JPH0329238A - High-voltage treatment of cathode-ray tube - Google Patents

High-voltage treatment of cathode-ray tube

Info

Publication number
JPH0329238A
JPH0329238A JP16212089A JP16212089A JPH0329238A JP H0329238 A JPH0329238 A JP H0329238A JP 16212089 A JP16212089 A JP 16212089A JP 16212089 A JP16212089 A JP 16212089A JP H0329238 A JPH0329238 A JP H0329238A
Authority
JP
Japan
Prior art keywords
electrons
cathode
grid
ray tube
needless
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Pending
Application number
JP16212089A
Other languages
Japanese (ja)
Inventor
Wataru Imanishi
今西 渉
Tetsuo Matsuo
松尾 哲夫
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Mitsubishi Electric Corp
Original Assignee
Mitsubishi Electric Corp
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Mitsubishi Electric Corp filed Critical Mitsubishi Electric Corp
Priority to JP16212089A priority Critical patent/JPH0329238A/en
Publication of JPH0329238A publication Critical patent/JPH0329238A/en
Pending legal-status Critical Current

Links

Landscapes

  • Manufacture Of Electron Tubes, Discharge Lamp Vessels, Lead-In Wires, And The Like (AREA)

Abstract

PURPOSE:To remove a needless electron generation source with good efficiency by impressing a magnetic field on a cathode-ray tube externally for making needless electrons to collide with a high-voltage electrode adjacent to the needless electron generation source. CONSTITUTION:Since field emission 33 emitted from a projection part 32 of a peripheral part of a hole 28 of a second grid 15 is deflected in the peripheral direction by a powerful magnetic field 34 to be impressed from outside to collide with an electrode part near a hole 29 of a third grid 14, the colliding point part is heated. At this time, the third grid 14 is melted to emit a large amount of metal gas. The emitted gas bombards field emission 33 accelerated to high speed to be separated into ions and electrons for being accelerated by a high electric field impressed between electrodes so as to make needless electrons 33 to again bombard the electrode for emitting more gas so that a process such as activation of BaO at the tip of a projection part 32 and high-voltage treatment may be repeated. Discharge is generated near the projection part 32 by repeating such a phenomen to consume big energy and to smooth the projection part.

Description

【発明の詳細な説明】 [産業上の利用分野】 この発明は,陰極線管の耐電圧特性を向上させるために
おこなわれる陰極線管の高電圧処理方法に関するもので
ある. [従来の技術] 第4図は一般的なカラー陰極線管の一部を破断した側面
図を示し、同図で示すように、パネル部(+)とファン
ネル部(2)とネック部(3)とからなるガラスバルブ
(4)を有し,このガラスバルブ(0の内外面にそれぞ
れ内部導電膜(5)と外部導電膜(8)が形威されてい
る. 上記内部導電111(5)はネック部(3)の内面まで
延在されているとともに、上記ネック部(3)内には電
子銃構体(9)が収納されており,また、上記ファンネ
ル部(2)に陽極端子(8)が設けられている. 第5図は上記ネック部(3)の拡大断面図を示し、この
ネック部(3)に収納された電子銃構体(8)は、陽極
(1l)、第5格子(12)、第4格子(13),第3
格子(10、第2格子(l5)、第1格子(1B)、カ
ソード(l7)およびこれら各電極を一体に保持するビ
ードガラス(l8)と、カップ状体(19)と,バルブ
スペーサ(20)とを具備している.上記陽極(1l)
と第4格子(l3)はコネクタ(21A)を介して電気
的に接続されており、陽極端子(8)、内部導電膜(5
)、スベーサ(20)を通して外部より高圧が印加され
る. また、L記第5格子(l2)と第3格子(14)はコネ
クタ(21B)を介して電気的に接続されており,ネッ
ク部(3)のステム(23)に植17させたリード線(
24)を通じて外部より?.′A高JFが印加される.
同様に、第2格f−(15)と第1格子(l6)とカソ
ード(17)とはそれぞれ別のコネクタ(21C:)を
介して電気的に接続されており、上記ステム(23)に
植叙させたリード線(24)を通じて外部から電圧が印
加される. −L記のようなマルチステップフォーカス型式の電子銃
構体(9)の動作電圧は、第3格子(10に9kV、第
2格子(15)に数100Vを印加するので、第2格子
(l5)と第3格子(14)との間には,パイポテンシ
ャル電子銃の2倍近い電圧が印加される. 第6図は上記電子銃構体(9)の低圧電極部の拡大断面
図を示し、第1格子(l6)の孔(27)の下部にカソ
ード(17)が配置され、このカソード(l7)の先端
にカソードパウダ(25)が吹き付けられている.また
、カンード(17)の内部にヒータ(2B)が配置され
ている. −L記のような構成のものにおいて、上記ヒータ(28
)に通電してカソード(l7)およびカソードパウダ(
25)を加熱すると、カソードパウダ(25)の表面か
ら熱電子が放出され、その電子ビーム(30)が第1格
子(16)の孔(27)、第2格子(l5)の孔(28
)および第3格子(10の孔(29)を通過してパネル
部(1)の内面に形成された蛍光面(図示せず)に衝突
する. L記のような陰極線管においては、その製造工程、エー
ジング工程において、上記ヒータ(26)に定格の2倍
近くの電圧が印加されるため,カソード(17)の温度
は高くなり、カソードパウダ(25)から酸化バリウム
(以下、BaOと称す) (31)が第1格子(l6)
の孔(27) .第2格子(l5)の孔(28)、第3
格子(14)の孔(28)の周縁部に蒸着する.一方、
第2格子(l5)の孔(28)はプレスにより打抜き形
成される関係上、その孔(2B)の周縁にパリやカエリ
などの突起部(32)が形成される.この突起部(32
)は陰極線管の動作時において、第3格子(14)から
の電界によりその先端から不要電子(33)を発射する
原因となる.この不要電子(33)は、突起部(32)
の先端の尖り具合やこの部分の仕事南数によって影響を
受ける. 突起fs(32)の先端の尖り具合は、一般に電界倍増
系数の大きさで表わされ、高電圧処理をしていない陰極
線管の場合,その値は500〜800位である.また,
突起部(32)の先端の仕事丙数は、第2格子(l5)
がステンレス製であるため、4.4eV程度であるが、
カソード(l7)からのBaO(31)の蒸着により、
1.?eV程度にまで低下している. 上記のごとく,電界倍増系数が大きく、仕#函数が小さ
いので、Fowler−Narldheim  の関係
式から求められるように、不要電子(33)が大きくな
り,陰極線管の動作時に蛍光面を不要に発光させるとい
った問題を生じていた. さらに、上記不要電子(33)は第3格子(14)より
の電界の関係から孔中央部に偏向され,第3格子(l4
)の孔(29)および第4格子(13)、第5格子(1
2)、陽$4!(11)の孔(図示せず)を通過して,
蛍光++’ii (図示せず)に達し発光させるため,
カラー陰極線管の赤、緑、青のカットオフ調整時、つま
りホワイトバランス調整時の不要発光となって険極線管
の品位を低下させていた. この不要電子(33)を取り除くために、従来、第2格
子(l5)と第3格子(14)の間に20〜50kVの
高電圧を印加することにより、不要電子源である突起部
(32)で放電を発生させる高電圧処理方法が採用され
ており、突起部(32)での放電により不黄電子源であ
る突起部(32)を溶融し蒸着させて取り除くことがで
きる. この高電圧処理方法における′N.極間放電発/t=の
メカニズムには「電気学会論文誌A,100巻9号、鶴
田浩一著」にも掲載されているように、2通りがある. 第1のメカニズムは陰極加熱である.すなわち1微小突
起部からの不要ff子、つまりフィールドエミションは
Fowler − Norldhei−の関係式で示さ
れるように、上記突起部に印加される電界の大きさの指
数乗倍で増加するため、電極間に印加する電圧を大きく
すると、急激にフィールドエミションは増加し、微小突
起部の先端でジュール熱を発生し、ついには微小突起部
を溶融させ、多量の金属ガスを発生する.このガスと突
起部からのフィールドエミションと高電界とにより、電
極間はプラズマ状態となり、放電が起こり上記微小突起
部を取り除く. 第2のメカニズムは陽極加熱である.すなわち,第1の
メカニズムと同じように,微小突起部からのフィールド
エミションは印加された電圧によって加速されて、大き
なエネルギをもって陽極に衝突し、その衝突部を加熱し
て溶融させ多量の金属ガスを発生する.これにより、上
記第1のメカニズムと同様に,放電が起こり微小突起部
を取り除く. 以上.$1のメカニズムと第2のメカニズムとの相違点
は、陰極が先に溶融するか,陽極が先に溶融するかの違
いである. ところで、第2格子(l5)の突起部(32)から発生
した不要電子(33)は、第6図のように、第3格子(
14)の孔(29)を通過して、蛍光面または第4格子
(13).第5格子(12)、陽極(11)に衝突する
.したがって、陽極の加熱による放電を起こすことがで
きず,陰極の加熱によって起こる放電のみを利用して,
突起部(32)を取り除いていた.特に、カソード(l
7)からのB a O (31)が影響している場合、
電界倍増系数が比較的小さくても、すなわち突起部(3
2)の先端があまり尖っていな〈でも不要゛屯子(33
)は大きくなるため、尖った狭い断節に′流れた電流に
よるジュール熱を利用する陰極加熱の第2のメカニズム
においては放電が起こりにく〈、不要電子発生源(33
)を取り除くことが困難であった. [発明が解決しようとするW1B] 従来の陰極線管の高電圧処理方法は以上のように構成さ
れているので、陽極加熱による放電を起こすことができ
ず,陰極加熱のみによって放電させていたので、カソー
ドから蒸着した酸化バリウムによって不要電子を放出す
る場合,その不要電子発生源である突起部において有効
な放電を発生させて、この突起部を取り除〈ことが困難
であった. この発明は上記のような問題点を解消するためになされ
たもので、第2格子の孔周縁部付近から発生する不要電
子を利用して不要電子発生源での放電を促進させ、その
不要電子発生源を効率良く取り除くことができる陰極線
管の高電圧処理方法を提供することを目的とする. [課題を解決するための手段] この発明に係る陰極線管の高電圧処理方法は、低電圧電
極間に定格の高電圧の2〜8倍の高電圧を印加すること
に併行して、陰極線管の外部から磁界を印加して不要電
子発生源に隣接する高電圧電極に不要電子を衝突させる
ことにより、放電を促進し不要電子発生源を取り除くこ
とを特徴とする. [作用] この発明によれば,低電圧電極間の孔周縁部付近から放
出される不要電子を外部から印加される磁界により偏向
させて不要電子発生源に隣接する電極に衝突させること
により,放電を促進して不要電子発生源を溶融し蒸発さ
せて取り除くことができる. [発明の実施例] 以下,この発明の一実施例を図面にもとづいて説明する
. 第1図はこの発明の一実施例による陰極線管の高電正処
理方法を模式的に示す電子銃構体の低圧電極部の拡大断
面図である.同図において、(14)〜(1B)、(2
5)〜(32)は第6図で示す従来例と同−のため、該
当部分に同一の符号を付して、それらの説明を省略する
. 第1図において、(34)は陰極線管の外部、詳しくは
、ネック部(3)を構成するビードガラス(l8)の外
部から印加された磁界である. 第2格子05)の孔(28)の周縁部に形成されるパリ
やカエリなどの突起部(32)を取り除くための高1t
圧処理工程では、陰極(l7)、第1格子(16)、第
2格子(l5)をショートさせて接地し、第3格子(1
4)に陰極線管の定格動作電圧の2〜8倍の高電圧を印
加するとともに外部から紙面と垂直で紙面の表から裏に
抜ける方向の強力な磁界(34)を印加する. このような構成において、第2格子(15)の孔(28
)周縁部の突起II(32)から放出されたフィールド
エミション(33)は外部から印加される強力な磁界(
34)により、第1図実線で示すように,外周方向に偏
向されて第3格子(10の孔(28)付近の電極部分に
衝突するため,その衝突点部分を加熱する.このとき、
第3格子(14)の外表面に吸着されているガスをさら
に高い温度に加熱するので,この第3格子(l4)が溶
融し、多量の金属ガスを放出する. このように放出されたガスは、高速に加速されたフィー
ルドエミション(33)に衝撃してイオンと電子に分離
され,このイオンと電子が電極間に印加されている高電
界により加速されて、不要電子(33)が電極に再び衝
撃し、さらに多〈のガスを放出するといったように、突
起部(32)の先端のBaOの活性化と高圧処理という
第2図で示すような過程を繰り返す. このような現象の繰返により突起部(32)付近で放電
が起こり、大きなエネルギが消費されて、突起部(32
)が平滑化される. 従来の陰極加熱による放電は、突起部(32)の形状に
よって決る電界倍増系数が大きい場合,その断面積が小
さいため、ジュール熱が発生しやすく有効であるが、電
界倍増系数が小さく、BaO(31)が付着して、仕事
函数が小さい場合、その断面積が大きいため、ジュール
熱の発生が少なく、放電を発生させにくくなるけれども
,上記構成によると,陽極加熱により放電を起こさせて
いるので、フィールドエミツヨン源である突起部(32
)を効率よく取り除くことができる. なお、陰極線管の外部より印加する磁界(30の大きさ
は、第2格子(l5)と第3格子(10との間隙が01
〜 1.0鵬鵬と狭く、また高電圧処理中に印加される
電圧が30〜50kVと高いために、大きくする必要が
あり、2000ガウス以上であることが望ましい. また、第2格子(l5)の孔(28)周縁部から放出さ
れるフィールドエミション(33)は孔(28)の中心
部に向って偏向される傾向にあるので、これを外部から
印加する磁界(30により外周方向へ曲げてやる必要が
あり、そのため、磁界(30の方向はネック部(3)を
構成するビードガラス(l8)の軸線に垂直な面内で3
60°変えることが望ましい.そのための具体的手段と
して、第3vlJに示すように,電子銃構体(9)を収
納し保持するビードガラス(l8)の外周に90°の位
相角を隔てて4極の電極石(35)を配置し、この4極
の電極石(35)により回転磁界を印加する.なお、こ
の回転磁界の周波数は比較的低い周波数が望ましい. さらに、上記実施例では、第2格子(l5)と第3格子
(l4)との間の高圧処理について説明したが、第1格
子(1B)と第2格子(15)との間の高圧処理に適用
しても同様の効果を奏する. [発明の効果] 以上のように,この発明によれば、陰極線管の外部から
磁界を印加しながら、低電圧電極の高電圧処理をおこな
うことにより、不要電子発生源での放電を十分に促進さ
せて低圧電極部の孔周縁部に形成される不要電子発生源
を効率よく取り除くことができる.
[Detailed Description of the Invention] [Field of Industrial Application] This invention relates to a high voltage treatment method for cathode ray tubes, which is performed to improve the withstand voltage characteristics of cathode ray tubes. [Prior Art] Fig. 4 shows a partially cutaway side view of a general color cathode ray tube, and as shown in the figure, there are a panel part (+), a funnel part (2), and a neck part (3). The inner conductive film (5) and the outer conductive film (8) are formed on the inner and outer surfaces of the glass bulb (0), respectively. It extends to the inner surface of the neck part (3), and an electron gun assembly (9) is housed in the neck part (3), and an anode terminal (8) is installed in the funnel part (2). FIG. 5 shows an enlarged sectional view of the neck portion (3), and the electron gun assembly (8) housed in the neck portion (3) includes an anode (1l), a fifth grating ( 12), 4th lattice (13), 3rd
A grating (10), a second grating (l5), a first grating (1B), a cathode (l7), a bead glass (l8) that holds these electrodes together, a cup-shaped body (19), a bulb spacer (20 ).The above anode (1l)
and the fourth grid (l3) are electrically connected via the connector (21A), and the anode terminal (8) and the internal conductive film (5
), high pressure is applied from the outside through the substrate (20). Furthermore, the fifth lattice (l2) of letter L and the third lattice (14) are electrically connected via a connector (21B), and a lead wire 17 is attached to the stem (23) of the neck part (3). (
24) From the outside through? .. 'A high JF is applied.
Similarly, the second case f-(15), the first grid (l6), and the cathode (17) are electrically connected through separate connectors (21C:), and are connected to the stem (23). A voltage is applied from the outside through the attached lead wire (24). - The operating voltage of the multi-step focus type electron gun assembly (9) as shown in L is 9 kV applied to the third grating (10) and several 100 V to the second grating (15). A voltage nearly twice as high as that of the pi-potential electron gun is applied between and the third grid (14). A cathode (17) is arranged at the bottom of the hole (27) of the first grid (l6), and cathode powder (25) is sprayed onto the tip of this cathode (l7).A heater is also installed inside the cando (17). (2B) is arranged. - In the configuration as shown in L, the heater (28
) and cathode (l7) and cathode powder (
25), thermoelectrons are emitted from the surface of the cathode powder (25), and the electron beam (30) penetrates the holes (27) of the first lattice (16) and the holes (28) of the second lattice (l5).
) and the third grid (10 holes (29)) and collides with the fluorescent screen (not shown) formed on the inner surface of the panel part (1). In the aging process, a voltage nearly twice the rated voltage is applied to the heater (26), so the temperature of the cathode (17) increases, and barium oxide (hereinafter referred to as BaO) is removed from the cathode powder (25). (31) is the first lattice (l6)
hole (27). Hole (28) of second grid (l5), third
It is deposited on the periphery of the holes (28) of the grid (14). on the other hand,
Since the holes (28) of the second lattice (15) are punched out using a press, protrusions (32) such as burrs and burrs are formed around the periphery of the holes (2B). This protrusion (32
) causes unnecessary electrons (33) to be emitted from its tip due to the electric field from the third grid (14) when the cathode ray tube is in operation. This unnecessary electron (33) is removed from the protrusion (32)
It is affected by the sharpness of the tip and the number of work in this part. The sharpness of the tip of the protrusion fs (32) is generally expressed by the magnitude of the electric field multiplication coefficient, and in the case of a cathode ray tube that is not subjected to high voltage processing, the value is about 500 to 800. Also,
The work number of the tip of the protrusion (32) is the second lattice (l5)
Since it is made of stainless steel, it is about 4.4 eV, but
By evaporating BaO(31) from the cathode (l7),
1. ? It has decreased to about eV. As mentioned above, the electric field multiplication factor is large and the characteristic function is small, so as determined from the Fowler-Narldheim relation, the unnecessary electrons (33) become large and cause the phosphor screen to emit light unnecessarily during the operation of the cathode ray tube. This caused problems such as: Further, the unnecessary electrons (33) are deflected to the center of the hole due to the electric field from the third lattice (14),
) hole (29), fourth lattice (13), fifth lattice (1
2), positive $4! (11) through the hole (not shown),
In order to reach fluorescence ++'ii (not shown) and emit light,
When adjusting the red, green, and blue cutoffs of color cathode ray tubes, in other words, when adjusting white balance, unnecessary light was emitted, reducing the quality of the cathode ray tube. In order to remove these unnecessary electrons (33), conventionally, by applying a high voltage of 20 to 50 kV between the second grating (l5) and the third grating (14), the protrusion (33), which is a source of unnecessary electrons, is applied. ), a high voltage processing method is adopted in which discharge is generated at the protrusion (32), and the protrusion (32), which is a source of non-yellow electrons, can be melted and vapor deposited and removed by the discharge at the protrusion (32). 'N' in this high voltage processing method. There are two mechanisms for interelectrode discharge /t=, as published in ``Transactions of the Institute of Electrical Engineers of Japan, Vol. 100, No. 9, by Koichi Tsuruta''. The first mechanism is cathode heating. In other words, as shown by the Fowler-Norldhei relational expression, the unnecessary FF element, or field emission, from one minute protrusion increases as an exponential times the magnitude of the electric field applied to the protrusion. When the voltage applied between them is increased, the field emission increases rapidly, generating Joule heat at the tip of the microprotrusion, which eventually melts the microprotrusion and generates a large amount of metal gas. This gas, field emission from the protrusion, and high electric field create a plasma state between the electrodes, causing a discharge and removing the microprotrusion. The second mechanism is anode heating. In other words, similar to the first mechanism, the field emission from the microprotrusions is accelerated by the applied voltage and collides with the anode with high energy, heating and melting the colliding part and producing a large amount of metal gas. is generated. As a result, similar to the first mechanism described above, an electric discharge occurs and the minute protrusion is removed. that's all. The difference between the $1 mechanism and the second mechanism is whether the cathode melts first or the anode melts first. By the way, the unnecessary electrons (33) generated from the projections (32) of the second lattice (l5) are transferred to the third lattice (15) as shown in FIG.
14) through the holes (29) of the phosphor screen or the fourth grid (13). It collides with the fifth grid (12) and the anode (11). Therefore, no discharge can be caused by heating the anode, and only the discharge caused by heating the cathode can be used.
The protrusion (32) had been removed. In particular, the cathode (l
If B a O (31) from 7) is affecting,
Even if the electric field multiplication factor is relatively small, that is, the protrusion (3
2) The tip is not very sharp (but unnecessary).
) becomes large, so that in the second mechanism of cathode heating, which uses Joule heat generated by the current flowing through sharp and narrow nodes, discharge is difficult to occur.
) was difficult to remove. [W1B to be solved by the invention] Since the conventional high-voltage treatment method for cathode ray tubes is configured as described above, discharge cannot be caused by anode heating, and discharge is caused only by cathode heating. When unnecessary electrons are emitted by barium oxide deposited from the cathode, it is difficult to remove the protrusions by generating an effective discharge at the protrusions that are the source of the unwanted electrons. This invention was made to solve the above-mentioned problems, and uses unnecessary electrons generated near the periphery of the holes in the second lattice to promote discharge at the source of unnecessary electrons, thereby eliminating the unnecessary electrons. The purpose of this study is to provide a high-voltage processing method for cathode ray tubes that can efficiently remove the source. [Means for Solving the Problems] A high voltage processing method for a cathode ray tube according to the present invention includes applying a high voltage of 2 to 8 times the rated high voltage between the low voltage electrodes, It is characterized by applying a magnetic field from the outside to cause unnecessary electrons to collide with a high voltage electrode adjacent to the source of unwanted electrons, thereby promoting discharge and removing the source of unwanted electrons. [Operation] According to the present invention, unnecessary electrons emitted from the vicinity of the periphery of the hole between the low voltage electrodes are deflected by an externally applied magnetic field and collided with the electrode adjacent to the source of unnecessary electrons, thereby preventing discharge. It is possible to melt and evaporate the source of unwanted electrons and remove them. [Embodiment of the Invention] An embodiment of the invention will be described below based on the drawings. FIG. 1 is an enlarged sectional view of the low voltage electrode portion of the electron gun assembly, schematically showing a high voltage processing method for a cathode ray tube according to an embodiment of the present invention. In the same figure, (14) to (1B), (2
5) to (32) are the same as the conventional example shown in FIG. 6, so the corresponding parts are given the same reference numerals and their explanation will be omitted. In FIG. 1, (34) is a magnetic field applied from the outside of the cathode ray tube, more specifically, from the outside of the bead glass (18) constituting the neck portion (3). The height is 1t to remove protrusions (32) such as holes and burrs formed on the periphery of the holes (28) of the second grid 05).
In the pressure treatment step, the cathode (17), the first grid (16), and the second grid (15) are short-circuited and grounded, and the third grid (1
A high voltage 2 to 8 times the rated operating voltage of the cathode ray tube is applied to 4), and a strong magnetic field (34) is applied from the outside in a direction perpendicular to the page and extending from the front to the back of the page. In such a configuration, the holes (28) of the second lattice (15)
) The field emission (33) emitted from the protrusion II (32) on the periphery is caused by a strong magnetic field (
34), as shown by the solid line in Figure 1, it is deflected in the outer circumferential direction and collides with the electrode part near the hole (28) of the third grid (10), thereby heating the collision point part.At this time,
Since the gas adsorbed on the outer surface of the third lattice (14) is heated to a higher temperature, the third lattice (l4) melts and releases a large amount of metal gas. The gas released in this way is separated into ions and electrons by impacting the field emission (33) which is accelerated at high speed, and these ions and electrons are accelerated by the high electric field applied between the electrodes. The process shown in Figure 2 of activating BaO at the tip of the protrusion (32) and high-pressure treatment is repeated, as the unnecessary electrons (33) impact the electrode again and release even more gas. .. By repeating such a phenomenon, electric discharge occurs near the protrusion (32), and a large amount of energy is consumed, causing the protrusion (32
) is smoothed. Conventional discharge by cathode heating is effective when the electric field multiplication coefficient determined by the shape of the protrusion (32) is large, since its cross section is small, so Joule heat is easily generated, but the electric field multiplication coefficient is small and BaO ( 31) is attached and the work function is small, the cross-sectional area is large, so less Joule heat is generated, making it difficult to generate a discharge. However, according to the above configuration, the discharge is caused by anode heating. , a protrusion (32
) can be efficiently removed. The magnitude of the magnetic field (30) applied from outside the cathode ray tube is determined by the gap between the second grating (l5) and the third grating (10) being 01
Since it is narrow at ~1.0 gauss and the voltage applied during high voltage processing is as high as 30 to 50 kV, it needs to be large, and preferably 2000 gauss or more. In addition, since the field emission (33) emitted from the periphery of the hole (28) of the second grid (l5) tends to be deflected toward the center of the hole (28), it is necessary to apply it from the outside. It is necessary to bend the magnetic field (30) toward the outer circumference, so the direction of the magnetic field (30 is 3
It is desirable to change it by 60 degrees. As a specific means for this purpose, as shown in 3rd vlJ, four electrode stones (35) are placed at a phase angle of 90° on the outer periphery of the bead glass (l8) that houses and holds the electron gun assembly (9). A rotating magnetic field is applied using the four-pole electrode stones (35). Note that it is desirable that the frequency of this rotating magnetic field be relatively low. Furthermore, in the above embodiment, the high pressure treatment between the second grating (l5) and the third grating (l4) was explained, but the high pressure treatment between the first grating (1B) and the second grating (15) was explained. The same effect can be achieved when applied to [Effects of the Invention] As described above, according to the present invention, by applying a magnetic field from outside the cathode ray tube and performing high voltage treatment on the low voltage electrodes, discharge at the source of unnecessary electrons can be sufficiently promoted. As a result, unnecessary electron sources formed around the hole periphery of the low-voltage electrode can be efficiently removed.

【図面の簡単な説明】[Brief explanation of drawings]

第1図はこの発明の一実施例による陰極線管の高電圧処
理方法を模式的に示す低圧電極部の拡大断面図、Is2
図は高圧処理現象の過程を示す概略フロー図、第3図は
この発明の他の実施例による高電圧処理方法を模式的に
示す要部の平面図,第4図は一般的な陰極線管の一部破
断側面図、第5図は第4図で示す陰極線管の電子銃部の
拡大縦断側面図,第6図は従来の陰極線管の高電圧処理
方法を示す低圧電極部の拡大断面図である.(9)・・
・電子銃構体、(10・・・第3格子、(l5)・・・
第2格子、(16)・・・第1格子、(l7)・・・カ
ソード、(18)・・・ビードガラス、(27)〜(2
9)・・・格子の孔、(31)・・・BaO.(32)
・・・突起部、(33)・・・不要電子(フイールドエ
ミション) (34)・・・外部磁界. なお、 図中の同一符号は同一または相当部分を示す.
FIG. 1 is an enlarged sectional view of a low voltage electrode section schematically showing a high voltage processing method for a cathode ray tube according to an embodiment of the present invention, Is2
The figure is a schematic flow diagram showing the process of high-pressure processing phenomenon, Fig. 3 is a plan view of the main part schematically showing a high-voltage processing method according to another embodiment of the present invention, and Fig. 4 is a general cathode ray tube. 5 is an enlarged vertical sectional side view of the electron gun section of the cathode ray tube shown in FIG. 4, and FIG. 6 is an enlarged sectional view of the low voltage electrode section showing the conventional high voltage processing method for the cathode ray tube be. (9)...
・Electron gun structure, (10... third grating, (l5)...
Second lattice, (16)...First lattice, (l7)...Cathode, (18)...Bead glass, (27)-(2
9)...Grid pores, (31)...BaO. (32)
... Protrusion, (33) ... Unnecessary electron (field emission) (34) ... External magnetic field. Note that the same symbols in the figures indicate the same or equivalent parts.

Claims (1)

【特許請求の範囲】[Claims] (1)低電圧電極間に定格の高電圧の2〜8倍の高電圧
を印加することにより不要電子発生源で放電を発生させ
て、その不要電子発生源を溶融し蒸発させて取り除く陰
極線管の高電圧処理方法において、上記高電圧の印加に
併行して陰極線管の外部から磁界を印加して、不要電子
発生源に隣接する高電圧電極に不要電子を衝突させるこ
とにより、放電を促進して不要電子発生源を取り除くこ
とを特徴とする陰極線管の高電圧処理方法。
(1) A cathode ray tube that generates a discharge at the source of unnecessary electrons by applying a high voltage 2 to 8 times the rated high voltage between low-voltage electrodes, and removes the source by melting and evaporating it. In the high voltage processing method described above, a magnetic field is applied from outside the cathode ray tube in parallel with the application of the high voltage described above to cause unnecessary electrons to collide with a high voltage electrode adjacent to the source of unwanted electrons, thereby promoting discharge. A high-voltage processing method for cathode ray tubes, characterized by removing unnecessary electron sources.
JP16212089A 1989-06-23 1989-06-23 High-voltage treatment of cathode-ray tube Pending JPH0329238A (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP16212089A JPH0329238A (en) 1989-06-23 1989-06-23 High-voltage treatment of cathode-ray tube

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP16212089A JPH0329238A (en) 1989-06-23 1989-06-23 High-voltage treatment of cathode-ray tube

Publications (1)

Publication Number Publication Date
JPH0329238A true JPH0329238A (en) 1991-02-07

Family

ID=15748421

Family Applications (1)

Application Number Title Priority Date Filing Date
JP16212089A Pending JPH0329238A (en) 1989-06-23 1989-06-23 High-voltage treatment of cathode-ray tube

Country Status (1)

Country Link
JP (1) JPH0329238A (en)

Cited By (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
KR100391275B1 (en) * 2000-12-12 2003-07-12 기아자동차주식회사 Apparatus for fixing crank on deburring

Cited By (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
KR100391275B1 (en) * 2000-12-12 2003-07-12 기아자동차주식회사 Apparatus for fixing crank on deburring

Similar Documents

Publication Publication Date Title
JP2004228084A (en) Field emission element
US4503357A (en) Cathode-ray tube
SU1443820A3 (en) Method of manufacturing cathode-ray tube
US2178238A (en) Electric discharge device
JPH0329238A (en) High-voltage treatment of cathode-ray tube
GB302307A (en) Improvements relating to electron discharge apparatus
US2316276A (en) Electron discharge apparatus
JP4263861B2 (en) X-ray tube and manufacturing method thereof
US2323560A (en) Electron discharge apparatus
JPS59167941A (en) Cathode ray tube
JPS6318297B2 (en)
EP0349251B1 (en) Method for spot-knocking an electron gun mount assembly of a CRT
JP2641461B2 (en) Aging method of cathode ray tube
JPS63304546A (en) Manufacture of cathode ray tube
JP3095445B2 (en) Method of manufacturing color picture tube
JPS63114024A (en) Seasoning method for cathode-ray tube
JPH0320931A (en) Conditioning method for cathode-ray tube
JP2000149814A (en) Cathode-ray tube and manufacture thereof
JP2000294140A (en) Manufacture of electron tube
JP2001155663A (en) Color cathode ray tube
JPH0757653A (en) Cathode-ray tube and manufacture thereof
JPH08190855A (en) Manufacture of cathode-ray tube
JPH06215704A (en) Electron gun
JP2002124201A (en) Color cathode-ray tube
JPS63114022A (en) Spot knocking method for cathode-ray tube