JPH0329355A - Semiconductor device - Google Patents

Semiconductor device

Info

Publication number
JPH0329355A
JPH0329355A JP1163101A JP16310189A JPH0329355A JP H0329355 A JPH0329355 A JP H0329355A JP 1163101 A JP1163101 A JP 1163101A JP 16310189 A JP16310189 A JP 16310189A JP H0329355 A JPH0329355 A JP H0329355A
Authority
JP
Japan
Prior art keywords
film
oxide film
capacitor
silicon
silicon oxide
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Pending
Application number
JP1163101A
Other languages
Japanese (ja)
Inventor
Kiyoshi Yoneda
清 米田
Kazutoshi Tsujimura
辻村 和俊
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Sanyo Electric Co Ltd
Original Assignee
Sanyo Electric Co Ltd
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Sanyo Electric Co Ltd filed Critical Sanyo Electric Co Ltd
Priority to JP1163101A priority Critical patent/JPH0329355A/en
Publication of JPH0329355A publication Critical patent/JPH0329355A/en
Pending legal-status Critical Current

Links

Landscapes

  • Semiconductor Integrated Circuits (AREA)
  • Semiconductor Memories (AREA)

Abstract

PURPOSE:To realize a high integration and a high density by a method wherein, as a dielectric film for a capacitor, a titanium nitride film, a titanium oxide film and a silicon oxide film are laminated one after another on a lower-layer conductor film and an insulating-film laminated body composed of these three layers is used. CONSTITUTION:The following are provided: a silicon substrate 1; diffusion regions 2, 2 to be used as a source and a drain; a silicon oxide film 3; a gate interconnection 4 composed of polycrystalline silicon; a gate interconnection 5 in another MOS transistor; and a lower-layer conductive film 6 of a capacitor. In addition, the following are formed: a titanium nitride film 7; a titanium oxide film 8; a silicon oxide film 9; and an upper-layer conductor film 11 composed of polycrystalline silicon. A dielectric film 10 for capacitor use is formed of the titanium nitride film 7, the titanium oxide film 8 and the silicon oxide film 9. A capacitor composed of the lower-layer conductor film 6, the dielectric film 10 and the upper-layer conductor film 11 can be obtained. Thereby, a large capacitance can be obtained in a small area and by a comparatively thick film; the integration scale can be enhanced and a high density can be realized.

Description

【発明の詳細な説明】 (イ)産業上の利用分野 本発明は、下層導電体膜、誘電体膜及び上層導電体膜を
順次積層して形戒したキャパシタを有する半導体装置に
関する. (ロ)従来の技術 従来、ダイナミックメモリ等、その回路中にキャパシタ
を有する半導体装置において、例えばプレーナ型メモリ
セルの場合、誘電体膜としては、シリコン基板を熱酸化
したシリコン酸化膜を用いてきた. しかしながら、キャパシタ容量は次式で表わされるため
、 Cs=εi−S/tox (εl:誘電率、S:キャパシタ面積、tox:誘電体
膜厚)高4AWt化、高密度化のために小面積にて必要
なキャパシタ容量を確保するには同一構造のセルの場合
、誘電体膜厚toxを小さくする必要がある.しかし絶
縁耐圧の点から、上記シリコン熱酸化膜の極薄化にも限
度がある。そのため、トレンチキャパシタやスタックト
キャパシタなどのようにキャパシタ構造を3次元化する
ことにより小面積のセルにおいても、電極の面積を大き
くしてキャパシタ容量を確保している。しかし、それで
も電極の面積が6〜7μm2では、キャパシタ容量を3
0fF以上確保するためのシリコン酸化膜の膜厚として
、7〜8nm必要とする. このような極薄膜では絶縁耐圧不足や、更には膜厚制御
の困難性等、多くの問題がある。
DETAILED DESCRIPTION OF THE INVENTION (a) Field of Industrial Application The present invention relates to a semiconductor device having a capacitor formed by sequentially stacking a lower conductive film, a dielectric film, and an upper conductive film. (B) Conventional technology Conventionally, in semiconductor devices such as dynamic memories that have capacitors in their circuits, for example, in the case of planar memory cells, a silicon oxide film obtained by thermally oxidizing a silicon substrate has been used as the dielectric film. .. However, since the capacitor capacity is expressed by the following formula, Cs = εi-S/tox (εl: dielectric constant, S: capacitor area, tox: dielectric film thickness). In order to secure the necessary capacitance for cells with the same structure, it is necessary to reduce the dielectric film thickness tox. However, from the viewpoint of dielectric strength, there is a limit to how thin the silicon thermal oxide film can be made to be. Therefore, by making the capacitor structure three-dimensional, such as a trench capacitor or a stacked capacitor, the area of the electrode is increased and the capacitor capacity is secured even in a small-area cell. However, if the electrode area is 6 to 7 μm2, the capacitance can be reduced to 3
The silicon oxide film needs to have a thickness of 7 to 8 nm to ensure 0 fF or more. Such ultra-thin films have many problems, such as insufficient dielectric strength and difficulty in controlling film thickness.

そのため近年では、シリコン酸化膜の代わりにシリコン
酸化膜とシリコン窒化膜との組み合せが用いられ始めて
おり(1988年9月号日経マイクロデバイス第65頁
)、更には高誘電体膜として、タンタル酸化膜が提案さ
れている.(ハ)発明が解決しようとする課題 しかしながら、前述のシリコン酸化膜とシリコン窒化膜
との組み合せでは誘電率が7となり、シリコン酸化膜の
誘電率(3〜4〉の2倍程度であるため、さらに?:5
集積化・高密度化を進める上で効果は少ない.一方、タ
ンタル酸化膜については誘電率が20と大きいものの、
リーク電流が多いなどまだまだ問題点が多い. 従って、本発明は、斯る諸問題を解決したキャパシタ構
造を提供するものである. (二)課題を解決するための手段 本発明は、半導体装置内のキャパシタの誘電体膜として
、下層導電体膜上にチタン窒化膜、チタン酸化膜及びシ
リコン酸化膜を順次積層し、これら3層からなる絶縁膜
体積体を用いることを特徴とする. (ホ)作用 上記3層構造の誘電体膜を用いることで、絶縁耐圧が高
まり,かつリーク電流が小さくなる。又斯る誘電体膜は
100程度の非常に高い誘電率を有するチタン酸化膜を
含んでいるので十分な容量を実現できる。
Therefore, in recent years, a combination of silicon oxide and silicon nitride films has begun to be used instead of silicon oxide films (Nikkei Microdevice, September 1988 issue, p. 65), and tantalum oxide films have also been used as high dielectric films. is proposed. (c) Problems to be Solved by the Invention However, in the combination of the silicon oxide film and silicon nitride film described above, the dielectric constant is 7, which is about twice the dielectric constant (3 to 4) of the silicon oxide film. Further?: 5
It has little effect on promoting integration and high density. On the other hand, although tantalum oxide film has a large dielectric constant of 20,
There are still many problems such as high leakage current. Therefore, the present invention provides a capacitor structure that solves these problems. (2) Means for Solving the Problems The present invention consists of sequentially stacking a titanium nitride film, a titanium oxide film, and a silicon oxide film on a lower conductor film as a dielectric film of a capacitor in a semiconductor device. It is characterized by using an insulating film volume consisting of. (E) Effect By using the dielectric film having the above-mentioned three-layer structure, the withstand voltage is increased and the leakage current is reduced. Further, since such a dielectric film includes a titanium oxide film having a very high dielectric constant of about 100, sufficient capacitance can be achieved.

(へ)実施例 本発明をスタックトキャバシタ構造に適用した実施例に
つき、図面を参照し、製造工程順に説明する. 第1図にて、(1)はシリコン基板、(2 ) (2 
+は夫々、ソース、ドレインとなる拡散領域、(3)は
シリコン酸化膜、(4)は、拡散領域+2 1 (2 
)と共にMOSトランジスタを構成する多結晶シリコン
からなるゲート配線、{5}は他のMOSトランジスタ
における同様のゲート配線、(6)は多結晶シリコンか
らなる、キャパシタの下層導電体膜である.斯る楕戒は
従来のものと同様である。
(f) Example An example in which the present invention is applied to a stacked capacitor structure will be explained in the order of manufacturing steps with reference to the drawings. In Figure 1, (1) is a silicon substrate, (2) (2
+ indicates a diffusion region that becomes the source and drain, respectively, (3) indicates a silicon oxide film, and (4) indicates a diffusion region +2 1 (2
) is a gate wiring made of polycrystalline silicon that constitutes a MOS transistor, {5} is a similar gate wiring in another MOS transistor, and (6) is a lower conductor film of a capacitor made of polycrystalline silicon. Such elliptical precepts are the same as those of the past.

第2図にて、(7)はチタン窒化膜(TiN)、(8)
はチタン酸化WA( T i O 2)である。前者の
JI5!(7)はTiターゲットを用い、アルゴンガス
と窒素ガスとの混合下でスパッタリングを行うことによ
り形成され、その膜厚は約500園である.後者の膜(
8)は、上記のスパッタリング条件において、窒素ガス
の代りに酸素ガスを用いることにより得られ、その膜厚
は約50glmである.第3図にて、C2F6ガスを用
いたRIEエッチングにより、チタン窒化II51(7
)及びチタン酸化膜{8}の不要部分が除去される. 第4図にて、(9)はシリコン酸化膜(SiO2〉であ
り、斯る膜は、ジクロルシランガスと亜酸化窒素ガス&
減圧下で反応させることにより得られ、その膜厚は20
amである. 第5図にて、第3図の場合と同様にして、シリコン酸化
119!(91の不要部分が除去される.本工程におい
て,チタン窒化JI5I(71、チタン酸化膜(8}及
びシリコン酸化Jl!!!(9)がらなるキャパシタ用
誘電体fi (10)が形成されたことになる.第6図
にて、(1l)は多結晶シリコンからなる上層導電体膜
であり、これ自体は従来のものと同様である. 以上により,下層導電体(6)、誘電体膜(10)及び
上層導電体(Illからなるキャパシタが得られ、その
後,必要に応じて、斯るキャパシタの上に絶縁膜を介し
て多層配線が施される. 上記実施例において形成されたキャパシタは、8μm2
程度の微小面積において、3.3■の電源電圧下でもキ
ャパシタ容量120fFを確保でき、更にリーク電流も
5 M’//cmの電界下で、良好な値3.5X10−
’^/cm”を得られた.上記実施例において、下層導
電体115H6)として,TiSi2やWSi2等のシ
リサイドを用いることにより、電気抵抗の低減、更には
付着強度の向上を図ることができる。
In Figure 2, (7) is a titanium nitride film (TiN), (8)
is titanium oxide WA (T i O 2). The former JI5! (7) is formed by sputtering using a Ti target in a mixture of argon gas and nitrogen gas, and has a film thickness of approximately 500 nm. The latter membrane (
8) was obtained by using oxygen gas instead of nitrogen gas under the above sputtering conditions, and the film thickness was about 50 glm. In Figure 3, titanium nitride II51 (7
) and unnecessary parts of the titanium oxide film {8} are removed. In Fig. 4, (9) is a silicon oxide film (SiO2), and this film is made of dichlorosilane gas, nitrous oxide gas &
Obtained by reacting under reduced pressure, the film thickness is 20
It is am. In FIG. 5, in the same manner as in FIG. 3, silicon oxidation 119! (Unnecessary portions of 91 are removed. In this step, a capacitor dielectric fi (10) consisting of titanium nitride JI5I (71, titanium oxide film (8}, and silicon oxide Jl!!! (9)) was formed. In Fig. 6, (1l) is the upper layer conductor film made of polycrystalline silicon, which itself is the same as the conventional one.As described above, the lower layer conductor (6), the dielectric film A capacitor consisting of (10) and an upper layer conductor (Ill) is obtained, and then, if necessary, multilayer wiring is provided on the capacitor via an insulating film. The capacitor formed in the above example is , 8μm2
A capacitor capacity of 120 fF can be secured even under a power supply voltage of 3.3 cm in a small area of 3.3 cm, and the leakage current is also a good value of 3.5 x 10- under an electric field of 5 M'//cm.
'^/cm'' was obtained. In the above embodiment, by using a silicide such as TiSi2 or WSi2 as the lower conductor 115H6), it is possible to reduce the electrical resistance and further improve the adhesion strength.

(ト)発明の効果 本発明半導体装置のキャパシタ構造によれば、小面積か
つ比較的厚い膜で大きなキャパシタ容量が得られ、その
結果、IAWt度の向上や、半導装置製造プロセス上、
各種膜厚制御の容局化が図れる. 4.
(g) Effects of the Invention According to the capacitor structure of the semiconductor device of the present invention, a large capacitor capacity can be obtained with a small area and a relatively thick film.
Various film thickness controls can be tailored. 4.

【図面の簡単な説明】[Brief explanation of drawings]

第1図乃至第6図は本発明実施例を説明するための製造
工程別断面図である。
FIGS. 1 to 6 are sectional views showing different manufacturing steps for explaining embodiments of the present invention.

Claims (1)

【特許請求の範囲】[Claims] (1)下層導電体膜、誘電体膜及び上層導電体膜を順次
積層して形成したキャパシタを有する半導体装置におい
て、上記誘電体膜は、上記下層導電体膜上に、チタン窒
化膜、チタン酸化膜及びシリコン酸化膜を順次積層した
ものであることを特徴とする半導体装置。
(1) In a semiconductor device having a capacitor formed by sequentially stacking a lower conductor film, a dielectric film, and an upper conductor film, the dielectric film is formed by depositing a titanium nitride film, a titanium oxide film, and a titanium oxide film on the lower conductor film. A semiconductor device comprising a film and a silicon oxide film sequentially laminated.
JP1163101A 1989-06-26 1989-06-26 Semiconductor device Pending JPH0329355A (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP1163101A JPH0329355A (en) 1989-06-26 1989-06-26 Semiconductor device

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP1163101A JPH0329355A (en) 1989-06-26 1989-06-26 Semiconductor device

Publications (1)

Publication Number Publication Date
JPH0329355A true JPH0329355A (en) 1991-02-07

Family

ID=15767193

Family Applications (1)

Application Number Title Priority Date Filing Date
JP1163101A Pending JPH0329355A (en) 1989-06-26 1989-06-26 Semiconductor device

Country Status (1)

Country Link
JP (1) JPH0329355A (en)

Cited By (6)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US5493345A (en) * 1993-03-08 1996-02-20 Nec Corporation Method for detecting a scene change and image editing apparatus
US10833199B2 (en) 2016-11-18 2020-11-10 Acorn Semi, Llc Nanowire transistor with source and drain induced by electrical contacts with negative Schottky barrier height
US10872964B2 (en) 2016-06-17 2020-12-22 Acorn Semi, Llc MIS contact structure with metal oxide conductor
US10879366B2 (en) 2011-11-23 2020-12-29 Acorn Semi, Llc Metal contacts to group IV semiconductors by inserting interfacial atomic monolayers
US10937880B2 (en) 2002-08-12 2021-03-02 Acorn Semi, Llc Method for depinning the Fermi level of a semiconductor at an electrical junction and devices incorporating such junctions
US11043571B2 (en) 2002-08-12 2021-06-22 Acorn Semi, Llc Insulated gate field effect transistor having passivated schottky barriers to the channel

Cited By (14)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US5493345A (en) * 1993-03-08 1996-02-20 Nec Corporation Method for detecting a scene change and image editing apparatus
US11355613B2 (en) 2002-08-12 2022-06-07 Acorn Semi, Llc Method for depinning the Fermi level of a semiconductor at an electrical junction and devices incorporating such junctions
US10937880B2 (en) 2002-08-12 2021-03-02 Acorn Semi, Llc Method for depinning the Fermi level of a semiconductor at an electrical junction and devices incorporating such junctions
US10950707B2 (en) 2002-08-12 2021-03-16 Acorn Semi, Llc Method for depinning the Fermi level of a semiconductor at an electrical junction and devices incorporating such junctions
US11018237B2 (en) 2002-08-12 2021-05-25 Acorn Semi, Llc Method for depinning the fermi level of a semiconductor at an electrical junction and devices incorporating such junctions
US11043571B2 (en) 2002-08-12 2021-06-22 Acorn Semi, Llc Insulated gate field effect transistor having passivated schottky barriers to the channel
US11056569B2 (en) 2002-08-12 2021-07-06 Acorn Semi, Llc Method for depinning the fermi level of a semiconductor at an electrical junction and devices incorporating such junctions
US10879366B2 (en) 2011-11-23 2020-12-29 Acorn Semi, Llc Metal contacts to group IV semiconductors by inserting interfacial atomic monolayers
US11610974B2 (en) 2011-11-23 2023-03-21 Acorn Semi, Llc Metal contacts to group IV semiconductors by inserting interfacial atomic monolayers
US11804533B2 (en) 2011-11-23 2023-10-31 Acorn Semi, Llc Metal contacts to group IV semiconductors by inserting interfacial atomic monolayers
US10872964B2 (en) 2016-06-17 2020-12-22 Acorn Semi, Llc MIS contact structure with metal oxide conductor
US11843040B2 (en) 2016-06-17 2023-12-12 Acorn Semi, Llc MIS contact structure with metal oxide conductor
US10833199B2 (en) 2016-11-18 2020-11-10 Acorn Semi, Llc Nanowire transistor with source and drain induced by electrical contacts with negative Schottky barrier height
US11462643B2 (en) 2016-11-18 2022-10-04 Acorn Semi, Llc Nanowire transistor with source and drain induced by electrical contacts with negative Schottky barrier height

Similar Documents

Publication Publication Date Title
JP3127348B2 (en) Manufacturing method of semiconductor device using tungsten film having uneven surface shape
JP3369827B2 (en) Semiconductor device and manufacturing method thereof
JPH09266289A (en) Semiconductor memory device and manufacturing method thereof
JP2002524872A5 (en)
JPH03159166A (en) Semiconductor device and manufacture thereof
WO2002099886A1 (en) Semiconductor device
JP2601022B2 (en) Method for manufacturing semiconductor device
JP3095462B2 (en) Dielectric element, capacitor and DRAM
CN102280473A (en) Semiconductor device and method of manufacturing semiconductor device
JPH0329355A (en) Semiconductor device
TW478145B (en) Semiconductor memory device
TWI228798B (en) Barrier for capacitor over plug structures
JP2002141480A (en) Semiconductor device provided with ferroelectric capacitor and manufacturing method therefor
JPH0221653A (en) Semiconductor device and manufacture thereof
JPS6065559A (en) Semiconductor memory
JPH01100960A (en) Semiconductor integrated circuit device
JPH03185757A (en) Ultra-high integrated dram and manufacture thereof
US6465300B2 (en) Method for forming a lower electrode for use in a semiconductor device
JPH01289154A (en) Semiconductor integrated circuit device and manufacture thereof
JPH01270344A (en) Manufacture of semiconductor device
JPH05190797A (en) Semiconductor memory device
JPS59188963A (en) Semiconductor device
JPH0414862A (en) Semiconductor device
JPS61265856A (en) Capacitor
JPS62118559A (en) Semiconductor device