JPH0328797A - Method for removeing suspensible impurity of condensate by mixed end type condensate desalting device - Google Patents

Method for removeing suspensible impurity of condensate by mixed end type condensate desalting device

Info

Publication number
JPH0328797A
JPH0328797A JP1162774A JP16277489A JPH0328797A JP H0328797 A JPH0328797 A JP H0328797A JP 1162774 A JP1162774 A JP 1162774A JP 16277489 A JP16277489 A JP 16277489A JP H0328797 A JPH0328797 A JP H0328797A
Authority
JP
Japan
Prior art keywords
condensate
exchange resin
air scrubbing
cation exchange
time
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Granted
Application number
JP1162774A
Other languages
Japanese (ja)
Other versions
JPH0736039B2 (en
Inventor
Kenichi Ichikawa
健一 市川
Takeshi Izumi
丈志 出水
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Ebara Corp
Original Assignee
Ebara Corp
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Ebara Corp filed Critical Ebara Corp
Priority to JP1162774A priority Critical patent/JPH0736039B2/en
Publication of JPH0328797A publication Critical patent/JPH0328797A/en
Publication of JPH0736039B2 publication Critical patent/JPH0736039B2/en
Anticipated expiration legal-status Critical
Expired - Lifetime legal-status Critical Current

Links

Classifications

    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y02TECHNOLOGIES OR APPLICATIONS FOR MITIGATION OR ADAPTATION AGAINST CLIMATE CHANGE
    • Y02EREDUCTION OF GREENHOUSE GAS [GHG] EMISSIONS, RELATED TO ENERGY GENERATION, TRANSMISSION OR DISTRIBUTION
    • Y02E30/00Energy generation of nuclear origin
    • Y02E30/30Nuclear fission reactors

Landscapes

  • Treatment Of Liquids With Adsorbents In General (AREA)
  • Treatment Of Water By Ion Exchange (AREA)
  • Physical Or Chemical Processes And Apparatus (AREA)

Abstract

PURPOSE:To improve the ability to remove clads by executing air scrubbing for >=20 hours to active resin particles at the time of back washing of desalting condensate. CONSTITUTION:A cation exchange resin regenerating column is constituted as the mixed beds consisting of a strongly acidic gel type cation exchange resin and a strongly basic gel type canion exchange resin and executes the air scrubbing for >=20 hours at the time of the back washing in the process of filtering and desalting the condensate. The resin particles are activated in this way and the affinity to the clads is enhanced, by which the ability to remove the clads is increased and the condensate having the high purity is obtd.

Description

【発明の詳細な説明】 〔産業七の利用分野〕 本発明は、温床式復水脱塩装置による復水の懸濁性不純
物除去方法に関し、特に懸濁性不純物の除去能力を高め
た、BWR型(沸騰水型)原子力発電プラントの一次冷
却水系の復水より混床式復水脱塩装置によって懸濁性不
純物を除去する方法に関する。
Detailed Description of the Invention [Field of Application in Industry 7] The present invention relates to a method for removing suspended impurities from condensate using a hot bed type condensate desalination device, and in particular to a BWR with enhanced ability to remove suspended impurities. The present invention relates to a method for removing suspended impurities from condensate of a primary cooling water system of a boiling water type (boiling water type) nuclear power plant using a mixed bed type condensate desalination apparatus.

〔従来の技術〕[Conventional technology]

BWR型原子力発電プラントでは、原子炉の内部を常に
清浄な状態に維持しなければならないので、復水器から
原子炉内へ流入ずる復水を復水脱塩装置によって処理し
、高度に浄化した後、炉内の冷却水として利用している
。これば原子炉の一次冷却水が通る熱交換器が復水によ
って腐食されるのを最小限に押えるためと、復水が不純
物を含むと、その不純物が原子炉内で放射性元素に変換
されるなどして放射性を帯び、放則性を帯びた水蒸気と
なって原子炉外へ出て、原子炉外の機器を放射能で汚染
されることになるが、その汚染を最小限に押えて、定時
検査時の放射線被曝を最小限に押えるためである。
In a BWR type nuclear power plant, the inside of the reactor must always be maintained in a clean state, so the condensate that flows into the reactor from the condenser is treated with a condensate desalination equipment and purified to a high degree. Afterwards, it is used as cooling water inside the reactor. This is to minimize the corrosion of the heat exchanger through which the reactor's primary cooling water passes, and also to minimize the corrosion caused by condensate, since if the condensate contains impurities, those impurities will be converted into radioactive elements within the reactor. As a result, radioactive and free-flowing water vapor exits the reactor, contaminating equipment outside the reactor with radioactivity. This is to minimize radiation exposure during regular inspections.

この復水脱塩装置は、粒状陽イオン交換樹脂と粒状陰イ
オン交換樹脂とが混合して充填された、いわゆる温床弐
脱塩塔であって、これに復水を通すことにより復水中の
イオン威分と懸濁性威分(「クラッドJと通称される、
「懸濁性不純物」ともいう)とをイオン交換及び吸着に
よって分離し、復水を浄化するものである。
This condensate desalination equipment is a so-called hot bed 2 desalination tower filled with a mixture of granular cation exchange resin and granular anion exchange resin. Ibun and Suspension Ibun (commonly known as ``Clad J,''
This method purifies condensate by separating condensate (also called "suspended impurities") by ion exchange and adsorption.

最近では復水からのイオン或分及びクラッドの除去効果
のうち、クラッドの除去効果を強化することにより、冷
却水から原子炉へ持ち込まれるクラッドを低減し、プラ
ント定期検査時の被曝線量を減らす方向に研究が進めら
れ、前述のイオン交換樹脂を用いる方法にあっては、イ
オン交換樹脂に捕捉されたクラッドを逆洗再生により外
し、イオン交換樹脂を清浄化し、クラッドの除去効果を
回復させていた。
Recently, efforts have been made to reduce the amount of crud brought into the reactor from the cooling water by strengthening the removal effect of some ions and crud from condensate, thereby reducing the exposure dose during regular plant inspections. In the method using ion-exchange resins, the crud trapped in the ion-exchange resin was removed by backwashing and regeneration, cleaning the ion-exchange resin and restoring the crud removal effect. .

〔発明が解決すべき課題〕[Problem to be solved by the invention]

しかし、原子力装置の安全性を高めるために、放射線被
曝量をさらに減少させることが要求されるようになり、
それに伴い原子力発電プラントの冷却水に要求されるク
ラッドの除去基準が高度化されたために、現在行われて
いる温床式復水脱塩装置による復水の懸濁性不純物除去
方法ではその高度化要求に対応できなくなった。
However, in order to improve the safety of nuclear equipment, it has become necessary to further reduce radiation exposure.
As a result, the crud removal standards required for cooling water in nuclear power plants have become more sophisticated, and the current method of removing suspended impurities from condensate using hotbed condensate desalination equipment requires higher standards. It became impossible to respond to

本発明は、復水を混床式復水脱塩装置によって浄化する
に当り、クラッドの除去能カの高い懸濁性不純物除去方
法を提供することを目的とする。
An object of the present invention is to provide a method for removing suspended impurities that has a high ability to remove crud when condensate is purified using a mixed bed condensate desalination apparatus.

〔課題を解決するための手段〕[Means to solve the problem]

本発明者は、このような現状に鑑み鋭意研究を重ね、本
発明に想到したものであって、BWR型原子力発電プラ
ントの一次冷却水系の復水を粒状陽イオン交換樹脂及び
陰イオン交換樹脂からなる混床を有する温床式復水脱塩
装置によって濾過脱塩して懸濁性不純物を除去する方法
において、前記温床の逆洗時に20時間以上のエアスク
ラビングを行うことを特徴とする混床式復水脱塩装置に
ょる復水の懸濁性不純物除去方法によって、その目的を
達成した。
In view of the current situation, the present inventor has conducted extensive research and has come up with the present invention, which is a method for converting condensate in the primary cooling water system of a BWR nuclear power plant from a granular cation exchange resin and an anion exchange resin. A method for removing suspended impurities by filtration and desalination using a hot bed type condensate desalination apparatus having a mixed bed, characterized in that air scrubbing is performed for 20 hours or more during backwashing of the hot bed. This objective was achieved by a method for removing suspended impurities from condensate using a condensate desalination device.

従来の温床式イオン交換装置では、再生に当って粒状陽
イオン交換樹脂と粒状陰イオン交換樹脂とを二層に分離
し、同時にイオン交換樹脂床上などの夾雑物などを除去
するために逆洗が行われ、そのさいその分離あるいは夾
雑物除去のための洗浄を促進するために、逆洗水と同時
に、又は別に空気流を導入する、いわゆるエアスクラビ
ングを行うことがある。復水を混床式復水脱塩装置に通
してその懸濁性不純物を除去するさいにも、粒状イオン
交換樹脂の上に付着した、あるいはその間に詰ったクラ
ッドなどを除くために、逆洗時にエアスクラビングが行
われているが、夾雑物などの不純物を除去するのが目的
であるから、そのエアスクラビングを行う時間も短くて
30分程度で、クラッドを十分に除こうとする場合でも
その時間はそれほど長くなく2時間未満である。
In conventional hotbed type ion exchange equipment, during regeneration, the granular cation exchange resin and the granular anion exchange resin are separated into two layers, and at the same time, backwashing is performed to remove impurities on the ion exchange resin bed. During this process, a so-called air scrubbing process, in which an air stream is introduced simultaneously with or separately from the backwash water, may be carried out to facilitate separation or cleaning to remove contaminants. When condensate is passed through a mixed-bed condensate desalination equipment to remove suspended impurities, backwashing is also carried out to remove crud that has adhered to the granular ion-exchange resin or clogged between them. Air scrubbing is sometimes performed, but since the purpose of air scrubbing is to remove impurities such as foreign substances, the time for air scrubbing is short, about 30 minutes, and even if you want to remove the crud sufficiently, it will take a long time. The time is not too long, less than 2 hours.

本発明は、そのエアスクラビングを行う目的をまったく
異にするもので、復水処理時の温床式イオン交換樹脂層
の懸濁性不純物除去能力の強化をはかるものであり、そ
のためエアスクラビングの時間も20時間以上という長
時間行うのであって、20〜40時間の範囲で行うのが
好ましい。
The purpose of the air scrubbing of the present invention is completely different from that of the present invention, which aims to strengthen the ability of the hot bed type ion exchange resin layer to remove suspended impurities during condensate treatment, and therefore to shorten the air scrubbing time. It is carried out for a long time of 20 hours or more, preferably in the range of 20 to 40 hours.

本発明における温床式復水脱塩装置は、従来から使用さ
れている温床式復水脱塩装置と同じであり、粒状陽イオ
ン交換樹脂及び粒状陰イオン交換樹脂の性状も特に変っ
たものではない。エアスクラビングを行う条件、例えば
通気量なども従来と特に異るところはない。
The hot bed type condensate desalination apparatus in the present invention is the same as the conventionally used hot bed type condensate desalination apparatus, and the properties of the granular cation exchange resin and the granular anion exchange resin are not particularly different. . The conditions for performing air scrubbing, such as the amount of ventilation, are not particularly different from conventional methods.

〔作用〕[Effect]

本発明においては、従来の温床式復水脱塩装置による復
水の懸濁性不純物除去方法に比較して、前述したような
長時間のエアスクラビングにより樹脂粒を活性化し、ク
ラッドとの親和力を高めることで、クラッドの除去効果
を高め、それによりさらにクラッド濃度の低い高純度の
水を得ることができる。その作用機構は解明されてい′
ないが、おそらくエアスクラビングにより樹脂粒の酸化
が促進されて、活性化されるのではないかと考えられる
In the present invention, compared to the conventional method for removing suspended impurities from condensate using a hotbed type condensate desalination equipment, the resin particles are activated by long-term air scrubbing as described above, and their affinity with the cladding is improved. By increasing the crud removal effect, it is possible to obtain highly purified water with an even lower crud concentration. Its mechanism of action has not been elucidated.
However, it is thought that the air scrubbing may promote the oxidation of the resin particles and activate them.

以下、本発明を従来技術と対比しながら説明する。第1
図は、エアスクラビング時間を横軸に、強酸性陽イオン
交換樹脂の含水率を縦軸に表わしたものであり、粒状強
酸性陽イオン交換樹脂をエアスクラビングしたさい、エ
アスクラビング時間が長くなるのに伴い同樹脂の含水率
が増加し、膨潤ずる傾向が見られる。これは樹脂粒が酸
化されるためであるとみられる。エアスクラビング時間
は空気酸化時間にも相当するものである。
Hereinafter, the present invention will be explained in comparison with the prior art. 1st
The figure shows the air scrubbing time on the horizontal axis and the water content of the strongly acidic cation exchange resin on the vertical axis. Along with this, the water content of the resin increases and a tendency to swell is observed. This appears to be because the resin particles are oxidized. The air scrubbing time also corresponds to the air oxidation time.

第2図は、エアスクラビング時間を横軸に、強酸性陽イ
オン交換樹脂の破砕強度を縦軸に表わしたものであり、
同図によるとエアスクラビング時間が長くなっても樹脂
の破砕強度が低下することがなく、特に劣化は見られな
いことから、装置運用上の問題点はないものと考えられ
る。
Figure 2 shows the air scrubbing time on the horizontal axis and the crushing strength of the strongly acidic cation exchange resin on the vertical axis.
According to the figure, even if the air scrubbing time becomes longer, the crushing strength of the resin does not decrease, and no particular deterioration is observed, so it is thought that there are no problems in the operation of the apparatus.

また、強塩基性陰イオン交換樹脂についても上述したの
と同様な傾向が見られる。
Furthermore, the same tendency as described above is observed for strongly basic anion exchange resins.

本発明の復水の懸濁性不純物除去方法における除去効果
を単床ミニカラム試験により確認した。
The removal effect of the method for removing suspended impurities from condensate of the present invention was confirmed by a single-bed mini-column test.

ユ羊U子一々gとd.M− ■ 試験条件 第3図の試験装置を使用し、以下の条件により試験を行
なった。
Yuyuu Uko Ichigo g and d. M- ■ Test conditions The test was conducted under the following conditions using the test apparatus shown in Figure 3.

供試樹脂:エアスクラビング時間O及び40時間の強酸
性ゲル型陽イオン交換樹脂 樹脂量 :強酸性ゲル型陽イオン交換樹脂15ml通水
線流速: L V =108m/h通水期間=2週間 ■ 試験結果 陽イオン交換樹脂のみの単床ミニカラム試験の結果と内
挿法によりグラフ化したものは第4図の通りであり、同
図はエアスクラビング時間と復水のクラッド除去率の関
係を示すものであって、これによればエアスクラビング
を実施することによりクラソド除去効果が向上すること
が確認された。
Test resin: Strongly acidic gel type cation exchange resin with air scrubbing time O and 40 hours Resin amount: Strongly acidic gel type cation exchange resin 15ml Linear water flow rate: L V = 108 m/h Water flow period = 2 weeks■ Test Results Figure 4 shows the results of the single-bed mini-column test using only cation exchange resin and a graph obtained by interpolation, which shows the relationship between air scrubbing time and condensate crud removal rate. According to this, it was confirmed that the crassoid removal effect was improved by performing air scrubbing.

前記の単床〔ニカラム試験は、陽イオン交換樹脂につい
てのみ行った場合を示したが、陰イオン交換樹脂につい
ても同様な結果が得られる。
Although the above-mentioned single-bed [nicolumn test] was performed only for cation exchange resins, similar results can be obtained for anion exchange resins.

(実施例) 以下、実施例により本発明を具体的に説明する。(Example) Hereinafter, the present invention will be specifically explained with reference to Examples.

ただし、本発明はこの実施例のみに限定されるものでは
ない。
However, the present invention is not limited to this example.

実施例 実際に用いられている規模の脱塩塔によって実験を行っ
た。
EXAMPLES Experiments were conducted using a desalination tower on a scale that is actually used.

「 ■ 試験条件 第5図に示す陽イオン交換樹脂再生塔において、陽イオ
ン交換樹脂及び陰イオン交換樹脂をエアスクラビング処
理し、その後復水を通水し、クラッド除去効果の確認を
行った。以下にその条件を示す。
■ Test conditions In the cation exchange resin regeneration tower shown in Figure 5, the cation exchange resin and anion exchange resin were subjected to air scrubbing treatment, and then condensate water was passed through to confirm the crud removal effect. The conditions are shown below.

供試樹脂:強酸性ゲル型陽イオン交換樹脂(Na型)3
900ffi 強塩基性ゲル型陰イオン交換樹脂 (Cl型)2200I!. エアスクラビング条件:380Nnf/h、1及び24
時間 復水道水線流速: L V −108m/f7■ 試験
結果 実機脱塩塔における、エアスクラビング実施後の通水試
験結果は第6図の通りであり、長時間のエアスクラビン
グを実施することによりクラッド除去効果が向上するこ
とが確認できた。
Test resin: Strong acid gel type cation exchange resin (Na type) 3
900ffi Strongly basic gel type anion exchange resin (Cl type) 2200I! .. Air scrubbing conditions: 380Nnf/h, 1 and 24
Time linear tap water flow velocity: L V -108m/f7■ Test results The water flow test results after air scrubbing in the actual demineralization tower are shown in Figure 6. It was confirmed that the crud removal effect was improved.

以上の試験結果により、陽イオン交換樹脂と陰イオン効
果樹脂からなる温床によって復水を濾過脱塩する方法に
おいて、逆洗時に20時間以上の長時間のエアスクラビ
ングを実施すると、一次冷却水処理時のクラッド除去能
カを強化することができて、極めて有利である。
Based on the above test results, in the method of filtering and desalting condensate using a hotbed made of cation exchange resin and anion effect resin, if air scrubbing is performed for a long time of 20 hours or more during backwashing, It is extremely advantageous to be able to enhance the crud removal ability of

〔発明の効果〕〔Effect of the invention〕

本発明によれば、温床式復水脱塩装置にょる復水の懸濁
性不純物除去方法において、復水中のクラッドのような
懸濁性不純物を十分除去することができ、高純度の復水
を得ることができる。本発明では長時間のエアスクラビ
ングにより、両イオン交換樹脂粒が活性化され、クラッ
ドとの親和性が高められて、クラッドの除去効果が高ま
るものと考えられる。
According to the present invention, in a method for removing suspended impurities from condensate using a hotbed type condensate desalination apparatus, suspended impurities such as crud in condensate can be sufficiently removed, and high-purity condensate can be obtained. can be obtained. In the present invention, it is believed that by air scrubbing for a long time, both ion exchange resin particles are activated, their affinity with the cladding is increased, and the cladding removal effect is enhanced.

【図面の簡単な説明】[Brief explanation of drawings]

第1図は、エアスクラビング時間とエアスクラビングを
受けた強酸性陽イオン交換樹脂の含水率との関係を表わ
す図を示し、第2図は、エアスクラビング時間とエアス
クラビングを受けた強酸性陽イオン交換樹脂の破砕強度
との関係を表わす図q 10 を示し、第3図は、ごニカラム試験装置を示し、第4図
は、第3図のミニ力ラム試験装置によるエアスクラビン
グ時間と復水のクラッド除去率の関係を表わす図を示し
、第5図は、実機脱塩塔試験に用いた陽イオン交換樹脂
再生塔及びその附属装置を示し、第6図は、実機脱塩塔
試験における通水日数に対する出口クラッド鉄濃度の変
化を表わす図を示す。 1・・・原水人口     2・・・バイパスライン3
・・・カラム      4・・・流量計5・・・積算
流量計 1 1 々01号I 0つ 城 −775−
Figure 1 shows the relationship between the air scrubbing time and the water content of the strongly acidic cation exchange resin subjected to the air scrubbing, and Figure 2 shows the relationship between the air scrubbing time and the strongly acidic cation exchange resin subjected to the air scrubbing. Figure q10 shows the relationship between the crushing strength of the exchanged resin, Figure 3 shows the Ni-column test equipment, and Figure 4 shows the relationship between air scrubbing time and condensate using the mini-ram test equipment shown in Figure 3. Figure 5 shows the cation exchange resin regeneration tower and its auxiliary equipment used in the actual demineralization tower test, and Figure 6 shows the relationship between crud removal rates. A diagram showing the change in outlet cladding iron concentration with respect to the number of days is shown. 1...Raw water population 2...Bypass line 3
... Column 4 ... Flowmeter 5 ... Integrating flowmeter 1 1 No. 01 I 0tsujo-775-

Claims (1)

【特許請求の範囲】[Claims] BWR型原子力発電プラントの一次冷却水系の復水を粒
状陽イオン交換樹脂及び陰イオン交換樹脂からなる混床
を有する混床式復水脱塩装置によって濾過脱塩して懸濁
性不純物を除去する方法において、前記混床の逆洗時に
20時間以上のエアスクラビングを行うことを特徴とす
る混床式復水脱塩装置による復水の懸濁性不純物除去方
法。
Condensate from the primary cooling water system of a BWR nuclear power plant is filtered and desalted to remove suspended impurities using a mixed bed type condensate desalination device that has a mixed bed made of granular cation exchange resin and anion exchange resin. A method for removing suspended impurities in condensate using a mixed bed condensate desalination apparatus, characterized in that air scrubbing is performed for 20 hours or more during backwashing of the mixed bed.
JP1162774A 1989-06-27 1989-06-27 Method for removing suspended impurities from condensate by mixed bed condensate desalination system Expired - Lifetime JPH0736039B2 (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP1162774A JPH0736039B2 (en) 1989-06-27 1989-06-27 Method for removing suspended impurities from condensate by mixed bed condensate desalination system

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP1162774A JPH0736039B2 (en) 1989-06-27 1989-06-27 Method for removing suspended impurities from condensate by mixed bed condensate desalination system

Publications (2)

Publication Number Publication Date
JPH0328797A true JPH0328797A (en) 1991-02-06
JPH0736039B2 JPH0736039B2 (en) 1995-04-19

Family

ID=15760966

Family Applications (1)

Application Number Title Priority Date Filing Date
JP1162774A Expired - Lifetime JPH0736039B2 (en) 1989-06-27 1989-06-27 Method for removing suspended impurities from condensate by mixed bed condensate desalination system

Country Status (1)

Country Link
JP (1) JPH0736039B2 (en)

Cited By (16)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US8840783B2 (en) 2007-05-29 2014-09-23 Evoqua Water Technologies Llc Water treatment membrane cleaning with pulsed airlift pump
US8894858B1 (en) 2005-08-22 2014-11-25 Evoqua Water Technologies Llc Method and assembly for water filtration using a tube manifold to minimize backwash
US8956464B2 (en) 2009-06-11 2015-02-17 Evoqua Water Technologies Llc Method of cleaning membranes
US9022224B2 (en) 2010-09-24 2015-05-05 Evoqua Water Technologies Llc Fluid control manifold for membrane filtration system
US9023206B2 (en) 2008-07-24 2015-05-05 Evoqua Water Technologies Llc Frame system for membrane filtration modules
US9533261B2 (en) 2012-06-28 2017-01-03 Evoqua Water Technologies Llc Potting method
US9604166B2 (en) 2011-09-30 2017-03-28 Evoqua Water Technologies Llc Manifold arrangement
US9675938B2 (en) 2005-04-29 2017-06-13 Evoqua Water Technologies Llc Chemical clean for membrane filter
US9764288B2 (en) 2007-04-04 2017-09-19 Evoqua Water Technologies Llc Membrane module protection
US9764289B2 (en) 2012-09-26 2017-09-19 Evoqua Water Technologies Llc Membrane securement device
US9815027B2 (en) 2012-09-27 2017-11-14 Evoqua Water Technologies Llc Gas scouring apparatus for immersed membranes
US9914097B2 (en) 2010-04-30 2018-03-13 Evoqua Water Technologies Llc Fluid flow distribution device
US9925499B2 (en) 2011-09-30 2018-03-27 Evoqua Water Technologies Llc Isolation valve with seal for end cap of a filtration system
US9962865B2 (en) 2012-09-26 2018-05-08 Evoqua Water Technologies Llc Membrane potting methods
US10322375B2 (en) 2015-07-14 2019-06-18 Evoqua Water Technologies Llc Aeration device for filtration system
US10427102B2 (en) 2013-10-02 2019-10-01 Evoqua Water Technologies Llc Method and device for repairing a membrane filtration module

Cited By (24)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US9675938B2 (en) 2005-04-29 2017-06-13 Evoqua Water Technologies Llc Chemical clean for membrane filter
US8894858B1 (en) 2005-08-22 2014-11-25 Evoqua Water Technologies Llc Method and assembly for water filtration using a tube manifold to minimize backwash
US9764288B2 (en) 2007-04-04 2017-09-19 Evoqua Water Technologies Llc Membrane module protection
US10507431B2 (en) 2007-05-29 2019-12-17 Evoqua Water Technologies Llc Membrane cleaning with pulsed airlift pump
US9206057B2 (en) 2007-05-29 2015-12-08 Evoqua Water Technologies Llc Membrane cleaning with pulsed airlift pump
US8840783B2 (en) 2007-05-29 2014-09-23 Evoqua Water Technologies Llc Water treatment membrane cleaning with pulsed airlift pump
US9573824B2 (en) 2007-05-29 2017-02-21 Evoqua Water Technologies Llc Membrane cleaning with pulsed airlift pump
US9023206B2 (en) 2008-07-24 2015-05-05 Evoqua Water Technologies Llc Frame system for membrane filtration modules
US8956464B2 (en) 2009-06-11 2015-02-17 Evoqua Water Technologies Llc Method of cleaning membranes
US10441920B2 (en) 2010-04-30 2019-10-15 Evoqua Water Technologies Llc Fluid flow distribution device
US9914097B2 (en) 2010-04-30 2018-03-13 Evoqua Water Technologies Llc Fluid flow distribution device
US9022224B2 (en) 2010-09-24 2015-05-05 Evoqua Water Technologies Llc Fluid control manifold for membrane filtration system
US9630147B2 (en) 2010-09-24 2017-04-25 Evoqua Water Technologies Llc Fluid control manifold for membrane filtration system
US9604166B2 (en) 2011-09-30 2017-03-28 Evoqua Water Technologies Llc Manifold arrangement
US11065569B2 (en) 2011-09-30 2021-07-20 Rohm And Haas Electronic Materials Singapore Pte. Ltd. Manifold arrangement
US9925499B2 (en) 2011-09-30 2018-03-27 Evoqua Water Technologies Llc Isolation valve with seal for end cap of a filtration system
US10391432B2 (en) 2011-09-30 2019-08-27 Evoqua Water Technologies Llc Manifold arrangement
US9533261B2 (en) 2012-06-28 2017-01-03 Evoqua Water Technologies Llc Potting method
US9962865B2 (en) 2012-09-26 2018-05-08 Evoqua Water Technologies Llc Membrane potting methods
US9764289B2 (en) 2012-09-26 2017-09-19 Evoqua Water Technologies Llc Membrane securement device
US9815027B2 (en) 2012-09-27 2017-11-14 Evoqua Water Technologies Llc Gas scouring apparatus for immersed membranes
US10427102B2 (en) 2013-10-02 2019-10-01 Evoqua Water Technologies Llc Method and device for repairing a membrane filtration module
US11173453B2 (en) 2013-10-02 2021-11-16 Rohm And Haas Electronic Materials Singapores Method and device for repairing a membrane filtration module
US10322375B2 (en) 2015-07-14 2019-06-18 Evoqua Water Technologies Llc Aeration device for filtration system

Also Published As

Publication number Publication date
JPH0736039B2 (en) 1995-04-19

Similar Documents

Publication Publication Date Title
JPH0328797A (en) Method for removeing suspensible impurity of condensate by mixed end type condensate desalting device
US4853130A (en) Method for purifying liquids
JP3687829B2 (en) Condensate treatment method and condensate demineralizer
JP2001239138A (en) Device for treating liquid
JPS5815016B2 (en) How to clean ion exchange resin
JPH01174998A (en) Removal of suspended impurities with mixing floor type filter/desalter
JPH0512996B2 (en)
JPH0356126A (en) Hollow yarn membrane filter having desalting function
JP4356987B2 (en) Condensate demineralization treatment method and apparatus and method for forming packed bed thereof
CA2055206C (en) Method of mixed-bed filtration and demineralization with ion-exchange resins
JPH02131188A (en) Removal process for suspended impurities by mixed bed type filter desalting device
JPS59183398A (en) Maintenance system of condensate desalt tower
JPH0515875A (en) Filtering and desalting method by mixed-bed ion exchanger
JPS6159794B2 (en)
JP3472658B2 (en) Regeneration method of anion exchange resin
JP2742975B2 (en) Regeneration method of ion exchange device
JPH07323235A (en) Ion exchange resin and desalination device filled with the same
JPH0771669B2 (en) Ultrapure water production method
JPH0445230B2 (en)
JPS5940063B2 (en) Ion exchange resin cleaning method and device
JPH0615263A (en) Ultrapure water producing apparatus
JPH0531482A (en) Condensed water demineralizing method
JPH02131189A (en) Removal process for suspended impurities by mixed bed type filter desalting device
JPS62280375A (en) Device for water-washing chemical-conversion treated article
JPH02300695A (en) Ion exchange resin for cleaning primary cooling water