JPH032956B2 - - Google Patents

Info

Publication number
JPH032956B2
JPH032956B2 JP58084789A JP8478983A JPH032956B2 JP H032956 B2 JPH032956 B2 JP H032956B2 JP 58084789 A JP58084789 A JP 58084789A JP 8478983 A JP8478983 A JP 8478983A JP H032956 B2 JPH032956 B2 JP H032956B2
Authority
JP
Japan
Prior art keywords
mol
nitroguaiacol
nitroanisole
electrolysis
mmol
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Expired
Application number
JP58084789A
Other languages
Japanese (ja)
Other versions
JPS59211584A (en
Inventor
Yoshiharu Matsuda
Kazuo Nishi
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
NITSUKO KAGAKU YAKUHIN KK
Original Assignee
NITSUKO KAGAKU YAKUHIN KK
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by NITSUKO KAGAKU YAKUHIN KK filed Critical NITSUKO KAGAKU YAKUHIN KK
Priority to JP58084789A priority Critical patent/JPS59211584A/en
Publication of JPS59211584A publication Critical patent/JPS59211584A/en
Publication of JPH032956B2 publication Critical patent/JPH032956B2/ja
Granted legal-status Critical Current

Links

Landscapes

  • Electrolytic Production Of Non-Metals, Compounds, Apparatuses Therefor (AREA)

Description

【発明の詳細な説明】 本発明は5−ニトログアヤコール(5−ニトロ
−2−メトキシフエノール)の製造法に関する、
特に詳しくは、p−ニトロアニソールの電解ヒド
ロキシル化により5−ニトログアヤコールを製造
する方法に関する。
DETAILED DESCRIPTION OF THE INVENTION The present invention relates to a method for producing 5-nitroguaiacol (5-nitro-2-methoxyphenol),
In particular, the present invention relates to a method for producing 5-nitroguaiacol by electrolytic hydroxylation of p-nitroanisole.

5−ニトログアヤコールは、化粧品、濃薬等の
原料として用いられており、従来の合成法では、
グアヤコールを硝酸でニトロ化し、5−ニトログ
アヤコールを得ている。例えば、グアヤコールを
アセチル化した後、濃硝酸−酢酸を用いてニトロ
化し、その後加水分解により、5−ニトログアヤ
コールを得る方法がある。
5-Nitroguaiacol is used as a raw material for cosmetics, concentrated medicines, etc., and by conventional synthesis methods,
Guaiacol is nitrated with nitric acid to obtain 5-nitroguaiacol. For example, there is a method in which guaiacol is acetylated, then nitrated using concentrated nitric acid-acetic acid, and then hydrolyzed to obtain 5-nitroguaiacol.

しかし、このグアヤコールのニトロ化による方
法は、反応が過激なため、タール状の不明成分が
生成すると同時に、3−ニトログアヤコール、4
−ニトログアヤコール等の異性体を副成するとい
う欠点を克服することができない。
However, since this method of nitration of guaiacol is a radical reaction, an unknown tar-like component is produced, and at the same time, 3-nitroguaiacol, 4-nitroguaiacol, and
- It is not possible to overcome the drawback that isomers such as nitroguaiacol are produced as by-products.

5−ニトログアヤコールの合成方法としては他
に、4−ニトログアヤコールの臭化水素によるケ
ン化合成法〔D.Cardwell,R.Robinson,J.
Chem・soc.、107p.258(1915)〕があるが、工業
的には魅力がなく実際には前法で製造されてい
る。
Another method for synthesizing 5-nitroguaiacol is the saponification synthesis method of 4-nitroguaiacol using hydrogen bromide [D. Cardwell, R. Robinson, J.
Chem・soc., 107 p.258 (1915)], but it is not industrially attractive and is actually produced by the previous method.

芳香族ヒドロキシル化反応は数多く報告されて
いるが、電解によるヒドロキシル化の報告は比較
的少ない。例えば、Fenton試薬(過酸化水素−
Fe2+)を電解に応用したものでは、ベンゼンよ
りフエノールの合成〔J.Wellman,et.al.,
Chem.Ber.110、p.3561(1977)〕およびトルエン
よりクレゾールの合成が報告されている。一方、
銅イオンと過酸化水素を用いた電解ヒドロキシル
化によるフエノール類の合成も報告されている
〔B.Fleszer and A.Sobkowiak,
Electrochemica Acta.26p.1699(1981)〕。
Although many aromatic hydroxylation reactions have been reported, there are relatively few reports on electrolytic hydroxylation. For example, Fenton's reagent (hydrogen peroxide-
Fe 2+ ) is applied to electrolysis to synthesize phenol from benzene [J.Wellman, et.al.
Chem. Ber. 110 , p. 3561 (1977)] and the synthesis of cresol from toluene has been reported. on the other hand,
Synthesis of phenols by electrolytic hydroxylation using copper ions and hydrogen peroxide has also been reported [B.Fleszer and A.Sobkowiak,
Electrochemica Acta. 26 p.1699 (1981)].

これらの例はすべて、メチル基、メトキシ基の
ような電子供与性基をもつ芳香環のヒドロキシル
化で、ニトロ基、カルボニル基のような電子吸引
性基をもつ芳香族化合物に電解ヒドロキシル化を
応用した例はみられない。
All of these examples are hydroxylation of aromatic rings with electron-donating groups such as methyl and methoxy groups, and electrolytic hydroxylation is applied to aromatic compounds with electron-withdrawing groups such as nitro and carbonyl groups. There are no examples of this happening.

二価鉄イオンと過酸化水素で発生する水酸ラジ
カルによるヒドロキシル化反応(フエントン反
応)は生体内でおこる酸素によるヒドロキシル化
と類似した機構であると考えられているが、反応
率、選択性共に低いため工業化には至つていな
い。
The hydroxylation reaction (Fuenton reaction) by hydroxyl radicals generated by divalent iron ions and hydrogen peroxide is thought to have a similar mechanism to the hydroxylation by oxygen that occurs in vivo, but the reaction rate and selectivity are Due to the low level of production, industrialization has not yet been achieved.

本発明は、フエントン試薬に電解を応用するこ
とによつて、例えばFe3+からFe2+を連続的に発
生させ、過酸化水素または酸素の添加により、反
応種である水酸ラジカルを効果的に生成させ、p
−ニトロアニソールに導入することにより、5−
ニトログアヤコールを高収率で得る方法である。
The present invention continuously generates Fe 2+ from Fe 3+ by applying electrolysis to Fuenton's reagent, and effectively removes hydroxyl radicals, which are reactive species, by adding hydrogen peroxide or oxygen. and p
- By introducing into nitroanisole, 5-
This is a method for obtaining nitroguaiacol in high yield.

本発明者等は、これらの状況から安価なp−ニ
トロアニソールを原料として、5−ニトログアヤ
コールを選択的に製造し得る上記電解ヒドロキシ
ル化の条件について鋭意研究の結果、本発明を完
成した。
Under these circumstances, the present inventors completed the present invention as a result of extensive research into the conditions for the electrolytic hydroxylation that allows selective production of 5-nitroguaiacol using inexpensive p-nitroanisole as a raw material.

即ち、本発明はp−ニトロアニソールを水また
は有機溶媒はたはこれらの混合溶媒中に分散また
は溶解し、金属イオンと支持電解質の存在下に、
過酸化水素または酸素を用い電解ヒドロキシル化
することを特徴とする5−ニトログアヤコールの
製造法にある。
That is, in the present invention, p-nitroanisole is dispersed or dissolved in water, an organic solvent, or a mixed solvent thereof, and in the presence of metal ions and a supporting electrolyte,
A method for producing 5-nitroguaiacol, characterized by electrolytic hydroxylation using hydrogen peroxide or oxygen.

本発明は、電解による金属イオンの還元を利用
したもので、電解に当つて使用する陰極材料とし
ては、一般の電解で用いられる、鉄、銅、鉛、ニ
ツケル、白金、ステンレス等の金属、および黒鉛
を使用し、陽極材料としては、鉛、黒鉛、白金、
貴金属被覆チタン等を使用する。
The present invention utilizes the reduction of metal ions through electrolysis, and the cathode materials used for electrolysis include metals used in general electrolysis, such as iron, copper, lead, nickel, platinum, and stainless steel; Graphite is used, and the anode materials include lead, graphite, platinum,
Use precious metal coated titanium, etc.

溶媒としては、p−ニトロアニソールを溶解ま
たは分散させることができる溶媒で、ヒドロキシ
ル化反応に対して不活性なものが好ましい。使用
できる溶媒の例としては、水、アセトン、アセト
ニトリル、DMF、メタノールなどがあり、これ
らの混合溶媒も使用できる。
The solvent is preferably a solvent that can dissolve or disperse p-nitroanisole and is inert to the hydroxylation reaction. Examples of solvents that can be used include water, acetone, acetonitrile, DMF, and methanol, and mixed solvents thereof can also be used.

本発明に触媒として用いる金属イオンは多原子
価金属イオンで例えば鉄、銅、コバルトのイオン
があげられる。これらは、金属塩、金属錯体の形
で用いるとよく、例えば硫酸第二鉄、硫酸第一
鉄、塩化第一鉄、塩化第二鉄、硫酸銅、EDTA
鉄()錯体、EDTA銅錯体、シアノコバラミ
ン等がある。これらの金属イオンの使用量は、溶
液中で0.001M/から1M/、好ましくは
0.01M/から0.5M/である。0.001M/以
下では電流密度が低下し使用できない。
The metal ions used as catalysts in the present invention are polyvalent metal ions, such as iron, copper, and cobalt ions. These are preferably used in the form of metal salts or metal complexes, such as ferric sulfate, ferrous sulfate, ferrous chloride, ferric chloride, copper sulfate, EDTA
Examples include iron() complex, EDTA copper complex, and cyanocobalamin. The amount of these metal ions used is 0.001M/ to 1M/ in solution, preferably
It is 0.01M/ to 0.5M/. If it is less than 0.001M/, the current density decreases and it cannot be used.

電極電位は、金属イオンが還元される電位で、
使用する金属イオンの酸化還元電位の近傍が好ま
しく、使用金属イオンによつて多少の差はあるが
一般には±0.5Vから−1.0Vを使用すればよい。
例えば、鉄()イオンを用いた場合は、+0.5V
から−0.5V(us.SCE)で電解を行う。
Electrode potential is the potential at which metal ions are reduced.
It is preferable to use a voltage close to the redox potential of the metal ion used, and generally a voltage of ±0.5V to -1.0V may be used, although there are some differences depending on the metal ion used.
For example, when using iron () ions, +0.5V
Electrolysis is performed at -0.5V (us.SCE) from

支持電解質としては、例えば、塩酸、硫酸、硝
酸、過塩素酸、およびこれらのアルカリ金属塩を
用いることができ、二種以上の混合物も可能であ
る。使用量は0.001M/から1M/であり、好
ましくは0.05M/から0.5M/である。支持
電解質を添加した溶液のPHは0から7であり、好
ましくは0から4である。
As the supporting electrolyte, for example, hydrochloric acid, sulfuric acid, nitric acid, perchloric acid, and alkali metal salts thereof can be used, and a mixture of two or more types is also possible. The amount used is 0.001M/ to 1M/, preferably 0.05M/ to 0.5M/. The pH of the solution to which the supporting electrolyte is added is from 0 to 7, preferably from 0 to 4.

酸化剤としては、過酸化水素、酸素または過酸
化水素と酸素の混合物を用いることが可能である
が、酸素を単独で用いる場合は、酸素を電極上還
元し過酸化水素とするため、電流効率は低下す
る。過酸化水素の使用量はp−ニトロアニソール
の0.5から10倍モル量、好ましくは1から3倍モ
ル量を使用する。
As the oxidizing agent, it is possible to use hydrogen peroxide, oxygen, or a mixture of hydrogen peroxide and oxygen, but when oxygen is used alone, the current efficiency is low because the oxygen is reduced on the electrode to form hydrogen peroxide. decreases. The amount of hydrogen peroxide used is 0.5 to 10 times the molar amount of p-nitroanisole, preferably 1 to 3 times the molar amount.

p−ニトロアニソールは、水または有機溶媒中
で、均質分散もしくは溶解せしめて使用すればよ
い。
p-Nitroanisole may be used after being homogeneously dispersed or dissolved in water or an organic solvent.

以下に実施例をあげて本発明を説明する。 The present invention will be explained below with reference to Examples.

実施例 1 p−ニトロアニソールをヒドロキシル化して、
5−ニトログアヤコールを得る操作を、つぎの特
性をもつ電解槽中で行つた。
Example 1 Hydroxylation of p-nitroanisole
The operation for obtaining 5-nitroguaiacol was carried out in an electrolytic cell having the following characteristics.

電解槽は、隔膜としてアニオン交換膜(旭硝子
AMV)を有するガラス製H型セルを用いた。
The electrolytic cell uses an anion exchange membrane (Asahi Glass) as a diaphragm.
A glass H-type cell with AMV) was used.

陽極は黒鉛板であり、その表面積は約6cm2とし
た。
The anode was a graphite plate with a surface area of about 6 cm 2 .

陰極は白金板であり、その表面積は1cm2とし
た。
The cathode was a platinum plate with a surface area of 1 cm 2 .

参照電極として、飽和カロメル電極を用い、塩
橋を経由とし、陰極電位を測定した。
A saturated calomel electrode was used as a reference electrode, and the cathode potential was measured via a salt bridge.

陽極室、陰極室、共に容量はほぼ100mlとした。 The capacity of both the anode and cathode chambers was approximately 100ml.

電源として、ポテンシオガルバノスタツト(北
斗電工HA−101)を用い、通電電気量をクーロ
ンメータ−(北斗電工HF−201)で測定した。
A potentiogalvanostat (Hokuto Denko HA-101) was used as a power source, and the amount of electricity was measured with a coulomb meter (Hokuto Denko HF-201).

陰極液は磁気撹拌によつて撹拌した。 The catholyte was stirred by magnetic stirring.

電解条件はつぎのとおりである。 The electrolysis conditions are as follows.

陰極電位 −0.00V(us.SCE) 陰極液温度 30℃ 電流密度 約1A/dm2 電解槽の端子間における電位 約4.0V 陰極液は硫酸第二鉄0.01molおよび過塩素酸
0.1molを溶解したアセトニトリル水溶液(50vol
%)40mlにp−ニトロアニソール0.0025molを添
加した溶液とした。
Cathode potential -0.00V (us.SCE) Catholyte temperature 30℃ Current density Approximately 1A/dm Potential between the terminals of the two electrolytic cells Approximately 4.0V The catholyte contains 0.01mol of ferric sulfate and perchloric acid.
Acetonitrile aqueous solution (50vol) containing 0.1mol
%) 0.0025 mol of p-nitroanisole was added to 40 ml to prepare a solution.

電解中、過酸化水素を30クーロン通電ごとに
0.00047mol、総計でp−ニトロアニソールの1.5
倍モルに当る0.0038mol添加した。
During electrolysis, hydrogen peroxide is applied every 30 coulombs.
0.00047mol, total 1.5 of p-nitroanisole
0.0038 mol, equivalent to twice the mol, was added.

電解は、反応が1電子反応と仮定した時の理論
電気量(0.0025F)通電するのに必要な時間行つ
た。
Electrolysis was carried out for a time required to supply a theoretical amount of electricity (0.0025F) assuming that the reaction was a one-electron reaction.

電解終了後、生成物を高速液体クロマトグラフ
イーによつて分析し、5−ニトログアヤコール
0.62mmol、p−ニトロフエノール0.035mmol、
p−メトキシフエノール0.064molが得られた。
5ニトログアヤコールのp−ニトロアニソールに
対する化学収率は25.59%であり、電流効率は
25.59%であつた。
After completion of electrolysis, the product was analyzed by high performance liquid chromatography, and 5-nitroguaiacol was detected.
0.62 mmol, p-nitrophenol 0.035 mmol,
0.064 mol of p-methoxyphenol was obtained.
The chemical yield of 5-nitroguaiacol to p-nitroanisole is 25.59%, and the current efficiency is
It was 25.59%.

実施例 2 電解装置および実験操作は実施例1に準じて行
つた。
Example 2 The electrolyzer and experimental operations were carried out in accordance with Example 1.

電解条件はつぎのとおりである。 The electrolysis conditions are as follows.

陰極電位 −0.00V(us.SCE) 陽極液温度 30℃ 電流密度 約1A/dm2 極間電位 約40V 電気量 241c 陰極液はEDTA Fe3+0.01molおよび過塩素酸
0.1molを溶解したアセトニトリル水溶液(50vol
%)40mlにp−ニトロアニソール0.0025molを添
加した溶液とした。
Cathode potential -0.00V (us.SCE) Anolyte temperature 30℃ Current density Approximately 1A/dm Potential between two electrodes Approximately 40V Electricity 241c The catholyte contains EDTA Fe 3+ 0.01mol and perchloric acid.
Acetonitrile aqueous solution (50vol) containing 0.1mol
%) 0.0025 mol of p-nitroanisole was added to 40 ml to prepare a solution.

電解中、過酸化水素を30クーロン通電ごとに
0.00047mol、総計でp−ニトロアニソールの1.5
倍モルに当る0.0038mol添加した。
During electrolysis, hydrogen peroxide is applied every 30 coulombs.
0.00047mol, total 1.5 of p-nitroanisole
0.0038 mol, equivalent to twice the mol, was added.

電解終了後、生成物を高速液体クロマトグラフ
イーにより分析し、5−ニトログアマコール0.61
mmol、p−ニトロフエノール0.084mmol、p−
メトキシフエノール0.056mmolが得られた。5
−ニトログアヤコールの化学収率は24.6%で電流
効率は24.6%であつた。
After completion of electrolysis, the product was analyzed by high performance liquid chromatography, and 5-nitroguamacol 0.61
mmol, p-nitrophenol 0.084 mmol, p-
0.056 mmol of methoxyphenol was obtained. 5
- The chemical yield of nitroguaiacol was 24.6% and the current efficiency was 24.6%.

実施例 3 電解装置および実験操作は実施例1に準じて行
つた。
Example 3 The electrolyzer and experimental operations were carried out in accordance with Example 1.

電解条件はつぎのとおりである。 The electrolysis conditions are as follows.

陰極電位 −0.00V(us.SCE) 陰極液温度 30℃ 電流密度 約1A/dm2 極間電位 約4.0V 電気量 241c 陰極液は硫酸第二鉄0.0005mol、硫酸銅
0.005molおよび過塩素酸0.1molを溶解したアセ
トニトリル水溶液(50vol%)40mlにp−ニトロ
アニソール0.0025molを添加した溶液とした。
Cathode potential -0.00V (us.SCE) Catholyte temperature 30℃ Current density Approximately 1A/dm Potential between two electrodes Approximately 4.0V Electricity 241c The catholyte contains 0.0005mol of ferric sulfate and copper sulfate.
A solution was prepared by adding 0.0025 mol of p-nitroanisole to 40 ml of acetonitrile aqueous solution (50 vol%) in which 0.005 mol and 0.1 mol of perchloric acid were dissolved.

電解中、過酸化水素を30クーロン通電ごとに
0.00047mol、総計でp−ニトロアニソールの1.5
倍モルに当る0.0038mol添加した。
During electrolysis, hydrogen peroxide is applied every 30 coulombs.
0.00047mol, total 1.5 of p-nitroanisole
0.0038 mol, equivalent to twice the mol, was added.

電解終了後、生成物を高速液体クロマトグラフ
イーににより分析し、5−ニトログアヤコール
0.46mmol、p−ニトロフエノール0.025mmol、
p−メトキシフエノール0.024mmolが得られた。
5−ニトログアヤコールの化学収率は18.61%で
電流効率は18.61%であつた。
After completion of electrolysis, the product was analyzed by high performance liquid chromatography, and 5-nitroguaiacol was detected.
0.46 mmol, p-nitrophenol 0.025 mmol,
0.024 mmol of p-methoxyphenol was obtained.
The chemical yield of 5-nitroguaiacol was 18.61% and the current efficiency was 18.61%.

実施例 4 電解装置および実験操作は実施例1に準じて行
つた。
Example 4 The electrolyzer and experimental operations were carried out in accordance with Example 1.

電解条件はつぎのとおりである。 The electrolysis conditions are as follows.

陰極電位 −0.00V(us.SCE) 陰極液温度 30℃ 電流密度 約1A/dm2 極間電位 約4.0V 陰極液はEDTA Fe3+0.01molおよび過塩素酸
0.05mol、過塩素酸ソーダ0.05molを溶解したア
セトニトリル水溶液(50vol%)40mlにp−ニト
ロアニソール0.0025molを添加した溶液とした。
Cathode potential -0.00V (us.SCE) Catholyte temperature 30℃ Current density Approximately 1A/dm Potential between two electrodes Approximately 4.0V The catholyte contains EDTA Fe 3+ 0.01mol and perchloric acid.
0.05 mol of p-nitroanisole was added to 40 ml of acetonitrile aqueous solution (50 vol%) in which 0.05 mol of sodium perchlorate was dissolved.

電解中、過酸化水素を30クーロン通電ごとに
0.00047mol、総計でp−ニトロアニソルの1.5倍
モルに当る0.0038mol添加した。
During electrolysis, hydrogen peroxide is applied every 30 coulombs.
0.00047 mol, a total of 0.0038 mol equivalent to 1.5 times the mole of p-nitroanisole was added.

電解終了後、生成物を高速液体クロマトグラフ
イーにより分析し、5−ニトログアヤコール
0.37mol、p−ニトロフエノール0.003mol、p−
メトキシフエノール0.002molが得られた。5−
ニトログアヤコールの化学収率は15.12%で電流
効率は15.12%であつた。
After completion of electrolysis, the product was analyzed by high performance liquid chromatography, and 5-nitroguaiacol was detected.
0.37mol, p-nitrophenol 0.003mol, p-
0.002 mol of methoxyphenol was obtained. 5-
The chemical yield of nitroguaiacol was 15.12% and the current efficiency was 15.12%.

実施例 5 電解装置および実験操作は実施例1に準じて行
つた。
Example 5 The electrolyzer and experimental operations were carried out in accordance with Example 1.

電解条件はつぎのとおりである。 The electrolysis conditions are as follows.

陰極電位 −0.01V(us.SCE) 陰極液温度 30℃ 電流密度 約1A/dm2 極間電位 約4.0V 陰極液はEDTA Fe3+0.01molおよび硫酸
0.1molを溶解したアセトニトリル水溶液(50vol
%)40mlにp−ニトロアニソール0.0025molを添
加した溶液とした。
Cathode potential -0.01V (us.SCE) Catholyte temperature 30℃ Current density Approx. 1A/dm Potential between two electrodes Approx. 4.0V Catholyte contains EDTA Fe 3+ 0.01mol and sulfuric acid
Acetonitrile aqueous solution (50vol) containing 0.1mol
%) 0.0025 mol of p-nitroanisole was added to 40 ml to prepare a solution.

電解中、過酸化水素を30クーロン通電ごとに
0.00047mol、総計でp−ニトロアニソールの1.5
倍モルに当る0.0038mol添加した。
During electrolysis, hydrogen peroxide is applied every 30 coulombs.
0.00047mol, total 1.5 of p-nitroanisole
0.0038 mol, equivalent to twice the mol, was added.

電解終了後、生成物を高速液体クロマトグラフ
イーにより分析し、5−ニトログアヤコール0.27
mmol、p−ニトロフエノール−mol、p−メト
キシフエノール0.04mmolが得られた、5−ニト
ログアヤコールの化学収率は10.72%で電流効率
は10.72%であつた。
After completion of electrolysis, the product was analyzed by high performance liquid chromatography, and 5-nitroguaiacol 0.27
mmol, p-nitrophenol-mol, and p-methoxyphenol 0.04 mmol were obtained, the chemical yield of 5-nitroguaiacol was 10.72%, and the current efficiency was 10.72%.

実施例 6 電解装置および実験操作は実施例1に準じて行
つた。
Example 6 The electrolyzer and experimental operations were carried out in accordance with Example 1.

電解条件はつぎのとおりである。 The electrolysis conditions are as follows.

陰極電位 −0.00V(us.SCE) 陰極液温度 30℃ 電流密度 約1A/dm2 極間電位 約4.0V 陰極液はEDTA Fe3+0.01molおよび塩酸
0.1molを溶解したアセトニトリル水溶液(50vol
%)40mlにp−ニトロアニソール0.0025molを添
加した溶液とした。
Cathode potential -0.00V (us.SCE) Catholyte temperature 30℃ Current density Approximately 1A/dm Potential between two electrodes Approximately 4.0V The catholyte contains EDTA Fe 3+ 0.01mol and hydrochloric acid.
Acetonitrile aqueous solution (50vol) containing 0.1mol
%) 0.0025 mol of p-nitroanisole was added to 40 ml to prepare a solution.

電解中、過酸化水素を30クーロン通電ごとに
0.00047mol、総計でp−ニトロアニソールの1.5
倍モルにあたる0.0038mol添加した。
During electrolysis, hydrogen peroxide is applied every 30 coulombs.
0.00047mol, total 1.5 of p-nitroanisole
0.0038mol, which is twice the mole, was added.

電解終了後、生成物を高速液体クロマトグラフ
イーにより分析し、5−ニトログアヤコール0.60
mmol、p−ニトロフエノール0.17mmol、p−
メトキシフエノール0.05mmol、が得られた。5
−ニトログアヤコールの化学収率は24.17%で電
流効率は24.17%であつた。
After completion of electrolysis, the product was analyzed by high performance liquid chromatography, and 5-nitroguaiacol 0.60
mmol, p-nitrophenol 0.17 mmol, p-
0.05 mmol of methoxyphenol was obtained. 5
- The chemical yield of nitroguaiacol was 24.17% and the current efficiency was 24.17%.

実施例 7 電解装置および実験操作は実施例1に準じて行
つた。
Example 7 The electrolyzer and experimental operations were carried out in accordance with Example 1.

電解条件はつぎのとおりである。 The electrolysis conditions are as follows.

陰極電位 −0.00V(us.SCE) 陰極液温度 30℃ 電流密度 約1A/dm2 極間電位 約4.0V 陰極液はEDTA Fe3+0.01molおよび硝酸
0.1molを溶解したアセトニトリル水溶液(50vol
%)40mlにp−ニトロアニソール0.0025molを添
加した溶液とした。
Cathode potential -0.00V (us.SCE) Catholyte temperature 30℃ Current density Approx. 1A/dm Potential between two electrodes Approx. 4.0V Catholyte contains EDTA Fe 3+ 0.01mol and nitric acid
Acetonitrile aqueous solution (50vol) containing 0.1mol
%) 0.0025 mol of p-nitroanisole was added to 40 ml to prepare a solution.

電解中、過酸化水素を30クーロン通電ごとに
0.00047mol、総計でp−ニトロアニソールの1.5
倍モルに当る0.0038mol添加した。
During electrolysis, hydrogen peroxide is applied every 30 coulombs.
0.00047mol, total 1.5 of p-nitroanisole
0.0038 mol, equivalent to twice the mol, was added.

電解終了後、生成物を高速液体クロマトグラフ
イーにより分析し、5−ニトログアヤコール0.50
mmol、p−ニトロフエノール0.07mmol、p−
メトキシフエノール0.04mmolが得られた。5−
ニトログアヤコールの化学収率は20.1%で電流効
率は20.1%であつた。
After completion of electrolysis, the product was analyzed by high performance liquid chromatography, and 5-nitroguaiacol 0.50
mmol, p-nitrophenol 0.07 mmol, p-
0.04 mmol of methoxyphenol was obtained. 5-
The chemical yield of nitroguaiacol was 20.1% and the current efficiency was 20.1%.

実施例 8 電解槽は隔膜としてアニオン交換膜(旭硝子
AMV)を有するガラス製H型セルを用いた。
Example 8 The electrolytic cell used an anion exchange membrane (Asahi Glass Co., Ltd.) as a diaphragm.
A glass H-type cell with AMV) was used.

陽極は白金板でありその表面積は、4cm2とし
た。陰極はステンレス板であり、その表面積は4
cm2とした。
The anode was a platinum plate with a surface area of 4 cm 2 . The cathode is a stainless steel plate, and its surface area is 4
cm2 .

参照電極として、飽和カロメル電極を用い、塩
橋を経由し、陰極電位を測定した。
A saturated calomel electrode was used as a reference electrode, and the cathode potential was measured via a salt bridge.

陽極室、陰極室共に容量はほぼ100mlとした。 The capacity of both the anode and cathode chambers was approximately 100ml.

電源として、ポテンシオガルバノスタツト(北
斗電工HA101)を用い、通電気量をクーロンメ
ーター(北斗電工 HF201)で測定した。
A potentiogalvanostat (Hokuto Denko HA101) was used as a power source, and the amount of electricity was measured with a coulomb meter (Hokuto Denko HF201).

陰極液は、磁気撹拌した。 The catholyte was magnetically stirred.

電解条件はつぎのとおりである。 The electrolysis conditions are as follows.

陰極電位 −0.00V(us.SCE) 陰極液温度 55℃ 電流密度 約1A/dm2 電解槽の端子間における電位 約4.0V 陰極液は、硫酸第二鉄0.01molおよび過塩素酸
0.1molを溶解した水溶液70mlにp−ニトロアニ
ソール0.005molを添加した溶液とした。
Cathode potential -0.00V (us.SCE) Catholyte temperature 55℃ Current density Approximately 1A/dm Potential between the terminals of the two electrolytic cells Approximately 4.0V The catholyte contains 0.01mol of ferric sulfate and perchloric acid.
A solution was prepared by adding 0.005 mol of p-nitroanisole to 70 ml of an aqueous solution containing 0.1 mol of p-nitroanisole.

電解中、過塩素酸を30クーロン通電ごとに
0.00047mol、総計でp−ニトロアニソールの0.75
倍モルに当る0.0038mol添加した。
During electrolysis, perchloric acid is applied every 30 coulombs.
0.00047mol, total 0.75 of p-nitroanisole
0.0038 mol, equivalent to twice the mol, was added.

電解は反応が1電子反応と仮定した時の理論電
気量の半量(0.0025F)通電するのに必要な時間
行つた。
Electrolysis was carried out for a time required to supply half the theoretical amount of electricity (0.0025F) assuming that the reaction was a one-electron reaction.

電解終了後、生成物を高速液体クロマトグラフ
イーで分析し、5−ニトログアヤコール0.62m
mol、p−ニトロフエノール0.04mmol、p−メ
トキシフエノール0.04mmolが得られた。5−ニ
トログアヤコールの化学収率は12.36%で電流効
率は24.72%であつた。
After completion of electrolysis, the product was analyzed by high performance liquid chromatography, and 5-nitroguaiacol 0.62m
mol, p-nitrophenol 0.04 mmol, and p-methoxyphenol 0.04 mmol were obtained. The chemical yield of 5-nitroguaiacol was 12.36% and the current efficiency was 24.72%.

実施例 9 電解装置および実験操作は実施例8に準じて行
つた。
Example 9 The electrolyzer and experimental operations were carried out in accordance with Example 8.

電解条件はつぎのとおりである。 The electrolysis conditions are as follows.

陰極電位 −0.00V(us.SCE) 陰極液温度 55℃ 電流密度 約2A/dm2 極間電位 約4.0V 電気量 241c 陰極液は硫酸第二鉄0.02molおよび過塩素酸
0.1molを溶解した水溶液70mlにp−ニトロアニ
ソール0.005molを添加した溶液とした。
Cathode potential -0.00V (us.SCE) Catholyte temperature 55℃ Current density Approximately 2A/dm Potential between two electrodes Approximately 4.0V Electricity 241c The catholyte contains 0.02mol of ferric sulfate and perchloric acid.
A solution was prepared by adding 0.005 mol of p-nitroanisole to 70 ml of an aqueous solution containing 0.1 mol of p-nitroanisole.

電解中、過酸化水素を30クーロン通電ごとに
0.00047mol、総計でp−ニトロアニソールの0.75
倍モルに当る0.0038mol添加した。
During electrolysis, hydrogen peroxide is applied every 30 coulombs.
0.00047mol, total 0.75 of p-nitroanisole
0.0038 mol, equivalent to twice the mol, was added.

電解終了後、生成物を高速液体クロマトグラフ
イーにより分析し、5−ニトログアヤコール0.79
mmol、p−ニトロフエノール0.03mol、p−メ
トキシフエノール0.04molが得られた。5−ニト
ログアヤコールの化学収率は15.71%で電流効率
は31.42%であつた。
After completion of electrolysis, the product was analyzed by high performance liquid chromatography, and 5-nitroguaiacol 0.79
mmol, p-nitrophenol 0.03 mol, and p-methoxyphenol 0.04 mol were obtained. The chemical yield of 5-nitroguaiacol was 15.71% and the current efficiency was 31.42%.

実施例 10 電解装置および実験操作は実施例8に準じて行
つた。
Example 10 The electrolyzer and experimental operations were carried out in accordance with Example 8.

電解条件はつぎのとおりである。 The electrolysis conditions are as follows.

陰極電位 −0.00V(us.SCE) 陰極液温度 55℃ 電流密度 約2A/dm2 極間電位 約3V 陰極液は硫酸第二鉄0.01molおよび過塩素酸
0.5molを溶解した水溶液70mlにp−ニトロアニ
ソール0.005molを添加した溶液とした。
Cathode potential -0.00V (us.SCE) Catholyte temperature 55℃ Current density Approximately 2A/dm Potential between two electrodes Approximately 3V The catholyte contains 0.01mol of ferric sulfate and perchloric acid.
A solution was prepared by adding 0.005 mol of p-nitroanisole to 70 ml of an aqueous solution containing 0.5 mol of p-nitroanisole.

電解中、過酸化水素を30クーロン通電ごとに
0.00047mol、総計でp−ニトロアニソールの0.75
倍モルに当る0.0038mol添加した。
During electrolysis, hydrogen peroxide is applied every 30 coulombs.
0.00047mol, total 0.75 of p-nitroanisole
0.0038 mol, equivalent to twice the mol, was added.

電解終了後、生成物を高速液体クロマトグラフ
イーにより分析し、5−ニトログアヤコール0.13
mmol、p−ニトロフエノール0.02mol、p−メ
トキシフエノール−molが得られた。5−ニトロ
グアヤコールの化学収率は5.21%で電流効率は
10.24%であつた。
After completion of electrolysis, the product was analyzed by high performance liquid chromatography, and 5-nitroguaiacol 0.13
mmol, 0.02 mol of p-nitrophenol, and 0.02 mol of p-methoxyphenol were obtained. The chemical yield of 5-nitroguaiacol is 5.21% and the current efficiency is
It was 10.24%.

実施例 11 電解装置および実験操作は実施例8に準じて行
つた。
Example 11 The electrolyzer and experimental operations were carried out in accordance with Example 8.

電解条件はつぎのとおりである。 The electrolysis conditions are as follows.

陰極電位 −0.00V(us.SCE) 陰極液温度 55℃ 電流密度 約2A/dm2 極間電位 約3V 陰極液は硫酸第二鉄0.1molおよび過塩素酸
0.1molを溶解した水溶液70mlにp−ニトロアニ
ソール0.005molを添加した溶液とした。
Cathode potential -0.00V (us.SCE) Catholyte temperature 55℃ Current density Approximately 2A/dm Potential between two electrodes Approximately 3V The catholyte contains 0.1mol of ferric sulfate and perchloric acid.
A solution was prepared by adding 0.005 mol of p-nitroanisole to 70 ml of an aqueous solution containing 0.1 mol of p-nitroanisole.

電解中、過酸化水素を30クーロン通電ごとに
0.00047mol、総計でp−ニトロアニソールの0.75
倍モルに当る0.0038mol添加た。
During electrolysis, hydrogen peroxide is applied every 30 coulombs.
0.00047mol, total 0.75 of p-nitroanisole
0.0038mol, equivalent to twice the mole, was added.

電解終了後、生成物を高速液体クロマトグラフ
イーにより分析し、5−ニトログアヤコール0.54
mmol、p−ニトロフエノール0.04mol、p−メ
トキシフエノール−molが得られた。5−ニトロ
グアヤコールの化学収率は10.81%で電流効率は
21.62%であつた。
After completion of electrolysis, the product was analyzed by high performance liquid chromatography, and 5-nitroguaiacol 0.54
mmol, 0.04 mol of p-nitrophenol, and 0.04 mol of p-methoxyphenol were obtained. The chemical yield of 5-nitroguaiacol is 10.81% and the current efficiency is
It was 21.62%.

実施例 12 電解装置および実験操作は実施例8に準じて行
つた。
Example 12 The electrolyzer and experimental operations were carried out in accordance with Example 8.

電解条件はつぎのとおりである。 The electrolysis conditions are as follows.

陰極電位 −0.50V(us.SCE) 陰極液温度 55℃ 電流密度 1A/dm2 極間電位 4V 陰極液は硫酸第二鉄0.02molおよび過塩素酸
0.1molを溶解した水溶液70mlにp−ニトロアニ
ソール0.005molを添加した溶液とした。
Cathode potential -0.50V (us.SCE) Catholyte temperature 55℃ Current density 1A/dm Potential between two electrodes 4V The catholyte contains 0.02mol of ferric sulfate and perchloric acid.
A solution was prepared by adding 0.005 mol of p-nitroanisole to 70 ml of an aqueous solution containing 0.1 mol of p-nitroanisole.

電解は酸素注入下で行い、483クーロン通電後、
生成物を高速流体クロマトグラフイーで分析し5
−ニトログアヤコール0.25mmolが得られた。5
−ニトログアヤコールの化学収率は5.0%で電流
効率は5%であつた。
Electrolysis was performed under oxygen injection, and after energizing 483 coulombs,
The product was analyzed by high performance fluid chromatography.
-0.25 mmol of nitroguaiacol was obtained. 5
- The chemical yield of nitroguaiacol was 5.0% and the current efficiency was 5%.

Claims (1)

【特許請求の範囲】[Claims] 1 p−ニトロアニソールを水または有機溶媒ま
たはこれらの混合溶媒中に分散または溶解し、金
属イオンと支持電解質の存在下に、過酸化水素ま
たは酸素を用い電解ヒドロキシル化することを特
徴とする5−ニトログアヤコールの製造方法。
1. 5-, characterized in that p-nitroanisole is dispersed or dissolved in water, an organic solvent, or a mixed solvent thereof, and subjected to electrolytic hydroxylation using hydrogen peroxide or oxygen in the presence of metal ions and a supporting electrolyte. Method for producing nitroguaiacol.
JP58084789A 1983-05-13 1983-05-13 Manufacture of 5-nitroguaiacol Granted JPS59211584A (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP58084789A JPS59211584A (en) 1983-05-13 1983-05-13 Manufacture of 5-nitroguaiacol

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP58084789A JPS59211584A (en) 1983-05-13 1983-05-13 Manufacture of 5-nitroguaiacol

Publications (2)

Publication Number Publication Date
JPS59211584A JPS59211584A (en) 1984-11-30
JPH032956B2 true JPH032956B2 (en) 1991-01-17

Family

ID=13840462

Family Applications (1)

Application Number Title Priority Date Filing Date
JP58084789A Granted JPS59211584A (en) 1983-05-13 1983-05-13 Manufacture of 5-nitroguaiacol

Country Status (1)

Country Link
JP (1) JPS59211584A (en)

Families Citing this family (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN104126597B (en) * 2014-07-24 2016-06-01 桂林桂开生物科技股份有限公司 Promote plant growth promoter and its preparation method of balanced growth

Also Published As

Publication number Publication date
JPS59211584A (en) 1984-11-30

Similar Documents

Publication Publication Date Title
US4639298A (en) Oxidation of organic compounds using ceric ions in aqueous methanesulfonic acid
JP2618389B2 (en) Oxidation of organic compounds using cerium ions in aqueous trifluoromethanesulfonic acid
US5409581A (en) Tetravalent titanium electrolyte and trivalent titanium reducing agent obtained thereby
US4701245A (en) Oxidation of organic compounds using a catalyzed cerium (IV) composition
JP2633244B2 (en) Oxidation of organic compounds using cerium methanesulfonate in aqueous organic solutions
US4794172A (en) Ceric oxidant
JPH032956B2 (en)
US4277318A (en) Electrochemical benzylic oxidations
CA1271490A (en) Oxidation of organic compounds using thallium ions
US4462875A (en) Preparation of nickel-oxide hydroxide electrode
Shu et al. Dynamic consequences of ionic permselectivity. Rapid ejection from Nafion coatings of anions generated electrochemically from cationic precursors
JPH0526876B2 (en)
KR910005058B1 (en) Method of p-aminophenol
Goodridge et al. The oxidation of benzene using anodically generated argentic silver ions
WO2022230896A1 (en) Apparatus for manufacturing nitrogen-containing compound and method for manufacturing nitrogen-containing compound
EP0244812B1 (en) Oxidation of organic compounds
JPS63114988A (en) Production of ceric salt solution
JPH0240744B2 (en)
JP2023075370A (en) Method for producing divalent samarium compound
JPS60121289A (en) Method for synthesizing organic compound by electrolysis
JP2023075369A (en) Method for producing divalent samarium compound
JPS6123779A (en) Electrochemical oxidation of thallium ( 1 )
Tokuda et al. Use of Electrogenerated Highly Reactive Zinc in Facile Synthesis of 2-Arylpropenoic Acid Esters and Anti-inflammatory Agents
Korinek et al. Electro-organic chemistry
JPH0244903B2 (en)