JPH03295210A - Demagnetizing device - Google Patents

Demagnetizing device

Info

Publication number
JPH03295210A
JPH03295210A JP9634990A JP9634990A JPH03295210A JP H03295210 A JPH03295210 A JP H03295210A JP 9634990 A JP9634990 A JP 9634990A JP 9634990 A JP9634990 A JP 9634990A JP H03295210 A JPH03295210 A JP H03295210A
Authority
JP
Japan
Prior art keywords
time
electromagnetic coil
capacitor
demagnetizing
relay
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Pending
Application number
JP9634990A
Other languages
Japanese (ja)
Inventor
Ryota Shindo
良太 新藤
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Amada Wasino Co Ltd
Original Assignee
Amada Wasino Co Ltd
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Amada Wasino Co Ltd filed Critical Amada Wasino Co Ltd
Priority to JP9634990A priority Critical patent/JPH03295210A/en
Publication of JPH03295210A publication Critical patent/JPH03295210A/en
Pending legal-status Critical Current

Links

Landscapes

  • Video Image Reproduction Devices For Color Tv Systems (AREA)

Abstract

PURPOSE:To easily and quickly control a direction switching, and also to conduct a demagnetizing operation quickly by a method wherein each contact point of a direction-switching circuit is continuously ON-OFF controlled by a time interval which is decreased gradually. CONSTITUTION:A capacitor 6 is provided between the output terminals of a rectifier 3, and diodes S1, D2, D3 and D4 are parallel-connected to contact points (1)to (4) of a diode switching circuit 7. Also, the diodes D1 to D4 are connected from the side of an electromagnetic coil 4 to a capacitor 6 in such a manner that a forward direction is obtained from the minus (-) terminal to a plus (+) terminal. Accordingly, a direction-changing relay CR1 is continuously switched at the times T12 to T15 which will be determined by the time intervals reduced gradually, the relay CR2 on the powder source side is turned OFF at the time T15 the chucking current at each direction switching time can be reduced gradually without generation of sparks from the contact points 1 to 4, and a demagnetizing operation can also be finishing in a short period of time.

Description

【発明の詳細な説明】 [発明の目的コ (産業上の利用分野) 本発明は、予め着磁された強磁性体がら脱磁を行う脱磁
装置に関する。
DETAILED DESCRIPTION OF THE INVENTION [Object of the Invention (Industrial Application Field) The present invention relates to a demagnetizing device that demagnetizes a ferromagnetic material that has been magnetized in advance.

(従来の技術) 例えば鉄製のワークを工作機のテーブルに固定する電磁
チャック装置にあっては、前記テーブル面に備えた強磁
性体を着磁しワークを保持させ、その後前記強磁性体か
ら脱磁することによりワークをテーブル面から離脱でき
るようにする。
(Prior art) For example, in an electromagnetic chuck device that fixes an iron workpiece to the table of a machine tool, a ferromagnetic material provided on the table surface is magnetized to hold the workpiece, and then the workpiece is released from the ferromagnetic material. Magnetism allows the workpiece to be removed from the table surface.

このような電磁チャック装置にあっては、特にワークに
磁性を残さないため、適宜残留磁気を消去、すなわち脱
磁することが必要である。
In such an electromagnetic chuck device, it is necessary to appropriately erase residual magnetism, that is, demagnetize it, so as not to leave any magnetism on the workpiece.

ところで、このように、一般に強磁性体に一度磁界を加
えると磁化され、残留磁気の形でその物体の中にいつま
でも磁性を保持するが、この残留磁気を脱磁するにはは
じめ与えた磁界よりやや小さい磁界を現在保持している
磁界と反対方向に加え、次いで、さらに小さな磁界を逆
方向に加える操作を何回か繰り返し、しだいに磁界をゼ
ロに集束してゆけばよい。
By the way, in general, once a magnetic field is applied to a ferromagnetic material, it becomes magnetized and retains magnetism in the object in the form of residual magnetism, but in order to demagnetize this residual magnetism, it is necessary to Simply apply a slightly smaller magnetic field in the opposite direction to the current magnetic field, then apply an even smaller magnetic field in the opposite direction several times, gradually converging the magnetic field to zero.

磁界をこのように制御するには、電磁コイルに流す電流
の向きを反転させながら電流を徐々に少なくして行けば
よい。電流の大きさを制御するには、電圧を制御するか
、または通電時間を制御するか、あるいは両者を組合わ
せて電圧及び通電時間を制御すればよい。
To control the magnetic field in this way, the current can be gradually reduced while reversing the direction of the current flowing through the electromagnetic coil. The magnitude of the current can be controlled by controlling the voltage, controlling the energizing time, or controlling the voltage and the energizing time by combining both.

しかし、電圧を制御する方法や電圧及び通電時間を制御
する方法にあっては、その制御方式が複雑で装置が高価
となるので、一般には通電時間を制御する方法が採用さ
れている。
However, in the method of controlling the voltage and the method of controlling the voltage and the energization time, the control method is complicated and the device becomes expensive, so a method of controlling the energization time is generally adopted.

第3図は電磁チャック装置に用いられている従来の脱磁
装置の駆動回路の一例を示す説明図である。
FIG. 3 is an explanatory diagram showing an example of a drive circuit of a conventional demagnetizing device used in an electromagnetic chuck device.

図において、交流電源1には、コントロールリレー(電
磁リレー)CR2の接点2を介して整流器3が設けられ
、この整流器3の出力を脱磁コイル(電磁コイル)4の
直流電源としている。
In the figure, an AC power source 1 is provided with a rectifier 3 via a contact 2 of a control relay (electromagnetic relay) CR2, and the output of the rectifier 3 is used as a DC power source for a demagnetizing coil (electromagnetic coil) 4.

前記整流器3及び電磁コイル4の間には、4個のコント
ロールリレーCRIの接点■、■、■。
Between the rectifier 3 and the electromagnetic coil 4, there are four control relay CRI contacts ■, ■, ■.

■をブリッジ形に組み合わせ、対向配置された接点■、
■または■、■をそれぞれ同時に開または閉動作させる
方向切換え回路5が設けられ、該回路5の入力点A、B
を前記整流器3と接続し、出力点C,Dを前記電磁コイ
ル4と接続している。
■ combined in a bridge shape, contacts placed opposite ■,
A direction switching circuit 5 is provided which simultaneously opens or closes ■, ■, and ■, respectively, and input points A and B of the circuit 5.
is connected to the rectifier 3, and output points C and D are connected to the electromagnetic coil 4.

第4図は、上記脱磁駆動回路の制御方式を示すタイミン
グチャートである。第4図において、各チャートは、上
から順に、方向切換回路5のリレーCRIの動作状態、
交流電源1に接続されるリレーCR2の動作状態、電磁
コイル4の接続点(C,D)に現われる(チャック電圧
)の変化状態、電磁コイル4に流れる電流(チャック電
流)の変化状態を示している。
FIG. 4 is a timing chart showing the control method of the demagnetizing drive circuit. In FIG. 4, each chart shows, in order from the top, the operating state of the relay CRI of the direction switching circuit 5,
It shows the operating state of relay CR2 connected to AC power supply 1, the changing state of (chuck voltage) appearing at the connection point (C, D) of electromagnetic coil 4, and the changing state of the current (chuck current) flowing through electromagnetic coil 4. There is.

第4図において、まず脱磁作業の開始前リレーCRIは
オフ状態とされており、整流器3はリレーCRIの接点
■、■を介して電磁コイル4と接続されている。
In FIG. 4, first, before the start of demagnetization work, relay CRI is turned off, and rectifier 3 is connected to electromagnetic coil 4 via contacts (1) and (2) of relay CRI.

そこで、脱磁作業を開始し、時刻T、−72で電源側の
リレーCR2をオンし、接点2を閉とすると、整流器3
の出力端に直流電圧が現われ、その出力電圧が電磁マイ
ル4の両端にチャック電圧として与えられ、電磁コイル
4には次第に大となるチャック電流Iが流され、図示し
ない強磁性体の磁化が反転される。
Therefore, when demagnetizing work is started and at time T, -72, relay CR2 on the power supply side is turned on and contact 2 is closed, rectifier 3
A DC voltage appears at the output end of the electromagnetic coil 4, and the output voltage is applied as a chucking voltage to both ends of the electromagnetic coil 4. A chucking current I that gradually increases is passed through the electromagnetic coil 4, and the magnetization of the ferromagnetic material (not shown) is reversed. be done.

時刻T2でリレーCR2をオフとし、整流器3への電源
供与を遮断すると、チャック電流Iは次第に小となり、
時間tl後にやがてゼロ(0)となる。
When relay CR2 is turned off at time T2 and power supply to rectifier 3 is cut off, chuck current I gradually becomes smaller.
It eventually becomes zero (0) after time tl.

そこで、リレーCR2をオフとした時刻T2より時間t
1経過後の時刻T3から、その後の時刻T6までリレー
CRIをオンとして、接点■、■を開とし、接点■、■
を閉とし、時間t2後に電源側のリレーCR2を時間T
5までオンとすると、電磁コイル4に前の電流とは逆方
向の電流が流れる。ここに、通電時間T、−74を前の
通電時間T2−T、より小さくしておくと、チャック電
流は前のものより小さくなり図示しない強磁性体の磁性
は小さくなる。
Therefore, from time T2 when relay CR2 is turned off, time t
From time T3 after one elapsed time to time T6 thereafter, relay CRI is turned on, contacts ■ and ■ are opened, and contacts ■ and ■
is closed, and after time t2, relay CR2 on the power supply side is closed for time T.
When turned on up to 5, a current flows through the electromagnetic coil 4 in the opposite direction to the previous current. Here, if the energization time T, -74 is made shorter than the previous energization time T2-T, the chuck current becomes smaller than the previous one, and the magnetism of the ferromagnetic material (not shown) becomes smaller.

時間t1は、リレーCRIの接点からスパークさせない
ための、チャック電流がゼロに減衰されるまでの待ち時
間である。また、時間t2は、リレー干渉防止のための
待ち時間である。
Time t1 is a waiting time until the chucking current is attenuated to zero to prevent sparking from the contacts of relay CRI. Further, time t2 is a waiting time for preventing relay interference.

以下、電磁コイル4には、時刻T7からT8にかけて、
次いてTloからT11にかけて順次逆方向となるチャ
ック電流か流される。ここに、後の通電時間は前の通電
時間に対して順次小さくされ、電磁コイル4には順次小
さな磁界か交互に現われ、図示しない強磁性体は、やが
て脱磁されることになる。
From time T7 to T8, the electromagnetic coil 4
Next, a chuck current is sequentially passed in the opposite direction from Tlo to T11. Here, the subsequent energization time is made sequentially smaller than the previous energization time, and a gradually smaller magnetic field appears in the electromagnetic coil 4 alternately, and the ferromagnetic material (not shown) is eventually demagnetized.

(発明が解決しようとする課題) しかしながら、上記の如き従来よりの通電時間制御方式
の脱磁装置にあっては、方向切換え回路5の接点開放後
、次の方向に対しての接点開閉動作をチャック電流がゼ
ロになるまで9時間t1およびリレー間の干渉防止のた
めの待ち時間t2だけ遅らせ実行しなければならないた
め、方向切換え操作に時間を要し、その分シーケンスが
複雑となり、十分な脱磁を行うためには相当時間を要す
るという問題があった。
(Problem to be Solved by the Invention) However, in the conventional demagnetizing device using the energization time control method as described above, after the contact of the direction switching circuit 5 is opened, the contact opening/closing operation for the next direction is not possible. Since the process must be delayed by 9 hours t1 until the chuck current becomes zero and by a waiting time t2 to prevent interference between relays, the direction switching operation takes time, which complicates the sequence and makes it difficult to perform sufficient escape. There was a problem in that it took a considerable amount of time to perform magnetization.

そこで、本発明は、通電時間制御方式の脱磁装置におい
て、方向切換制御を容易、迅速に行うことができ脱磁作
業を迅速に行うことができる脱磁装置を提供することを
目的とする。
SUMMARY OF THE INVENTION Accordingly, an object of the present invention is to provide a demagnetizing device using the energization time control method, which can easily and quickly perform direction switching control and can quickly perform demagnetizing work.

[発明の構成] (課題を解決するための手段) 上記課題を解決する本発明は、電磁コイルに正逆方向の
電流を繰り返し通電することにより前記電磁コイルに正
逆方向の磁界を繰り返し発生させ、予め着磁された強磁
性体から脱磁する脱磁装置において、 直流電圧を発生する直流電圧源と、該直流電圧源に接続
されるコンデンサと、該コンデンサと前記電磁コイルと
の間に配置され、ブリッジ形に組まれた接点の開閉動作
により両部材の接続方向を切換える方向切換え回路と、
該回路の各接点に並列に組み込まれ接点の開放動作に併
せて発生する前記電磁コイルの自己誘導による電流を前
記コンデンサに対して還流するダイオードとを備えて脱
磁駆動回路を構成し、 前記方向切換え回路の各接点の開閉制御を漸次減少する
時間ダクトで連続的に行うことにより前記電磁コイルか
ら漸次減少する磁界を交互に発生させる制御回路を備え
たことを特徴とする。
[Structure of the Invention] (Means for Solving the Problems) The present invention to solve the above problems repeatedly generates magnetic fields in the forward and reverse directions in the electromagnetic coil by repeatedly supplying current in the forward and reverse directions to the electromagnetic coil. , in a demagnetizing device that demagnetizes a pre-magnetized ferromagnetic material, a DC voltage source that generates a DC voltage, a capacitor connected to the DC voltage source, and a capacitor disposed between the capacitor and the electromagnetic coil. a direction switching circuit that switches the connection direction of both members by the opening and closing operation of contacts arranged in a bridge shape;
and a diode that is built in parallel to each contact of the circuit and circulates a current caused by self-induction of the electromagnetic coil generated in conjunction with the opening operation of the contact to the capacitor, forming a demagnetizing drive circuit, The present invention is characterized in that it includes a control circuit that alternately generates a gradually decreasing magnetic field from the electromagnetic coil by continuously controlling the opening and closing of each contact of the switching circuit in a gradually decreasing time duct.

(作用) 本発明の脱磁装置では、前記方向切換え回路5の各接点
の開閉制御を漸次減少する時間ダクトで連続的に行うの
で、従来例で示した待ち時間(tl+t2)が不要であ
り、その分シーケンス処理が容易で、処理速度が大とな
る。
(Function) In the demagnetizing device of the present invention, since the opening/closing control of each contact of the direction switching circuit 5 is performed continuously using a gradually decreasing time duct, the waiting time (tl+t2) shown in the conventional example is unnecessary. This makes sequence processing easier and increases processing speed.

このとき、各切換え操作で前記電磁コイルの自己誘導に
より発生する電流を前記コンデンサに還流させると共に
前記電磁コイルの逆方向から流入させ、前記電磁コイル
に漸次減少する電流を交互に流し、前記電磁コイルから
漸次減少する磁界を交互に発生させることになるので、
方向切換え操作が円滑となり、かつ使用電力に無駄がな
い。
At this time, in each switching operation, a current generated by self-induction of the electromagnetic coil is made to flow back into the capacitor and also to flow from the opposite direction of the electromagnetic coil, so that a gradually decreasing current is caused to alternately flow through the electromagnetic coil. Since it will alternately generate a magnetic field that gradually decreases from
The direction switching operation becomes smooth and there is no waste in power consumption.

(実施例) 第1図は本発明の一実施例に係る脱磁装置の脱磁駆動回
路の構成を示す説明図である。第3図と同一の参照符号
を付けて示す部材は第3図のものと同一機能を果す部材
である。
(Embodiment) FIG. 1 is an explanatory diagram showing the configuration of a demagnetizing drive circuit of a demagnetizing device according to an embodiment of the present invention. Components shown with the same reference numerals as in FIG. 3 are components that perform the same functions as those in FIG.

本例の脱磁駆動回路は、第3図に示すものに対し、整流
器3の出力端子間にコンデンサ6を設け、ダイオード切
換え回路7の■〜■の各接点にダイオードI)+ 、D
2.D3 、Daをそれぞれ並列接続した点のみが異な
る。
The demagnetizing drive circuit of this example is different from the one shown in FIG.
2. The only difference is that D3 and Da are connected in parallel.

コンデンサ6は、電磁コイル4の自己誘導によるサージ
電流を十分吸収できるだけの容量とされる。
The capacitor 6 has a capacity sufficient to absorb the surge current caused by self-induction of the electromagnetic coil 4.

また、各ダイオードD、、D2.D、、D、は、電磁コ
イル4側からコンデンサ6にかけて、コンデンサ6のマ
イナス(−)端子からプラス(+)端子にかけては順方
向となるよう接続している。
Moreover, each diode D,, D2. D, , D are connected in the forward direction from the electromagnetic coil 4 side to the capacitor 6 and from the minus (-) terminal to the plus (+) terminal of the capacitor 6.

第2図は、上記脱磁駆動回路の制御方式を示すタイミン
グチャートである。上がら順にリレ〜CR1の動作状態
、リレーCR2の動作状態、チャック電圧の変化状態、
チャック電流の変化状態を示している。
FIG. 2 is a timing chart showing a control method of the demagnetizing drive circuit. From top to bottom, the operating status of relay ~ CR1, the operating status of relay CR2, the changing status of chuck voltage,
It shows the changing state of the chuck current.

まず、時刻T1てリレーCR2をオンとし、整流器3か
ら直流電圧を出力する゛と、時刻T2にがけてチャック
電流は次第に大となる。この魚節4図に示す従来例の時
刻T1がらT2までの動作と同じである。
First, when relay CR2 is turned on at time T1 and DC voltage is output from rectifier 3, the chuck current gradually increases toward time T2. The operation is the same as the operation from time T1 to time T2 in the conventional example shown in FIG.

ところか、本例では、上記の如く方向切換え回路7の各
接点■〜■にダイオードD8. D2 、 D9.D4
を設け、整流器3の出力端にコンデンサ6を設けるので
、電磁コイル4のサージ電流をコンデンサ6て吸収でき
、リレーCR2をオンとしたままでリレーCRIを操作
することができる。
However, in this example, diodes D8 . D2, D9. D4
Since a capacitor 6 is provided at the output end of the rectifier 3, the surge current of the electromagnetic coil 4 can be absorbed by the capacitor 6, and the relay CRI can be operated while the relay CR2 is kept on.

したがって、本例では、漸次減少される時間ダクトで定
まる時刻T、2. T、3. T、4. T、5て方向
切換え用のリレーCRIを連続的に切換え操作し、時刻
T2.で電源側のリレーCR2をオフとすることにより
、各接点■〜■がらスパークを生ずることなく各方向切
換え時刻におけるチャック電流を次第に減少させること
ができ、短時間のうちに脱磁作業を終了させることがで
きる。
Therefore, in this example, the time T, which is determined by the gradually decreasing time duct, 2. T, 3. T, 4. At time T2, the direction switching relay CRI is continuously switched at time T2. By turning off relay CR2 on the power supply side, it is possible to gradually reduce the chuck current at each direction switching time without causing sparks at each contact, and the demagnetization work can be completed in a short time. be able to.

以上により本例では、電源側のリレーCR2をオンとし
たままで方向切換え回路のリレーCRIを連続的に切換
え操作することができるので、制御回路を単純化でき、
かつ脱磁時間を相当短縮できる。
As described above, in this example, the relay CRI of the direction switching circuit can be continuously switched while the relay CR2 on the power supply side is kept on, so the control circuit can be simplified.
Moreover, the demagnetization time can be considerably shortened.

また、ノイズ等によりリレーCRIが誤動作しても各接
点はスパークしないので、装置寿命が長くなり装置信頼
性が向上する。
Further, even if the relay CRI malfunctions due to noise or the like, each contact does not spark, so the device life is extended and the device reliability is improved.

本発明は上記実施例に限定されるものではなく適宜の設
計的変更を行うことにより、適宜態様で実施し得るもの
である。
The present invention is not limited to the above-mentioned embodiments, but can be implemented in any appropriate manner by making appropriate design changes.

[発明の効果] 以上の通り、本発明は特許請求の範囲に記載の通りの脱
磁装置であるので、方向切換え制御を連続的に行うこと
ができ、脱磁時間を相当短くすることができる。また、
方向切換え制御は一個のリレーをオンオフ操作するだけ
でよいので、制御回路が極めて簡易となる。さらに、各
接点からスパークが発生しないので、装置寿命が長くな
り、信頼性が向上する。
[Effects of the Invention] As described above, since the present invention is a demagnetizing device as described in the claims, direction switching control can be performed continuously, and the demagnetizing time can be considerably shortened. . Also,
Since direction switching control only requires turning on and off one relay, the control circuit becomes extremely simple. Furthermore, since no sparks are generated from each contact, the life of the device is extended and reliability is improved.

【図面の簡単な説明】[Brief explanation of the drawing]

第1図は本発明の一実施例に係る脱磁駆動回路の説明図
、第2図はその制御方式を示すタイミングチャート、第
3図は従来の脱磁駆動回路の説明図、第4図はその制御
方式を示す夕1゛ミングチャートである。 1・・・交流電源 3・・・整流器 4・・・電磁コイル 6・・・コンデンサ7・・・方向
切換え回路 CRI、CR2・・・電磁リレー
Fig. 1 is an explanatory diagram of a demagnetizing drive circuit according to an embodiment of the present invention, Fig. 2 is a timing chart showing its control method, Fig. 3 is an explanatory diagram of a conventional demagnetizing drive circuit, and Fig. 4 is an explanatory diagram of a demagnetizing drive circuit according to an embodiment of the present invention. 1 is an evening chart showing the control method. 1... AC power supply 3... Rectifier 4... Electromagnetic coil 6... Capacitor 7... Direction switching circuit CRI, CR2... Electromagnetic relay

Claims (1)

【特許請求の範囲】 電磁コイルに正逆方向の電流を繰り返し通電することに
より前記電磁コイルに正逆方向の磁界を繰り返し発生さ
せ、予め着磁された強磁性体から脱磁する脱磁装置にお
いて、 直流電圧を発生する直流電圧源と、該直流電圧源に接続
されるコンデンサと、該コンデンサと前記電磁コイルと
の間に配置され、ブリッジ形に組まれた接点の開閉動作
により両部材の接続方向を切換える方向切換え回路と、
該回路の各接点に並列に組み込まれ接点の開放動作に併
せて発生する前記電磁コイルの自己誘導による電流を前
記コンデンサに対して還流するダイオードとを備えて脱
磁駆動回路を構成し、 前記方向切換え回路の各接点の開閉制御を漸次減少する
時間ダクトで連続的に行うことにより前記電磁コイルか
ら漸次減少する磁界を交互に発生させる制御回路を備え
たことを特徴とする脱磁装置。
[Scope of Claims] In a demagnetizing device that demagnetizes a ferromagnetic material that has been magnetized in advance by repeatedly generating a magnetic field in the forward and reverse directions in the electromagnetic coil by repeatedly applying current in the forward and reverse directions to the electromagnetic coil. , a DC voltage source that generates a DC voltage, a capacitor connected to the DC voltage source, and a bridge-shaped contact arranged between the capacitor and the electromagnetic coil, which connects both members by opening and closing operations. a direction switching circuit that switches the direction;
and a diode that is built in parallel to each contact of the circuit and circulates a current caused by self-induction of the electromagnetic coil generated in conjunction with the opening operation of the contact to the capacitor, forming a demagnetizing drive circuit, A demagnetizing device characterized by comprising a control circuit that alternately generates a gradually decreasing magnetic field from the electromagnetic coil by continuously controlling the opening and closing of each contact of the switching circuit in a duct for a gradually decreasing time.
JP9634990A 1990-04-13 1990-04-13 Demagnetizing device Pending JPH03295210A (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP9634990A JPH03295210A (en) 1990-04-13 1990-04-13 Demagnetizing device

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP9634990A JPH03295210A (en) 1990-04-13 1990-04-13 Demagnetizing device

Publications (1)

Publication Number Publication Date
JPH03295210A true JPH03295210A (en) 1991-12-26

Family

ID=14162528

Family Applications (1)

Application Number Title Priority Date Filing Date
JP9634990A Pending JPH03295210A (en) 1990-04-13 1990-04-13 Demagnetizing device

Country Status (1)

Country Link
JP (1) JPH03295210A (en)

Cited By (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US5885691A (en) * 1990-05-02 1999-03-23 Trienda Corporation Selectively reinforced thermoformed article and process
JP2015117126A (en) * 2013-12-20 2015-06-25 有限会社岐南車体工業 Controller of lifting magnet

Cited By (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US5885691A (en) * 1990-05-02 1999-03-23 Trienda Corporation Selectively reinforced thermoformed article and process
JP2015117126A (en) * 2013-12-20 2015-06-25 有限会社岐南車体工業 Controller of lifting magnet

Similar Documents

Publication Publication Date Title
US2445459A (en) Control circuits for electromagnetic chucks
JPH03295210A (en) Demagnetizing device
JP2798183B2 (en) Demagnetizer
GB1025253A (en) Apparatus for and method of demagnetizing
JPS60186339A (en) Exciting method for demagnetizing electro permanent magnetic chuck
KR101568966B1 (en) Magnetic chuck driving apparatus
JPH04229605A (en) Method and apparatus for control of electromagnet for attraction use; and electromagnet for attraction use
JPS6018271Y2 (en) Electromagnetic chuck control device
JPH10294215A (en) Electromagnet apparatus
JP2000306728A (en) Method for demagnetizing electromagnetic chuck and permanent electromagnetic chuck using the same
JP4084866B2 (en) Degaussing power supply
JPS63268209A (en) Power device for automatic demagnetization of dc electromagnet
JP7217898B2 (en) Demagnetization method
JP2007059729A (en) Electromagnet controller
JP2876540B2 (en) Power supply for electromagnet applied equipment
JP2501846Y2 (en) electromagnet
TWM643717U (en) Circuit device of cable-type permanent magnet electric control magnetic disk
JPS6039037A (en) Demagnetizer
JPH0398731A (en) Permanent electromagnetic chuck
JPS5813945U (en) Demagnetizing device for electromagnetic chuck
JP3110483B2 (en) Permanent electromagnetic chuck power supply
JPS6144543A (en) Power-source controller for electromagnetic chuck
JPH11162736A (en) Electromagnet control equipment and method for controlling electromagnet
JPH04114413A (en) Demagnetizing method and device
JPS6039327A (en) Power source for electromagnetic adsorber