JPH0330851Y2 - - Google Patents

Info

Publication number
JPH0330851Y2
JPH0330851Y2 JP13820283U JP13820283U JPH0330851Y2 JP H0330851 Y2 JPH0330851 Y2 JP H0330851Y2 JP 13820283 U JP13820283 U JP 13820283U JP 13820283 U JP13820283 U JP 13820283U JP H0330851 Y2 JPH0330851 Y2 JP H0330851Y2
Authority
JP
Japan
Prior art keywords
anode
electrolyte
cathode
reference electrode
electrode
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Expired
Application number
JP13820283U
Other languages
Japanese (ja)
Other versions
JPS6027355U (en
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed filed Critical
Priority to JP13820283U priority Critical patent/JPS6027355U/en
Publication of JPS6027355U publication Critical patent/JPS6027355U/en
Application granted granted Critical
Publication of JPH0330851Y2 publication Critical patent/JPH0330851Y2/ja
Granted legal-status Critical Current

Links

Description

【考案の詳細な説明】 本考案は、ポーラログラフ3電極法による酸化
還元電流測定装置に関する。
[Detailed Description of the Invention] The present invention relates to a redox current measuring device using a polarographic three-electrode method.

従来この種装置としては、たとえば第1図に示
すように、試料液及び電解液を収容した槽a中
に、アノードbカソードc比較電極dを浸漬した
ものが用いられている。ところが、このものでは
比較電極dにおいて発生したAgイオンが近接位
置にあるアノードbに悪悪影響を及ぼして感度低
下をきたすとともに、装置の構成上間欠測定とな
らざるを得ず、実験室用としてはともかく工業用
としては不向きであつた。
Conventionally, as shown in FIG. 1, this type of apparatus has been used, for example, in which an anode, a cathode, and a comparison electrode d are immersed in a tank a containing a sample solution and an electrolyte. However, with this device, the Ag ions generated at the reference electrode d have an adverse effect on the nearby anode b, resulting in a decrease in sensitivity, and the configuration of the device necessitates intermittent measurements, making it unsuitable for laboratory use. In any case, it was unsuitable for industrial use.

本考案はこのような従来欠点を解消することを
目的としている。以下本考案の一実施例を図面に
基いて説明する。第2図において1は電解液2
(たとえばKcl溶液)を収容した槽で、その電解
液2中に、中空のガラス管3先端に支持された
Ptよりなるカソード4と、ガラス製支持管5、
セラミツクなどよりなる液絡部6、Kcl内部液
7、Ag−Agcl内極8、Ag製リード線9等よりな
る比較電極10とが浸漬されている 尚、カソードと比較電極とは一体化した複合電
極を用いてもよい。次に11は、前記槽1の蓋1
2に設けられた電解液補充口、13は、前記槽1
の底部に設けられた連通口14に一端を接続され
たチユーブで、その他端には、第3図に示すよう
にプラスチツク製保持部材15を介して多孔性プ
ラスチツク(たとえばポリプロピレン、ポリエチ
レン、ナイロン。)又は多孔性セラミツクの棒1
6が保持されている。
The present invention aims to eliminate such conventional drawbacks. An embodiment of the present invention will be described below with reference to the drawings. In Figure 2, 1 is electrolyte 2
(for example, a Kcl solution), in which a hollow glass tube 3 is supported in the electrolyte 2.
A cathode 4 made of Pt, a support tube 5 made of glass,
A liquid junction part 6 made of ceramic or the like, a Kcl internal liquid 7, an Ag-Agcl inner electrode 8, a reference electrode 10 made of an Ag lead wire 9, etc. are immersed in it.The cathode and reference electrode are an integrated composite. Electrodes may also be used. Next, 11 is the lid 1 of the tank 1.
The electrolyte replenishment port 13 provided in the tank 1
One end of the tube is connected to a communication port 14 provided at the bottom of the tube, and the other end is connected to a porous plastic (eg, polypropylene, polyethylene, nylon) via a plastic holding member 15, as shown in FIG. Or porous ceramic rod 1
6 is retained.

この多孔性プラスチツク棒16外周には、アノ
ード17を構成するPt線が巻回されている。
A Pt wire constituting an anode 17 is wound around the outer periphery of this porous plastic rod 16.

そして、前記カソード4、比較電極10、アノ
ード7は夫々リード線18,9,19を介して増
幅部20に接続されている。次に21は試料セル
を構成するプラスチツク製のブロツクで、底部に
は試料入口22が、側部には試料出口23が設け
られており、第3図に示すようにこの試料セル2
1内に前記アノード17、多孔性プラスチツク棒
16が配置されて試料セル21内に導入された試
料と接触するように構成されている。
The cathode 4, comparison electrode 10, and anode 7 are connected to an amplifying section 20 via lead wires 18, 9, and 19, respectively. Next, 21 is a plastic block constituting a sample cell, which has a sample inlet 22 at the bottom and a sample outlet 23 at the side, and as shown in FIG.
The anode 17 and the porous plastic rod 16 are disposed within the sample cell 21 and are configured to come into contact with the sample introduced into the sample cell 21.

従つて、検出器は、アノード17、カソード4
および比較電極10の3電極から構成され、アノ
ード17には、比較電極10を基準とした一定の
電位が印加されている。そして前記多孔性プラス
チツク棒16の多孔性部分より電解液が徐々に流
出し、アノード17とカソード4および比較電極
10との電気的導通を保つている。
Therefore, the detector has an anode 17, a cathode 4
The anode 17 is composed of three electrodes: and a comparison electrode 10, and a constant potential with reference to the comparison electrode 10 is applied to the anode 17. The electrolytic solution gradually flows out from the porous portion of the porous plastic rod 16, maintaining electrical continuity between the anode 17, cathode 4, and comparison electrode 10.

いま、ヒドラジン(N2H4)(測定対象の一例)
を含む試料水が前記入口22から流入し、アノー
ド17と接触すると、ヒドラジンはアノード17
で次のように酸化される。
Now, hydrazine (N 2 H 4 ) (an example of a measurement target)
When sample water containing
It is oxidized as follows.

N2H4+4OH-→N2+4H2O+2e 一方カソードでは、これと同じだけの電流が流
れ、次のの反応が起こる。
N 2 H 4 +4OH - →N 2 +4H 2 O+2e On the other hand, the same amount of current flows at the cathode, and the following reaction occurs.

1/2O2+H2O+2e→2OH-又は 2H++2e→H2 したがつて、アノード17とカソード4間に
は、ヒドラジン濃度に比例した電流が流れること
になり、この電流値からヒドラジン濃度が測定さ
れるのである。
1/2O 2 +H 2 O+2e→2OH - or 2H + +2e→H 2 Therefore, a current proportional to the hydrazine concentration will flow between the anode 17 and the cathode 4, and the hydrazine concentration can be measured from this current value. It will be done.

本考案は上述したように、電解液槽中の電解液
にカソードと比較電極とを浸漬し、この電解液槽
の連通口に一端を接続してあるチユーブの他端に
多孔性部材を保持させこの多孔性部材にアノード
を取付けてアノード、カソード、比較電極を電気
的に導通させ、さらに、前記多孔性部材及びアノ
ードを、電解液槽とは別途に設けた試料セル内に
配置してあるので次のような効果がある。
As described above, in the present invention, a cathode and a reference electrode are immersed in an electrolyte in an electrolyte bath, and a porous member is held at the other end of a tube whose one end is connected to the communication port of the electrolyte bath. An anode is attached to this porous member to electrically conduct the anode, cathode, and reference electrode, and the porous member and anode are placed in a sample cell separate from the electrolyte bath. It has the following effects.

比較電極とアノードは、前記従来装置のよう
に同一槽内に浸漬されるのではなく、チユーブ
を介して距離をへだてて設けられているため、
比較電極で発生したAgイオンがアノードまで
達することはほとんどなく、アノードへのAg
イオンの付着による悪影響を防止でき、常に高
感度で測定できる。
The reference electrode and anode are not immersed in the same tank as in the conventional device, but are separated by a tube.
Ag ions generated at the reference electrode rarely reach the anode;
This prevents the harmful effects of ion adhesion and allows measurements with high sensitivity at all times.

電解液槽と試料セルとを分離した構造である
から、試料セルに試料を少量ずつ連続的に流す
ことによつて連続測定を容易に行なえ、且つ、
電解液の消費も少ない。従つて又、ポーラログ
ラフ3電極法による酸化還元電流測定装置の工
業化が可能となつたのである。
Since the electrolyte bath and the sample cell are separated, continuous measurements can be easily performed by continuously flowing the sample into the sample cell in small amounts, and
Consumption of electrolyte is also low. Therefore, it has also become possible to industrialize a redox current measuring device using the polarographic three-electrode method.

【図面の簡単な説明】[Brief explanation of drawings]

第1図は従来例を示す説明図、第2図は本考案
の一実施例を示す全体の構成図、第3図は同上要
部縦断面図である。 1……電解液槽、2……電解液、4……カソー
ド、10……比較電極、13……チユーブ、14
……連通口、16……多孔性部材、17……アノ
ード、21……試料セル。
FIG. 1 is an explanatory diagram showing a conventional example, FIG. 2 is an overall configuration diagram showing an embodiment of the present invention, and FIG. 3 is a longitudinal cross-sectional view of the main part of the same. 1... Electrolyte tank, 2... Electrolyte, 4... Cathode, 10... Reference electrode, 13... Tube, 14
... Communication port, 16 ... Porous member, 17 ... Anode, 21 ... Sample cell.

Claims (1)

【実用新案登録請求の範囲】[Scope of utility model registration request] 電解液槽中の電解液にカソードと比較電極とを
浸漬し、この電解液槽の連通口に一端を接続して
あるチユーブの他端に多孔性部材を保持させこの
多孔性部材にアノードを取付けてアノード、カソ
ード、比較電極を電気的に導通させ、さらに、前
記多孔性部材及びアノードを、電解液槽とは別途
に設けた試料セル内に配置してあることを特徴と
するポーラログラフ3電極法による酸化還元電流
測定装置。
The cathode and reference electrode are immersed in an electrolyte in an electrolyte tank, one end of which is connected to the communication port of the electrolyte tank, and a porous member is held at the other end of the tube, and the anode is attached to this porous member. The polarographic three-electrode method is characterized in that the anode, cathode, and reference electrode are electrically connected to each other, and the porous member and the anode are placed in a sample cell provided separately from the electrolyte bath. Redox current measuring device.
JP13820283U 1983-09-03 1983-09-03 Redox current measuring device using polarographic three-electrode method Granted JPS6027355U (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP13820283U JPS6027355U (en) 1983-09-03 1983-09-03 Redox current measuring device using polarographic three-electrode method

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP13820283U JPS6027355U (en) 1983-09-03 1983-09-03 Redox current measuring device using polarographic three-electrode method

Publications (2)

Publication Number Publication Date
JPS6027355U JPS6027355U (en) 1985-02-23
JPH0330851Y2 true JPH0330851Y2 (en) 1991-06-28

Family

ID=30310170

Family Applications (1)

Application Number Title Priority Date Filing Date
JP13820283U Granted JPS6027355U (en) 1983-09-03 1983-09-03 Redox current measuring device using polarographic three-electrode method

Country Status (1)

Country Link
JP (1) JPS6027355U (en)

Also Published As

Publication number Publication date
JPS6027355U (en) 1985-02-23

Similar Documents

Publication Publication Date Title
US3957613A (en) Miniature probe having multifunctional electrodes for sensing ions and gases
JPS6363858B2 (en)
US3223608A (en) Electrochemical gas analyzer
US5106482A (en) High speed oxygen sensor
US3291705A (en) Method and apparatus for analyzing gas
US3315270A (en) Dissolved oxidant analysis
US2190835A (en) Arrangement for carrying out electrometrical measurements
JPH0330851Y2 (en)
US7144488B2 (en) Electrode, electrochemical cell, and method for analysis of electroplating baths
CA1222795A (en) Electrochemical reference electrode
US5200044A (en) Method for measuring oxygen content
JPS5923385B2 (en) Method for measuring the concentration of sodium in a mercury-sodium amalgam flow
JPH0245147B2 (en)
JPS61176846A (en) Ion sensor body
JPH079083Y2 (en) Redox current measuring device
Nei Some milestones in the 50-year history of electrochemical oxygen sensor development
EP0942280A1 (en) Automatic measuring device for the concentration of a developing agent
US4539092A (en) Plasma oxygen permeability meter
JP2004053613A (en) Oxidation-reduction potential measuring device
JPS6428555A (en) Enzyme sensor
JPH1164275A (en) Oxidation-reduction potential measuring device
JPS6243557A (en) Solid electrode for electrochemical sensor
JPH0643734Y2 (en) Hydrogen peroxide determination electrode
Quilter et al. A simple method for preparing silver-silver chloride electrodes for recording of skin-potential
JPH09264868A (en) Ph sensor and ion water generator