JPH0334996B2 - - Google Patents

Info

Publication number
JPH0334996B2
JPH0334996B2 JP18657487A JP18657487A JPH0334996B2 JP H0334996 B2 JPH0334996 B2 JP H0334996B2 JP 18657487 A JP18657487 A JP 18657487A JP 18657487 A JP18657487 A JP 18657487A JP H0334996 B2 JPH0334996 B2 JP H0334996B2
Authority
JP
Japan
Prior art keywords
wastewater
ozone
catalyst
water
amount
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Expired
Application number
JP18657487A
Other languages
Japanese (ja)
Other versions
JPS6430695A (en
Inventor
Kiichiro Mitsui
Sadao Terui
Kunio Sano
Toshihide Kanzaki
Kazuyoshi Nishikawa
Akira Inoe
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Nippon Shokubai Co Ltd
Original Assignee
Nippon Shokubai Co Ltd
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Nippon Shokubai Co Ltd filed Critical Nippon Shokubai Co Ltd
Priority to JP18657487A priority Critical patent/JPS6430695A/en
Publication of JPS6430695A publication Critical patent/JPS6430695A/en
Publication of JPH0334996B2 publication Critical patent/JPH0334996B2/ja
Granted legal-status Critical Current

Links

Description

【発明の詳細な説明】 〔産業上の利用分野〕 本発明は化学的酸素要求物質(以下COD成分
とする)を含む廃水を触媒の存在下に湿式酸化す
る方法に関する。詳しく述べると、本発明は、
COD成分である有害な被酸化性の有機物または
無機物を含有する廃水を分子状酸素の共存下に接
触湿式酸化することにより、これら有機物質を無
害な炭酸ガス、水、窒素などに変換せしめ、廃水
を無公害化するに有効な方法に関する。
DETAILED DESCRIPTION OF THE INVENTION [Industrial Field of Application] The present invention relates to a method for wet oxidizing wastewater containing chemical oxygen demand substances (hereinafter referred to as COD components) in the presence of a catalyst. Specifically, the present invention includes:
By catalytic wet oxidation of wastewater containing harmful oxidizable organic or inorganic substances, which are COD components, in the coexistence of molecular oxygen, these organic substances are converted into harmless carbon dioxide, water, nitrogen, etc. Concerning effective methods to make the world pollution-free.

〔従来の技術〕[Conventional technology]

廃水の処理法には、活性汚泥法と呼ばれる生物
化学的方法とチンマーマン法と呼ばれる湿式酸化
法が知られている。
Known wastewater treatment methods include a biochemical method called the activated sludge method and a wet oxidation method called the Zimmermann method.

周知のとおり、活性汚泥法は有機物の分解に長
時間を要し、しかも藻類、バクテリアの生育に適
した濃度に廃水を稀釈することが必要であるため
に、活性汚泥処理施設の設置面積が広大になる欠
点がある。さらに、近年、特に都市部においては
生育した余剰汚泥の取扱いに莫大な処理費を要し
ている。一方、チンマーマン法は高濃度の有機物
を含む水溶液に対して圧力16〜200気圧、温度200
〜370℃で空気を導入し、有機物を酸化分解する
方法であるが、この方法は反応速度が遅く、分解
に長時間を要するために大きな反応器を必要と
し、またその材質に高度な耐久性を要求されるた
めに、装置の設備費および運転費等において経済
的に問題がある。また、この方法において、反応
速度を速めることを目的として、各種の酸化触媒
を使用する方法が提案されている。
As is well known, the activated sludge method requires a long time to decompose organic matter, and it is also necessary to dilute the wastewater to a concentration suitable for the growth of algae and bacteria, so the installed area of the activated sludge treatment facility is large. There are drawbacks to it. Furthermore, in recent years, especially in urban areas, handling of grown surplus sludge requires enormous processing costs. On the other hand, the Zimmerman method uses a pressure of 16 to 200 atm and a temperature of 200 atm for an aqueous solution containing a high concentration of organic matter.
This method introduces air at ~370°C to oxidize and decompose organic matter, but this method requires a large reactor because the reaction rate is slow and decomposition takes a long time, and the material used is highly durable. Because of this, there are economical problems in equipment costs, operating costs, etc. Furthermore, in this method, methods using various oxidation catalysts have been proposed for the purpose of speeding up the reaction rate.

従来、接触湿式酸化法に使用される触媒とし
て、パラジウム、白金等の貴金属化合物(特開昭
49−44556号公報)およびコバルト、鉄等の重金
属化合物(特開昭49−94157号公報)が知られて
いる。これらの触媒は球状または円柱状のアルミ
ナ、シリカ・アルミナ、シリカゲル、活性炭等の
担体に上記化合物を担持した触媒である。廃水を
接触湿式酸化する場合、PH9以上で反応に供せら
れることが多く、本発明者らの検討によれば上記
の触媒は長期仕様により、強度の低下および破砕
粉化を生じ、さらに担体の溶解を生ずる場合もあ
る。
Conventionally, noble metal compounds such as palladium and platinum (JP-A-Show) have been used as catalysts for catalytic wet oxidation
49-44556) and heavy metal compounds such as cobalt and iron (Japanese Unexamined Patent Publication No. 49-94157). These catalysts are catalysts in which the above compound is supported on a spherical or cylindrical carrier such as alumina, silica/alumina, silica gel, or activated carbon. In the case of catalytic wet oxidation of wastewater, the reaction is often carried out at a pH of 9 or above, and according to the study of the present inventors, the above-mentioned catalysts deteriorate in strength and become crushed into powder due to long-term specifications, and furthermore, the catalyst deteriorates. Dissolution may also occur.

最近、これらの問題を解決しようとして、チタ
ニアまたはジルコニアを担体として用いる方法が
提案されている(特開昭58−64188号公報)。これ
によると、球状または円柱状のチタニアまたはジ
ルコニアの担体にパラジウム、白金等の貴金属化
合物、鉄、コバルト等の重金属化合物を担持した
触媒が開示されている。
Recently, in an attempt to solve these problems, a method using titania or zirconia as a carrier has been proposed (Japanese Patent Laid-Open Publication No. 1988-64188). According to this publication, a catalyst is disclosed in which a noble metal compound such as palladium or platinum, or a heavy metal compound such as iron or cobalt is supported on a spherical or cylindrical titania or zirconia carrier.

一方、酸化剤としてオゾンまたは過酸化水素を
用いて、常温、常圧下で廃水中の有機物を酸化分
解する方法もある。例えば、特開昭58−55088号
には、フミン酸等の有機物質を含有する廃水を、
オゾンおよび過酸化水素を用いて、触媒の不存在
下、20℃で常圧下、該有機物を酸化分解する方法
が記載されている。また、特公昭58−37039号に、
芳香族環をもつた有機化合物を含有する廃水に界
面活性剤を加え、さらに遷移金属化合物およびア
ルカリ土類化合物から選ばれた少なくとも1種を
加えて混合したのち、この混合物に常温、常圧下
でオゾンを接触させて、該有機化合物を酸化分解
する方法が記載されている。前者は触媒の不存在
下処理を行なつているので、廃水中の懸濁物等の
酸化されにくい物質を処理することはできない。
後者は遷移金属またはアルカリ土類金属等の金属
イオンを触媒として用いているので、廃水の処理
後、そのまま放出せず金属イオンを回収する必要
があり、後処理工程を要するという欠点を有して
いる。また、両者ともに常温、常圧下で廃水処理
を行なつているために、高価なオゾンを多く必要
とすること、反応速度が遅いこと、有機物の分解
率が低いこと、未反応オゾンが発生するために無
害化処理を必要とすること等の欠点を有してい
る。
On the other hand, there is also a method of oxidatively decomposing organic matter in wastewater at room temperature and under normal pressure using ozone or hydrogen peroxide as an oxidizing agent. For example, in Japanese Patent Application Laid-Open No. 58-55088, wastewater containing organic substances such as humic acid,
A method for oxidatively decomposing the organic substance using ozone and hydrogen peroxide at 20° C. and normal pressure in the absence of a catalyst is described. Also, in Special Publication No. 58-37039,
A surfactant is added to wastewater containing an organic compound having an aromatic ring, and at least one selected from transition metal compounds and alkaline earth compounds is added and mixed, and then this mixture is heated at room temperature and under normal pressure. A method for oxidatively decomposing the organic compound by contacting with ozone is described. Since the former process is carried out in the absence of a catalyst, it is not possible to treat substances that are difficult to oxidize, such as suspended matter in wastewater.
Since the latter uses metal ions such as transition metals or alkaline earth metals as a catalyst, it has the disadvantage of requiring a post-treatment process, as it is necessary to recover the metal ions after treatment of the wastewater rather than releasing them as is. There is. In addition, because both wastewater treatment is carried out at room temperature and pressure, a large amount of expensive ozone is required, the reaction rate is slow, the decomposition rate of organic matter is low, and unreacted ozone is generated. It has drawbacks such as requiring detoxification treatment.

〔発明が解決しようとする問題点〕[Problem that the invention seeks to solve]

従つて、本発明の目的は、高温・高圧下に廃水
中に含有される有機性または無機性物質を効率的
に酸化分解する改良された方法を提供することに
ある。
Therefore, an object of the present invention is to provide an improved method for efficiently oxidatively decomposing organic or inorganic substances contained in wastewater under high temperature and high pressure.

〔問題点を解決するための手段〕[Means for solving problems]

この目的は、廃水を固体触媒の存在下に、370
℃以下の温度かつ該廃水が液相を保持する圧力下
に処理するに際して、該廃水中の有機性および無
機性物質を窒素、炭酸ガスおよび水にまで分解す
るに必要な理論酸素量の1.0〜1.5倍量の酸素を含
有するガスとオゾンおよび/または過酸化水素の
共存下に該廃水を湿式酸化することを特徴とする
廃水の処理方法によつて達成される。
This purpose is to treat wastewater in the presence of a solid catalyst at 370
1.0 to 1.0 to the theoretical amount of oxygen necessary to decompose organic and inorganic substances in the wastewater into nitrogen, carbon dioxide, and water when the wastewater is treated at a temperature below °C and under a pressure that maintains the liquid phase. This is achieved by a method for treating wastewater characterized by wet oxidation of the wastewater in the coexistence of a gas containing 1.5 times the amount of oxygen and ozone and/or hydrogen peroxide.

本発明者等らは、廃水の処理方法における酸化
剤について、種々検討を加えた結果、酸化剤とし
て分子状酸素とオゾンおよび/または過酸化水素
を用いると、酢酸のような比較的酸化を受けにく
いとされている有機物も高い効率で分解できるこ
と、および比較的、低温、低圧で反応を遂行する
ことができることを知見した。高温、高圧下に酸
化剤として分子状酸素を使用するチンマーマン法
において、オゾンおよび/または過酸化水素を併
用した事例は今まで全く報告されていない。さら
に、本発明で用いる触媒はオゾンを酸素にまで分
解する能力をも有しているために、廃オゾンを実
質的に分解し、系外へ排出させないという利点も
有していることも特徴的なことである。
The present inventors conducted various studies on oxidizing agents in wastewater treatment methods, and found that when molecular oxygen, ozone, and/or hydrogen peroxide are used as oxidizing agents, they are relatively susceptible to oxidation compared to acetic acid. We discovered that organic substances, which are considered difficult to decompose, can be decomposed with high efficiency, and that the reaction can be carried out at relatively low temperatures and pressures. In the Zimmerman method, which uses molecular oxygen as an oxidizing agent under high temperature and high pressure, no case has been reported to date of the combined use of ozone and/or hydrogen peroxide. Furthermore, since the catalyst used in the present invention has the ability to decompose ozone into oxygen, it also has the advantage of substantially decomposing waste ozone and preventing it from being discharged outside the system. That's true.

本発明においてオゾンの使用量は、廃水中の有
機性および無機性物質を、窒素、炭酸ガスおよび
水にまで分解するに必要な理論酸素量の0.001〜
0.6倍モル、好ましくは0.003〜0.2倍モルであれば
充分である。また、過酸化水素の使用量は、前記
理論酸素量の0.001〜1.8倍モル、好ましくは0.003
〜0.2倍モルであれば充分である。オゾンおよ
び/または過酸化水素を分子状酸素と共に併用す
ることによつて、反応温度は、廃水の性状、該酸
化剤の使用量等によつて変化するけれども、分子
状酸素のみを用いた場合よりも低下する。例え
ば、分子状酸素を用いた場合の反応温度が200℃
〜300℃である場合、該酸化剤を併用すると100℃
〜250℃程度となる。
In the present invention, the amount of ozone used is 0.001 to 0.001 of the theoretical amount of oxygen required to decompose organic and inorganic substances in wastewater into nitrogen, carbon dioxide, and water.
0.6 times the mole, preferably 0.003 to 0.2 times the mole, is sufficient. Further, the amount of hydrogen peroxide used is 0.001 to 1.8 times the mole of the theoretical oxygen amount, preferably 0.003
~0.2 times the mole is sufficient. By using ozone and/or hydrogen peroxide together with molecular oxygen, the reaction temperature will be higher than when using only molecular oxygen, although it will vary depending on the properties of the wastewater, the amount of the oxidant used, etc. also decreases. For example, the reaction temperature when using molecular oxygen is 200℃.
~300℃, if the oxidizing agent is used together, the temperature will rise to 100℃
The temperature will be ~250℃.

さらに詳しく本発明における好適な反応条件を
示せば、反応温度は通常370℃以下、より好まし
くは100〜250℃である。反応系の圧力は反応塔内
で廃水が液相を保つに十分な圧力、すなわち0〜
約200Kg/cm2の圧力であれば良い。送入される酸
素含有ガスは廃水中の有機性および無機性物質を
窒素、炭酸ガスおよび水にまで分解するに必要な
理論酸素量の1〜1.5倍量を使用する。固体触媒
の使用量は反応塔の空間容積の5〜99%程度の量
が充填される。廃水は所定温度の触媒床に滞留時
間3〜120分、好ましくは5〜60分で酸素含有ガ
スとオゾンおよび/または過酸化水素と共に流し
て酸化される。反応系のPHは酸性でもアルカリ性
でも使用できる。分子状酸素含有ガスとしては空
気、酸素と空気の混合ガス、または通常、酸素富
化空気と呼ばれているガスを使用しうるが、酸素
濃度25%以上のガスが好ましい。
More specifically, preferred reaction conditions for the present invention are as follows: The reaction temperature is usually 370°C or lower, more preferably 100 to 250°C. The pressure of the reaction system is sufficient to maintain the liquid phase of the wastewater in the reaction tower, that is, 0~
A pressure of approximately 200 kg/cm 2 is sufficient. The amount of oxygen-containing gas to be fed is 1 to 1.5 times the theoretical amount of oxygen required to decompose organic and inorganic substances in wastewater into nitrogen, carbon dioxide, and water. The amount of solid catalyst used is about 5 to 99% of the space volume of the reaction column. The waste water is oxidized by passing it through a catalyst bed at a predetermined temperature with a residence time of 3 to 120 minutes, preferably 5 to 60 minutes, together with oxygen-containing gas and ozone and/or hydrogen peroxide. The pH of the reaction system can be either acidic or alkaline. As the molecular oxygen-containing gas, air, a mixed gas of oxygen and air, or a gas commonly called oxygen-enriched air can be used, but a gas with an oxygen concentration of 25% or more is preferable.

本発明は、活性汚泥処理した上澄み水あるいは
沈降させた活性汚泥、醗酵廃水、有機化合物重合
工程からの廃水、シアン含有廃水、フエノール含
有廃水、含油廃水、その他の化学工場廃水をはじ
め食品工場等からの一般産業廃水、さらには、し
尿、下水、下水汚泥等の被酸化性の有機物または
無機物を含有する廃水を湿式酸化処理することが
できる。
The present invention can be used to collect supernatant water treated with activated sludge or precipitated activated sludge, fermentation wastewater, wastewater from organic compound polymerization processes, cyanide-containing wastewater, phenol-containing wastewater, oil-containing wastewater, and other chemical factory wastewater as well as from food factories. General industrial wastewater, as well as wastewater containing oxidizable organic or inorganic substances such as human waste, sewage, and sewage sludge, can be subjected to wet oxidation treatment.

本発明では、固体触媒として従来公知の湿式酸
素用触媒はいずれも使用することができる。例え
ば、アルミナ、シリカ、シリカ−アルミナ、ジル
コニア、チタニア、ムライト、コージエライト等
からなる球状、ペレツト等の担体に、マンガン、
鉄、コバルト、ニツケル、タングステン、銅、セ
リウム、銀、白金、パラジウム、ロジウム、ルテ
ニウムおよびイリジウムよりなる群から選ばれた
少なくとも1種の元素の水に不溶性または難溶性
の化合物を触媒当り0.01〜50重量%担持した触媒
等である。本発明は高温・高圧下に反応を遂行す
る点に鑑みれば、該触媒はチタニア、ジルコニア
またはチタニア−ジルコニアからなる担体を使用
したものが触媒の耐久性において優れているから
好ましい。
In the present invention, any conventionally known wet oxygen catalyst can be used as the solid catalyst. For example, manganese,
A water-insoluble or sparingly soluble compound of at least one element selected from the group consisting of iron, cobalt, nickel, tungsten, copper, cerium, silver, platinum, palladium, rhodium, ruthenium, and iridium in an amount of 0.01 to 50 per catalyst. It is a catalyst supported by weight%. In view of the fact that the present invention carries out the reaction under high temperature and high pressure, it is preferable that the catalyst uses a carrier made of titania, zirconia, or titania-zirconia because the catalyst has excellent durability.

〔実施例〕〔Example〕

以下に実施例を用いて本発明をさらに詳細に説
明するが、本発明はこれらの実施例のみに限定さ
れるものではない。
The present invention will be explained in more detail below using Examples, but the present invention is not limited to these Examples.

実施例 1 チタン及びジルコニウムからなる複合酸化物を
以下に述べる方法で調製した。チタン源として以
下の組成を有する硫酸チタニルの硫酸水溶液を用
いた。
Example 1 A composite oxide consisting of titanium and zirconium was prepared by the method described below. A sulfuric acid aqueous solution of titanyl sulfate having the following composition was used as a titanium source.

TiOSO4(TiO2換算) 250g/ 全H2SO4 1100g/ 水100にオキシ塩化ジルコニウム〔ZrOCl2
8H2O〕1.93Kgを溶解させ、上記硫酸チタニルの
硫酸水溶液7.7を添加しつつよく混合した。こ
れを温度約30℃に維持しつつよく撹拌しながらア
ンモニア水を徐々に滴下し、PHが7になるまで加
え、さらにそのまま放置して15時間静置した。
TiOSO 4 (TiO 2 equivalent) 250g / total H 2 SO 4 1100g / 100% water and zirconium oxychloride [ZrOCl 2 .
8H 2 O] was dissolved and mixed well while adding 7.7 kg of the above sulfuric acid aqueous solution of titanyl sulfate. While maintaining the temperature at about 30°C and stirring well, ammonia water was gradually added dropwise to the mixture until the pH reached 7, and the mixture was left to stand still for 15 hours.

かくしてえられたTiO2−ZrO2ゲルを過し水
洗後200℃で10時間乾燥した。次いで空気雰囲気
下で550℃で6時間焼成した。えられた粉体の組
成はTiO2:ZrO2=4:1(モル比)であり、
BET表面積は140m2/gであつた。ここでえられ
た粉体を以降TZ−1と呼ぶ。
The thus obtained TiO 2 -ZrO 2 gel was filtered, washed with water, and then dried at 200°C for 10 hours. Then, it was fired at 550° C. for 6 hours in an air atmosphere. The composition of the obtained powder was TiO 2 :ZrO 2 =4:1 (molar ratio),
The BET surface area was 140 m 2 /g. The powder obtained here is hereinafter referred to as TZ-1.

この粉体を用いて以下に述べる方法で触媒を調
製した。
A catalyst was prepared using this powder by the method described below.

水900mlと前記粉体1500gさらに澱粉75gを加
え、混合しニーダーでよく練り合わせた。さらに
適量の水を加えつつ練つた後、孔径(貫通孔の相
当直径)5mmで開孔率64%のハニカム型に押出成
型して120℃で6時間乾燥した後、酸素濃度を15
%以下に調節された雰囲気下450℃で6時間焼成
した。
900 ml of water, 1500 g of the above powder, and 75 g of starch were added, mixed, and kneaded well using a kneader. After kneading the mixture while adding an appropriate amount of water, it was extruded into a honeycomb mold with a pore diameter (equivalent diameter of the through holes) of 5 mm and a porosity of 64%, dried at 120°C for 6 hours, and the oxygen concentration was reduced to 15%.
% or less at 450° C. for 6 hours.

かくしてえられた成型体を硝酸パラジウム水溶
液中に含浸し、ついで120℃で6時間乾燥した後、
空気雰囲気下450℃で6時間焼成した。えられた
完成触媒の組成は重量百分率で、TZ−1:Pd=
97:3であつた。
The thus obtained molded body was immersed in an aqueous palladium nitrate solution and then dried at 120°C for 6 hours.
It was baked at 450°C for 6 hours in an air atmosphere. The composition of the finished catalyst obtained is expressed as a weight percentage: TZ-1:Pd=
It was 97:3.

実施例 2 市販のチタニア粉体を用いて実施例1の記載の
方法に準じてハニカム型成型体をえた。次に硝酸
パラジウム水溶液の代りに塩化白金酸水溶液を用
いる以外は実施例1に準じて、重量百分率で
TiO2:Pt=99:1の触媒をえた。
Example 2 A honeycomb molded body was obtained according to the method described in Example 1 using commercially available titania powder. Next, according to Example 1, except that an aqueous solution of chloroplatinic acid was used instead of an aqueous solution of palladium nitrate,
A catalyst with TiO 2 :Pt=99:1 was obtained.

実施例 3 実施例1および2でえられた各触媒を用いて、
以下のような方法で、湿式酸化法による廃水処理
を行なつた。ステンレス製反応管に触媒を充填
し、反応管の下部から予熱混合された廃水および
酸素濃度30%およびオゾン濃度1%としたガスを
連続して導入して、反応管の入口部と出口部で
COD(Cr)を測定し、除去率を求めた。なお、処
理に供した廃水の性状はCOD(Cr)10g/であ
り、カセイソーダを添加してPH10とした。反応条
件は反応温度190℃、反応圧力40Kg/cm2で、廃水
の空間速度2Hr-1(空塔基準)、酸素およびオゾン
含有ガスの空間速度60Hr-1(空塔基準、標準状
態)で反応管に導入した。その結果、実施例1お
よび2の触媒を用いた場合、それぞれCOD除去
率は92%、91%であつた。
Example 3 Using each catalyst obtained in Examples 1 and 2,
Wastewater treatment was carried out using the wet oxidation method as follows. A stainless steel reaction tube is filled with a catalyst, and preheated mixed waste water and gas with an oxygen concentration of 30% and an ozone concentration of 1% are continuously introduced from the bottom of the reaction tube, and the mixture is heated at the inlet and outlet of the reaction tube.
COD (Cr) was measured and the removal rate was determined. The properties of the wastewater used for treatment were COD (Cr) 10g/, and the pH was adjusted to 10 by adding caustic soda. The reaction conditions were a reaction temperature of 190℃, a reaction pressure of 40Kg/ cm2 , a space velocity of waste water of 2Hr -1 (in the sky column), and a space velocity of oxygen and ozone containing gas of 60Hr -1 (in the sky column, standard conditions). introduced into the tube. As a result, when the catalysts of Examples 1 and 2 were used, the COD removal rates were 92% and 91%, respectively.

実施例 4 実施例1でえられた触媒を用いて、酸素濃度30
%およびオゾン濃度1%からなる混合ガスを空間
速度60Hr-1(空塔基準、標準状態)で反応管に導
入するとともに、3%の過酸化水素水を空間速度
0.004Hr-1(空塔基準)で反応管に導入した以外は
実施例3と同様にして廃水の処理を行なつた。そ
の結果COD除去率は93%であつた。
Example 4 Using the catalyst obtained in Example 1, an oxygen concentration of 30
% and ozone concentration of 1% was introduced into the reaction tube at a space velocity of 60 Hr -1 (sky column standard, standard condition), and 3% hydrogen peroxide solution was introduced at a space velocity of 60 Hr -1 (sky column standard, standard condition).
Wastewater was treated in the same manner as in Example 3, except that it was introduced into the reaction tube at a rate of 0.004 Hr -1 (empty column standard). As a result, the COD removal rate was 93%.

Claims (1)

【特許請求の範囲】 1 廃水を固体触媒の存在下に、370℃以下の温
度かつ該廃水が液相を保持する圧力下に処理する
に際して、該廃水中の有機性および無機性物質を
窒素、炭酸ガスおよび水にまで分解するに必要な
理論酸素量の1.0〜1.5倍量の酸素を含有するガス
とオゾンおよび/または過酸化水素の共存下に該
廃水を湿式酸化することを特徴とする廃水の処理
方法。 2 オゾンの使用量が廃水中の有機性および無機
性物質を、窒素、炭酸ガスおよび水にまで分解す
るに必要な理論酸素量の0.001〜0.6倍モルである
特許請求の範囲1項記載の方法。 3 過酸化水素の使用量が廃水中の有機性および
無機性物質を窒素、炭酸ガスおよび水にまで分解
するに必要な理論酸素量の0.001〜1.8倍モルであ
る特許請求の範囲1項記載の方法。 4 反応温度が100〜370℃の範囲である特許請求
の範囲1項記載の方法。
[Scope of Claims] 1. When treating wastewater in the presence of a solid catalyst at a temperature of 370°C or less and under a pressure such that the wastewater maintains a liquid phase, organic and inorganic substances in the wastewater are removed by nitrogen, Wastewater characterized by wet oxidation of the wastewater in the coexistence of ozone and/or hydrogen peroxide and a gas containing 1.0 to 1.5 times the theoretical amount of oxygen required to decompose the wastewater into carbon dioxide and water. processing method. 2. The method according to claim 1, wherein the amount of ozone used is 0.001 to 0.6 times the mole of theoretical oxygen required to decompose organic and inorganic substances in wastewater into nitrogen, carbon dioxide, and water. . 3. The method according to claim 1, wherein the amount of hydrogen peroxide used is 0.001 to 1.8 times the mole of theoretical oxygen required to decompose organic and inorganic substances in wastewater into nitrogen, carbon dioxide, and water. Method. 4. The method according to claim 1, wherein the reaction temperature is in the range of 100 to 370°C.
JP18657487A 1987-07-28 1987-07-28 Treatment of waste water Granted JPS6430695A (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP18657487A JPS6430695A (en) 1987-07-28 1987-07-28 Treatment of waste water

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP18657487A JPS6430695A (en) 1987-07-28 1987-07-28 Treatment of waste water

Publications (2)

Publication Number Publication Date
JPS6430695A JPS6430695A (en) 1989-02-01
JPH0334996B2 true JPH0334996B2 (en) 1991-05-24

Family

ID=16190920

Family Applications (1)

Application Number Title Priority Date Filing Date
JP18657487A Granted JPS6430695A (en) 1987-07-28 1987-07-28 Treatment of waste water

Country Status (1)

Country Link
JP (1) JPS6430695A (en)

Families Citing this family (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US5100560A (en) * 1991-05-31 1992-03-31 Abb Lummus Crest Inc. Apparatus and method for supercritical water oxidation
US5192453A (en) * 1992-01-06 1993-03-09 The Standard Oil Company Wet oxidation process for ACN waste streams

Also Published As

Publication number Publication date
JPS6430695A (en) 1989-02-01

Similar Documents

Publication Publication Date Title
EP0257983B1 (en) Method for treating waste water
US5145587A (en) Method for treatment of waste water
EP0819649A1 (en) Photocatalytic method for treatment of contaminated water
CA2231193A1 (en) Advanced oxidation of water using catalytic ozonation
JPH04256495A (en) Method for treating water with ozone
KR940006404B1 (en) Catalyst for treatment of water
JPH0334998B2 (en)
JPH0334996B2 (en)
JPH062227B2 (en) Water-resistant carrier, water treatment catalyst containing the carrier, and water treatment method using the catalyst
JP3811614B2 (en) Wastewater treatment method
JPH07171580A (en) Treatment of waste water
JP3121832B2 (en) Wastewater treatment method
JPH07185569A (en) Treatment of nitrate radical-containing waste water
JPH0334999B2 (en)
JPH07328654A (en) Treatment of ammoniacal nitrogen-containing waste water
CA1301965C (en) Method for treatment of waste water
JP3499251B2 (en) Water treatment catalyst and water treatment method
KR100525465B1 (en) Method of water treatment for drinking water using supported nano-sized iron catalyst
JPH0335000B2 (en)
JP3229674B2 (en) Wastewater treatment method
JPH05212389A (en) Treatment of waste water containing organo halogen compound
JP3318131B2 (en) Wastewater treatment catalyst and wastewater treatment method using the catalyst
JPH04100595A (en) Wastewater treatment method
JPH06114387A (en) Water treatment method
JPH07204667A (en) Treatment of drained water containing ammonia nitrogen