vapor deposition source during the vacuum vapor deposition process may be appropriately determined depending on the orientation of the vapor deposited layer and the like. Generally, the angle is 20 to 80 degrees with respect to the vertical direction.

また、真空蒸着処理時における透光性基板の回転角度は
100〜300度が通例であるが、これに限定されない
。透光性基板の回転方式は、一定方向に連続的又は断続
的に軸回転させる方式が一般的である。その場合、蒸着
層の形成速度に応じた連続回転方式とすることにより、
配向方向が連続的に捩れ変化した蒸着層の重畳層を形成
することができる。また、断続回転方式により配向方向
が所定角度ずつズした蒸着層の重畳層を形成することが
できる。なお、STN液晶表示装置に用いる位相差板と
しては、その旋光性が液晶層のそれに近いほどコントラ
スト比の点より好ましい。
Furthermore, the rotation angle of the light-transmitting substrate during the vacuum deposition process is typically 100 to 300 degrees, but is not limited thereto. The general method for rotating the light-transmitting substrate is to continuously or intermittently rotate the axis in a fixed direction. In that case, by using a continuous rotation method according to the formation speed of the vapor deposited layer,
It is possible to form a superimposed layer of vapor deposited layers in which the orientation direction is continuously twisted. Further, by using the intermittent rotation method, it is possible to form a superimposed layer of vapor deposited layers whose orientation directions are shifted by a predetermined angle. As for the retardation plate used in the STN liquid crystal display device, it is preferable in terms of contrast ratio that its optical rotation is closer to that of the liquid crystal layer.

真空蒸着方式としては例えば、抵抗加熱方式、エレクト
ロンビーム加熱方式、スパッタリング方式、イオンビー
ム方式など、適宜な方式を採用してよい。就中、蒸着層
の配向性の点より、蒸着物質の直進性の高い高真空で行
う抵抗加熱方式やエレクトロンビーム加熱方式が好まし
い。
As the vacuum deposition method, an appropriate method such as a resistance heating method, an electron beam heating method, a sputtering method, an ion beam method, etc. may be adopted. In particular, from the viewpoint of the orientation of the vapor deposited layer, a resistance heating method or an electron beam heating method is preferred, which is performed in a high vacuum where the vapor deposited material can move in a straight line.

蒸着層の重畳層の厚さは、付与すべき位相差の大きさな
どにより適宜に決定してよい。STN液晶表示装置に用
いる位相差板としては100〜700niの位相差を形
成する厚さが好ましい。なお、STN液晶表示装置の着
色防止、従って白黒表示は、S T N液晶セルにおけ
る位相差を補償する位相差板を用いることにより達成さ
れるが、カラーフィルターを付加するなどしてカラー表
示とすることも可能である。
The thickness of the superimposed layer of vapor deposited layers may be appropriately determined depending on the magnitude of the retardation to be provided. A retardation plate used in an STN liquid crystal display device preferably has a thickness that forms a retardation of 100 to 700 ni. Note that prevention of coloring in the STN liquid crystal display device, and therefore black and white display, is achieved by using a retardation plate that compensates for the phase difference in the STN liquid crystal cell, but color display can be achieved by adding a color filter, etc. It is also possible.

ちなみに、厚さ10017mの無配向ポリカーボネート
フィルム、又は偏光板(日束電工社社製:NPF ; 
G5225タイプ〉、又は厚さ1曜のガラス板からなる
透光性基板の上に、エレクトロンビーム加熱方式により
Ta205を斜め蒸着方式で真空蒸着処理した。処理は
% 1O−6Torrオーダーの真空下に蒸着を始め、
10″″5Torrオーダーの真空度の維持下に蒸着を
完了した。また、Ta205を装備した蒸着源に対する
透光性基板の配置は、垂直方向に対し70度の傾斜角度
とし、その角度の維持下に等速度で180度軸回転させ
た。蒸着層全体の厚さは5四である。
By the way, a non-oriented polycarbonate film with a thickness of 10,017 m or a polarizing plate (manufactured by Nichizuka Denko Co., Ltd.: NPF;
G5225 type> or a transparent substrate made of a glass plate with a thickness of 1 day, Ta205 was vacuum-deposited using an oblique evaporation method using an electron beam heating method. The process begins with evaporation under a vacuum on the order of % 1O-6 Torr.
The vapor deposition was completed while maintaining the degree of vacuum on the order of 10''5 Torr. Furthermore, the light-transmitting substrate was placed at an angle of inclination of 70 degrees with respect to the vertical direction with respect to the evaporation source equipped with Ta205, and the substrate was rotated 180 degrees at a constant speed while maintaining this angle. The total thickness of the deposited layer is 54 mm.

次に、形成された3種類の位相差板をSTN液晶セルの
片側にアクリル系粘着剤を介して接着し、白黒表示の液
晶表示装置を作製した。得られた液晶表示装置の駆動状
態と非駆動状態におけるコントラスト比はいずれの場合
も25:lと高いものであった。
Next, the three types of retardation plates thus formed were adhered to one side of the STN liquid crystal cell via an acrylic adhesive to produce a black and white liquid crystal display device. The contrast ratio of the obtained liquid crystal display device in the driving state and in the non-driving state was as high as 25:l in both cases.

比較のため、ポリカーボネートフィルムからなり複屈折
光の位相差が27On+++の位相差板を用いて前記し
た実施例に準じ白黒表示のSTN液晶表示装置を作製し
、その液晶表示装置の駆動状態と非駆動状態におけるコ
ントラスト比を調べたところ8:1であった。
For comparison, a black-and-white STN liquid crystal display device was fabricated using a retardation plate made of a polycarbonate film with a birefringent light phase difference of 27On+++ according to the above-mentioned example, and the driving state and non-driving state of the liquid crystal display device were compared. When the contrast ratio in this state was examined, it was 8:1.

発明の効果 本発明の位相差板は、配向方向が異なる蒸着層の重畳層
を有して旋光性を有し、かつ薄くて透光率に優れている
。その結果、これをSTN液晶表示装置に適用した場合
、コントラスト比に優れる白黒表示を達成することがで
きる。
Effects of the Invention The retardation plate of the present invention has a superimposed layer of vapor deposited layers with different orientation directions, has optical rotation, is thin, and has excellent light transmittance. As a result, when this is applied to an STN liquid crystal display device, a black and white display with an excellent contrast ratio can be achieved.

また、本発明の製造方法は前記した位相差板の製造効率
に優れている。
Further, the manufacturing method of the present invention is excellent in manufacturing efficiency of the above-mentioned retardation plate.

【図面の簡単な説明】[Brief explanation of drawings]

第1図は位相差板を例示した部分断面斜視図、第2図は
その製造方法を例示した説明図である。 11.12.13,14二配向方向(矢印)がそれぞれ
異なる蒸着層 2:透光性基板
FIG. 1 is a partially sectional perspective view illustrating a retardation plate, and FIG. 2 is an explanatory diagram illustrating a method of manufacturing the same. 11.12.13,14 Vapor deposited layer 2 with different orientation directions (arrows): Transparent substrate

Claims (1)

【特許請求の範囲】 1、透光性基板に複屈折性物質の蒸着層を設けてなり、
その蒸着層が配向方向の異なる層の重畳層で形成されて
旋光性を有することを特徴とする位相差板。 2、透光性基板が偏光板である請求項1に記載の位相差
板。 3、複屈折性物質を装備した蒸着源に対して透光性基板
を斜め配置し、かつその透光性基板の連続的又は断続的
な回転下に真空蒸着処理して、透光性基板の上に配向方
向が異なる蒸着層の重畳層を形成することを特徴とする
請求項1に記載の位相差板の製造方法。
[Claims] 1. A vapor-deposited layer of a birefringent substance is provided on a transparent substrate,
A retardation plate characterized in that the vapor deposited layer is formed of a superimposed layer of layers with different orientation directions and has optical rotation. 2. The retardation plate according to claim 1, wherein the transparent substrate is a polarizing plate. 3. A transparent substrate is placed obliquely to a deposition source equipped with a birefringent substance, and vacuum evaporation is performed while the transparent substrate is rotated continuously or intermittently. 2. The method of manufacturing a retardation plate according to claim 1, further comprising forming a superimposed layer of vapor deposited layers having different orientation directions thereon.
JP1170783A 1989-06-30 1989-06-30 Phase difference plate and production thereof Pending JPH0335201A (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP1170783A JPH0335201A (en) 1989-06-30 1989-06-30 Phase difference plate and production thereof

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP1170783A JPH0335201A (en) 1989-06-30 1989-06-30 Phase difference plate and production thereof

Publications (1)

Publication Number Publication Date
JPH0335201A true JPH0335201A (en) 1991-02-15

Family

ID=15911287

Family Applications (1)

Application Number Title Priority Date Filing Date
JP1170783A Pending JPH0335201A (en) 1989-06-30 1989-06-30 Phase difference plate and production thereof

Country Status (1)

Country Link
JP (1) JPH0335201A (en)

Cited By (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2007188060A (en) * 2005-12-06 2007-07-26 Jds Uniphase Corp Thin-film optical retarder
JP2015121803A (en) * 2004-02-06 2015-07-02 株式会社ニコン Polarization conversion element, illumination optical device, exposure device, and exposure method
WO2019230559A1 (en) * 2018-05-31 2019-12-05 デクセリアルズ株式会社 Phase difference compensating element, liquid crystal display device, and projection-type image display device

Cited By (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2015121803A (en) * 2004-02-06 2015-07-02 株式会社ニコン Polarization conversion element, illumination optical device, exposure device, and exposure method
JP2007188060A (en) * 2005-12-06 2007-07-26 Jds Uniphase Corp Thin-film optical retarder
WO2019230559A1 (en) * 2018-05-31 2019-12-05 デクセリアルズ株式会社 Phase difference compensating element, liquid crystal display device, and projection-type image display device
JP2019211494A (en) * 2018-05-31 2019-12-12 デクセリアルズ株式会社 Phase difference compensation element, liquid crystal display device, and projection image display device
US11281049B2 (en) 2018-05-31 2022-03-22 Dexerials Corporation Phase difference compensating element, liquid crystal display device, and projection-type image display device

Similar Documents

Publication Publication Date Title
JP3071204B2 (en) Liquid crystal display device
JPS62275227A (en) Cell with double liquid crystal layer using double refraction effect electronically controlled and preparation of single axis with negative optical anisotropy usable in said cell
JPH04119325A (en) Production of ferroelectric liquid crystal element
JPH0497121A (en) Liquid crystal display element
JPH0335201A (en) Phase difference plate and production thereof
JPH02285303A (en) Double refractive film and production thereof and phase difference plate and liquid crystal panel
JPS62240928A (en) Liquid crystal optical shutter
JPS5933428A (en) Liquid crystal display element
JP2605064B2 (en) Liquid crystal display device
JPH0434521A (en) Stereoscopic liquid crystal display
WO1992009003A1 (en) Liquid crystal shuttering device
JP2570746B2 (en) Phase control element
JPS5651722A (en) Liquid crystal display device
JPS5823014A (en) Multilayered liquid-crystal display device
JP2662672B2 (en) Liquid crystal display device
JP2649389B2 (en) Phase compensator
JPS62153821A (en) Liquid crystal display element
JPH03226713A (en) Liquid crystal display device
JPH01147430A (en) Liquid crystal display element
JPS59195623A (en) Liquid crystal display cell
JPS5823013A (en) Multilayered liquid-crystal display device
JPH03114023A (en) Substrate for display, production thereof and liquid crystal display device using same substrate
JPH03175417A (en) Liquid crystal device
JPH04178631A (en) Liquid crystal shutter device
JPH01177019A (en) Liquid crystal display element