JPH03287770A - Single wafer processing atmospheric cvd device - Google Patents

Single wafer processing atmospheric cvd device

Info

Publication number
JPH03287770A
JPH03287770A JP9059690A JP9059690A JPH03287770A JP H03287770 A JPH03287770 A JP H03287770A JP 9059690 A JP9059690 A JP 9059690A JP 9059690 A JP9059690 A JP 9059690A JP H03287770 A JPH03287770 A JP H03287770A
Authority
JP
Japan
Prior art keywords
substrate
film
wafer
upper chamber
susceptor
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Pending
Application number
JP9059690A
Other languages
Japanese (ja)
Inventor
Nobuhisa Komatsu
小松 伸壽
Toshio Saito
敏雄 斉藤
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Hitachi High Tech Corp
Original Assignee
Hitachi Electronics Engineering Co Ltd
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Hitachi Electronics Engineering Co Ltd filed Critical Hitachi Electronics Engineering Co Ltd
Priority to JP9059690A priority Critical patent/JPH03287770A/en
Publication of JPH03287770A publication Critical patent/JPH03287770A/en
Pending legal-status Critical Current

Links

Classifications

    • CCHEMISTRY; METALLURGY
    • C23COATING METALLIC MATERIAL; COATING MATERIAL WITH METALLIC MATERIAL; CHEMICAL SURFACE TREATMENT; DIFFUSION TREATMENT OF METALLIC MATERIAL; COATING BY VACUUM EVAPORATION, BY SPUTTERING, BY ION IMPLANTATION OR BY CHEMICAL VAPOUR DEPOSITION, IN GENERAL; INHIBITING CORROSION OF METALLIC MATERIAL OR INCRUSTATION IN GENERAL
    • C23CCOATING METALLIC MATERIAL; COATING MATERIAL WITH METALLIC MATERIAL; SURFACE TREATMENT OF METALLIC MATERIAL BY DIFFUSION INTO THE SURFACE, BY CHEMICAL CONVERSION OR SUBSTITUTION; COATING BY VACUUM EVAPORATION, BY SPUTTERING, BY ION IMPLANTATION OR BY CHEMICAL VAPOUR DEPOSITION, IN GENERAL
    • C23C16/00Chemical coating by decomposition of gaseous compounds, without leaving reaction products of surface material in the coating, i.e. chemical vapour deposition [CVD] processes
    • C23C16/44Chemical coating by decomposition of gaseous compounds, without leaving reaction products of surface material in the coating, i.e. chemical vapour deposition [CVD] processes characterised by the method of coating
    • C23C16/455Chemical coating by decomposition of gaseous compounds, without leaving reaction products of surface material in the coating, i.e. chemical vapour deposition [CVD] processes characterised by the method of coating characterised by the method used for introducing gases into reaction chamber or for modifying gas flows in reaction chamber
    • C23C16/45563Gas nozzles
    • C23C16/45565Shower nozzles

Landscapes

  • Chemical & Material Sciences (AREA)
  • General Chemical & Material Sciences (AREA)
  • Chemical Kinetics & Catalysis (AREA)
  • Engineering & Computer Science (AREA)
  • Materials Engineering (AREA)
  • Mechanical Engineering (AREA)
  • Metallurgy (AREA)
  • Organic Chemistry (AREA)
  • Crystals, And After-Treatments Of Crystals (AREA)
  • Chemical Vapour Deposition (AREA)

Abstract

PURPOSE:To form a thin film on the entire surface of a substrate in uniform thickness in the single wafer processing atmospheric CVD device by providing a raw gas flow straightening plate pierced with many through-holes at a specified inclination on the substrate. CONSTITUTION:A susceptor 14 carrying a substrate 18 is fixed to a rotary plate 64 by plural legs 62 in the single wafer processing atmospheric CVD device consisting of an upper chamber 10 and a lower chamber 12 and made rotatable and vertically movable. The substrate 18 is heated by a heater 68, and SiH4 and O2 as the raw gas are supplied from a gaseous reactant supply means 16 into the upper chamber 10 respectively with gaseous N2 as the carrier gas. A flow straightening plate 30 pierced with many throughholes 40 at an inclination of 20-45 deg. is placed above the substrate, the raw gas is passed through the holes 40 to form a uniform film on the substrate 18, and the film of SiO2 formed by the reaction of SiH4 with O2 is deposited on the entire surface in uniform thickness.

Description

【発明の詳細な説明】 [産業上の利用分野コ 本発明はCVD薄膜形成装置に関する。更に詳細には、
本発明は膜厚の均一性を向上させることのできる枚葉式
常圧CVD装置に関する。
DETAILED DESCRIPTION OF THE INVENTION [Field of Industrial Application] The present invention relates to a CVD thin film forming apparatus. More specifically,
The present invention relates to a single-wafer atmospheric pressure CVD apparatus that can improve the uniformity of film thickness.

[従来技術] 薄膜の形成方法として半導体工業において一般に広く用
いられているものの一つに化学的気相成長法(CVD:
Chemical  VapourDepos i t
 1on)がある。CVDとは、ガス状物質を化学反応
で固体物質にし、基板上に堆積することをいう。
[Prior Art] One of the methods widely used in the semiconductor industry for forming thin films is chemical vapor deposition (CVD).
Chemical Vapor Depos it
1on). CVD refers to turning a gaseous substance into a solid substance through a chemical reaction and depositing it on a substrate.

CVDの特徴は、成長しようとする薄膜の融点よりかな
り低い堆積温度で種々の薄膜が得られること、および、
成長した薄膜の純度が高(、SiやSi上の熱酸化膜上
に成長した場合も電気的特性が安定であることで、広く
半導体表面のパッシベーション膜として利用されている
Characteristics of CVD are that various thin films can be obtained at deposition temperatures considerably lower than the melting point of the thin film to be grown;
Because the grown thin film has high purity (and its electrical characteristics are stable even when grown on Si or a thermal oxide film on Si), it is widely used as a passivation film on semiconductor surfaces.

CVDによる薄膜形成は、例えば約400℃−500℃
程度に加熱したウェハに反応ガス(例えば、SiH++
02.またはSiH4+PH3+02)を供給して行わ
れる。上記の反応ガスは反応炉(ベルジャ)内のウェハ
に吹きつけられ、該ウェハの表面に5i02あるいはフ
ォスフオシリケードガラス(PSG)またはポロシリケ
ートガラス(BSG)の薄膜を形成する。また、5i0
2とPSGまたはBSGとの2層成膜が行われることも
ある。更に、モリブデン、タングステンあるいはタング
ステンシリサイド等の金属薄膜の形成にも使用できる。
Thin film formation by CVD is performed at a temperature of approximately 400°C to 500°C, for example.
A reactive gas (for example, SiH++
02. Or SiH4+PH3+02) is supplied. The above reaction gas is blown onto the wafer in a reactor (belljar) to form a thin film of 5i02 or phosphorus silicate glass (PSG) or porosilicate glass (BSG) on the surface of the wafer. Also, 5i0
In some cases, two-layer film formation of 2 and PSG or BSG is performed. Furthermore, it can also be used to form metal thin films such as molybdenum, tungsten or tungsten silicide.

CVDの成膜処理操作には、ウェハー枚毎に成膜する枚
葉式と、十数枚のウェハを一度に成膜するバッチ式およ
びウェハを連続的に搬送しながら成膜する連続式とがあ
る。枚葉式は大口径ウエノ\に均一なCVD膜を形成す
るのに適している。
There are three types of CVD film-forming processing operations: single-wafer method that deposits film on each wafer, batch method that deposits film on more than ten wafers at once, and continuous method that deposits film while continuously transporting wafers. be. The single-wafer type is suitable for forming a uniform CVD film on a large-diameter Ueno film.

従来の枚葉式常圧CVD装置は第2図に示されるように
、上側チャンバ10と下側チャンバ12とからなる反応
室の内部に、回転および昇降可能なサセプタ14が配置
されており、上側チャンバの上面に反応ガス供給手段1
6が配設されている。
As shown in FIG. 2, in a conventional single-wafer atmospheric pressure CVD apparatus, a susceptor 14 that can rotate and move up and down is arranged inside a reaction chamber consisting of an upper chamber 10 and a lower chamber 12. Reaction gas supply means 1 on the top surface of the chamber
6 are arranged.

このガス供給手段はSiH+と02を別々のパイプから
供給できるように構成されている。上側チャンバ10と
下側チャンバ12とはヒンジ部材20により接続され、
上側チャンバ10が開閉可能に構成されている。このよ
うな構成により反応室内を定期的に清掃することができ
る。
This gas supply means is configured so that SiH+ and 02 can be supplied from separate pipes. The upper chamber 10 and the lower chamber 12 are connected by a hinge member 20,
The upper chamber 10 is configured to be openable and closable. With such a configuration, the inside of the reaction chamber can be cleaned regularly.

[発明が解決しようとする課題] しかし、第2図のような装置では、反応ガスがウェハ1
8の真上から流下してくるので、ウェハ18の中央部の
膜厚が厚くなり、周辺部が薄くなる傾向があった。
[Problem to be solved by the invention] However, in the apparatus shown in FIG.
Since the film flows down from directly above the wafer 18, the film thickness tends to be thicker at the center of the wafer 18 and thinner at the periphery.

従って、本発明の目的は膜厚均一性を向上させることの
できる枚葉式常圧CVD装置を提供することである。
Therefore, an object of the present invention is to provide a single-wafer atmospheric pressure CVD apparatus that can improve film thickness uniformity.

[課題を解決するための手段] 前記問題点を解決し、あわせて本発明の目的を達成する
ための手段として、この発明は、上側チャンバと下側チ
ャンバとからなる反応室内に、回転および昇降可能なサ
セプタが配置されている枚葉式常圧CVD装置において
、前記上側チャンバの上面には反応ガス供給手段が配設
されており、かつ、該上側チャンバの内側には、供給さ
れた反応ガスの流れを均一化するための多数の貫通スリ
ットを有する整流板が該上側チャンバに固着されており
、前記貫通スリットの下端寄りガス吹き出し口がガスの
流れ方向に向かって20〜45@傾斜していることを特
徴とする枚葉式常圧CVD装置を提供する。
[Means for Solving the Problems] As a means for solving the above-mentioned problems and also achieving the object of the present invention, the present invention provides a system for rotating and raising/lowering a reaction chamber consisting of an upper chamber and a lower chamber. In a single-wafer atmospheric pressure CVD apparatus in which a susceptor is disposed, a reactant gas supply means is disposed on the upper surface of the upper chamber, and the supplied reactant gas is disposed inside the upper chamber. A rectifying plate having a large number of through slits for making the flow uniform is fixed to the upper chamber, and the gas outlet near the lower end of the through slit is inclined by 20 to 45 degrees toward the gas flow direction. Provided is a single-wafer atmospheric pressure CVD apparatus characterized by:

[作用] 前記のように、本発明のCVD装置は貫通スリットのガ
ス吹出口がガスの流れ方向に向かって所定の角度で傾斜
されているので、ウェハ全面で均一な流れができ、膜厚
の均一性が向上される。
[Function] As described above, in the CVD apparatus of the present invention, the gas outlet of the through-slit is inclined at a predetermined angle toward the gas flow direction, so that a uniform flow can be achieved over the entire surface of the wafer, and the film thickness can be reduced. Uniformity is improved.

[実施例] 以下、図面を参照しながら本発明の一実施例について更
に詳細に説明する。
[Example] Hereinafter, an example of the present invention will be described in more detail with reference to the drawings.

第1図は本発明の枚葉式常圧CVD装置の一実施例の概
念図である。
FIG. 1 is a conceptual diagram of an embodiment of a single-wafer atmospheric pressure CVD apparatus of the present invention.

第1図に示される装置において第2図の従来の装置と同
一の部材については第2図で使用された符号と同じ符号
を使用する。
Components in the apparatus shown in FIG. 1 that are the same as those in the conventional apparatus shown in FIG. 2 are designated by the same reference numerals as used in FIG.

第1図における本発明の枚葉式CVD装置も従来の装置
と同様に上側チャンバ10と下側チャンバ12とからな
る。上側チャンバ10と下側チャンバ12とはヒンジ部
材20により接続され、上側チャンバ10が開閉可能に
構成されている。図示されていないが、装置稼働中は、
上側チャンバ10と下側チャンバ12とは適当なりラン
プ機構などにより圧締めされている。
The single-wafer CVD apparatus of the present invention shown in FIG. 1 also consists of an upper chamber 10 and a lower chamber 12, similar to the conventional apparatus. The upper chamber 10 and the lower chamber 12 are connected by a hinge member 20, and the upper chamber 10 is configured to be openable and closable. Although not shown, while the device is in operation,
The upper chamber 10 and the lower chamber 12 are clamped together by a suitable ramp mechanism or the like.

上側チャンバ10の内部には整流板30が配設されてい
る。整流板30の上面側にガス拡散空間32が形成され
ている。
A current plate 30 is disposed inside the upper chamber 10. A gas diffusion space 32 is formed on the upper surface side of the current plate 30.

整流板30のウェハ対同部分には、前記ガス拡散空間3
2から反応空間38に抜ける多数の貫通孔40が設けら
れている。また、整流板30の下端の適当な一箇所に排
気口42を設ける。この排気口42は装置の排気ダクト
44に隣接して設けることが好ましい。整流板の排気口
は装置の排気ダクトに連結し、一体化してはならない。
The gas diffusion space 3 is located in the same portion of the rectifying plate 30 as the wafer.
A large number of through holes 40 extending from the reaction space 2 to the reaction space 38 are provided. Further, an exhaust port 42 is provided at a suitable location on the lower end of the current plate 30. This exhaust port 42 is preferably located adjacent to the exhaust duct 44 of the device. The air outlet of the baffle plate shall be connected to the equipment exhaust duct and shall not be integrated with it.

また、前記貫通孔40を排気口42の方向に向けて20
〜45′の角度で傾斜させる。傾斜角度が20゜未満で
はガスが水平に流れ、ウェハ表面に接触しない恐れがあ
る。また、傾斜角度が45°超では垂直吹付けのように
なり膜厚均一性の改善効果が期待できない。貫通孔の吹
き出し角度を20〜45@の範囲内にすると、ウェハ全
面で均一なガス流れが形成され、異物発生が抑制される
ばかりか、デポレートも増大させることができる。
Further, the through hole 40 is oriented 20 mm toward the exhaust port 42.
Tilt at an angle of ~45'. If the inclination angle is less than 20 degrees, the gas will flow horizontally and may not come into contact with the wafer surface. Further, if the inclination angle exceeds 45°, the spraying becomes like vertical spraying, and no improvement in film thickness uniformity can be expected. When the blowing angle of the through hole is within the range of 20 to 45@, a uniform gas flow is formed over the entire surface of the wafer, and not only the generation of foreign matter is suppressed, but also the deposition rate can be increased.

反応空間38内をガスが排気口42に向かってスムーズ
に流れるようにするため、サセプタ14を囲む包囲板4
6および48を設けることが好ましい。包囲板46とサ
セプタ14との間には極く僅かな隙間があり、サセプタ
14の昇降には支障がない。
In order to allow gas to smoothly flow inside the reaction space 38 toward the exhaust port 42, a surrounding plate 4 surrounding the susceptor 14 is provided.
6 and 48 are preferably provided. There is a very small gap between the surrounding plate 46 and the susceptor 14, and there is no problem in raising and lowering the susceptor 14.

サセプタ14はエアシリンダ50などの常用の昇降機構
により昇降可能に構成されている。エアシリンダ50は
例えば、支柱60の下面に配設することが好ましい。成
膜反応を実施する場合にはサセプタを上昇させ、成膜反
応終了後は下降させる。サセプタの上面がゲート部(図
示されていない)の所に達したら下降を停止させる。
The susceptor 14 is configured to be able to be raised and lowered by a commonly used raising and lowering mechanism such as an air cylinder 50. For example, the air cylinder 50 is preferably disposed on the lower surface of the support column 60. When carrying out a film forming reaction, the susceptor is raised, and after the film forming reaction is completed, it is lowered. When the upper surface of the susceptor reaches a gate portion (not shown), the lowering is stopped.

サセプタ14は回転可能に構成されている。例えば、サ
セプタ14を脚62により回転板64に固着し、この回
転板64と支柱60の間に自転ベアリング66を挿入す
る。図示されていない適当な駆動源により回転板64を
回転させるとサセプタ14が回転される。サセプタ14
は成膜反応処理中だけ回転される。
The susceptor 14 is configured to be rotatable. For example, the susceptor 14 is fixed to a rotary plate 64 by legs 62, and a rotation bearing 66 is inserted between the rotary plate 64 and the column 60. The susceptor 14 is rotated when the rotating plate 64 is rotated by an appropriate driving source (not shown). Susceptor 14
is rotated only during the film forming reaction process.

本発明の装置によりCVD膜を成膜する場合、前記のよ
うにサセプタ14が上昇され、整流板30の包囲板46
の高さ位置で停止される。反応ガス送入手段16から反
応ガス拡散空間32にガスが送られ、貫通孔40からサ
セプタ上面に載置されたウェハ18に流下する。ウェハ
18はサセプタ14のヒータ68により所定温度にまで
加熱されており、加熱ウェハ表面で成膜反応が行われる
When forming a CVD film using the apparatus of the present invention, the susceptor 14 is raised as described above, and the surrounding plate 46 of the rectifying plate 30 is
It will be stopped at a height of . Gas is sent from the reaction gas supply means 16 to the reaction gas diffusion space 32 and flows down from the through hole 40 to the wafer 18 placed on the upper surface of the susceptor. The wafer 18 is heated to a predetermined temperature by the heater 68 of the susceptor 14, and a film forming reaction is performed on the heated wafer surface.

成膜処理中、ウェハはサセプタと共に回転している。During the film deposition process, the wafer is rotating together with the susceptor.

[発明の効果] 以上説明したように、本発明のCVD!tIiFは貫通
スリットのガス吹出口がガスの流れ方向に向かって所定
の角度で傾斜されているので、ウェハ全面で均一な流れ
ができ、膜厚の均一性が向上される。
[Effects of the Invention] As explained above, the CVD! of the present invention! In tIiF, the gas outlet of the through-slit is inclined at a predetermined angle toward the gas flow direction, so that a uniform flow can be achieved over the entire surface of the wafer, improving the uniformity of the film thickness.

本発明の装置で成膜すると、ウェハ全面に縦方向に薄膜
が堆積される成膜状態となるために膜質が改善される。
When a film is formed using the apparatus of the present invention, the film quality is improved because a thin film is vertically deposited over the entire surface of the wafer.

また、ウェハ全面で均一な層流ができ、乱流や渦流は出
来ないので、異物の発生が抑制されるばかりか、デポレ
ートを増大させることができる。
Further, since a uniform laminar flow is generated over the entire surface of the wafer and no turbulent flow or eddy flow is generated, not only the generation of foreign matter is suppressed, but also the deposition rate can be increased.

【図面の簡単な説明】[Brief explanation of drawings]

第1図は本発明の枚葉式常圧CVD装置の一実施例の概
念図であり、第2図は従来の枚葉式常圧CVD装置の一
例の概念図である。 10・・・上側チャンバ、12・・・下側チャンバ。 14・・・サセプタ、16・・・反応ガス送入手段。 18・・・ウェハ、30・・・整流板、40・・・貫通
孔。 42・・・排気口、46および48・・・包囲板6 第2図
FIG. 1 is a conceptual diagram of an embodiment of a single wafer type normal pressure CVD apparatus of the present invention, and FIG. 2 is a conceptual diagram of an example of a conventional single wafer type normal pressure CVD apparatus. 10... Upper chamber, 12... Lower chamber. 14... Susceptor, 16... Reaction gas feeding means. 18... Wafer, 30... Rectifying plate, 40... Through hole. 42...Exhaust port, 46 and 48...Surrounding plate 6 Fig. 2

Claims (1)

【特許請求の範囲】[Claims] (1)上側チャンバと下側チャンバとからなる反応室内
に、回転および昇降可能なサセプタが配置されている枚
葉式常圧CVD装置において、前記上側チャンバの上面
には反応ガス供給手段が配設されており、かつ、該上側
チャンバの内側には、供給された反応ガスの流れを均一
化するための多数の貫通スリットを有する整流板が該上
側チャンバに固着されており、前記貫通スリットの下端
寄りガス吹き出し口がガスの流れ方向に向かって20〜
45゜傾斜していることを特徴とする枚葉式常圧CVD
装置。
(1) In a single-wafer atmospheric pressure CVD apparatus in which a rotatable and movable susceptor is disposed in a reaction chamber consisting of an upper chamber and a lower chamber, a reaction gas supply means is disposed on the upper surface of the upper chamber. and a baffle plate having a large number of through slits for uniformizing the flow of the supplied reaction gas is fixed to the inside of the upper chamber, and the lower end of the through slit is fixed to the upper chamber. The side gas outlet is 20~ towards the direction of gas flow.
Single-wafer atmospheric pressure CVD characterized by a 45° inclination
Device.
JP9059690A 1990-04-05 1990-04-05 Single wafer processing atmospheric cvd device Pending JPH03287770A (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP9059690A JPH03287770A (en) 1990-04-05 1990-04-05 Single wafer processing atmospheric cvd device

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP9059690A JPH03287770A (en) 1990-04-05 1990-04-05 Single wafer processing atmospheric cvd device

Publications (1)

Publication Number Publication Date
JPH03287770A true JPH03287770A (en) 1991-12-18

Family

ID=14002852

Family Applications (1)

Application Number Title Priority Date Filing Date
JP9059690A Pending JPH03287770A (en) 1990-04-05 1990-04-05 Single wafer processing atmospheric cvd device

Country Status (1)

Country Link
JP (1) JPH03287770A (en)

Cited By (43)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US5712001A (en) * 1995-03-20 1998-01-27 Matsushita Electric Industrial Co., Ltd. Chemical vapor deposition process for producing oxide thin films
US20110247556A1 (en) * 2010-03-31 2011-10-13 Soraa, Inc. Tapered Horizontal Growth Chamber
CN102851648A (en) * 2011-06-30 2013-01-02 三星显示有限公司 Apparatus for atomic layer deposition, sealing method and nozzle set for deposition
US8422525B1 (en) 2009-03-28 2013-04-16 Soraa, Inc. Optical device structure using miscut GaN substrates for laser applications
US8837546B1 (en) 2009-05-29 2014-09-16 Soraa Laser Diode, Inc. Gallium nitride based laser dazzling device and method
US8837545B2 (en) 2009-04-13 2014-09-16 Soraa Laser Diode, Inc. Optical device structure using GaN substrates and growth structures for laser applications
US8847249B2 (en) 2008-06-16 2014-09-30 Soraa, Inc. Solid-state optical device having enhanced indium content in active regions
US8848755B1 (en) 2010-05-17 2014-09-30 Soraa Laser Diode, Inc. Method and system for providing directional light sources with broad spectrum
US8905588B2 (en) 2010-02-03 2014-12-09 Sorra, Inc. System and method for providing color light sources in proximity to predetermined wavelength conversion structures
US8956894B2 (en) 2008-08-04 2015-02-17 Soraa, Inc. White light devices using non-polar or semipolar gallium containing materials and phosphors
US8971370B1 (en) 2011-10-13 2015-03-03 Soraa Laser Diode, Inc. Laser devices using a semipolar plane
US9013638B2 (en) 2009-05-29 2015-04-21 Soraa Laser Diode, Inc. Laser based display method and system
US9020003B1 (en) 2012-03-14 2015-04-28 Soraa Laser Diode, Inc. Group III-nitride laser diode grown on a semi-polar orientation of gallium and nitrogen containing substrates
US9048170B2 (en) 2010-11-09 2015-06-02 Soraa Laser Diode, Inc. Method of fabricating optical devices using laser treatment
US9071039B2 (en) 2009-04-13 2015-06-30 Soraa Laser Diode, Inc. Optical device structure using GaN substrates for laser applications
US9088135B1 (en) 2012-06-29 2015-07-21 Soraa Laser Diode, Inc. Narrow sized laser diode
US9093820B1 (en) 2011-01-25 2015-07-28 Soraa Laser Diode, Inc. Method and structure for laser devices using optical blocking regions
US9142935B2 (en) 2009-09-17 2015-09-22 Soraa Laser Diode, Inc. Laser diodes with scribe structures
US9184563B1 (en) 2012-08-30 2015-11-10 Soraa Laser Diode, Inc. Laser diodes with an etched facet and surface treatment
US9236530B2 (en) 2011-04-01 2016-01-12 Soraa, Inc. Miscut bulk substrates
US9239427B1 (en) 2008-07-14 2016-01-19 Soraa Laser Diode, Inc. Methods and apparatus for photonic integration in non-polar and semi-polar oriented wave-guided optical devices
US9250044B1 (en) 2009-05-29 2016-02-02 Soraa Laser Diode, Inc. Gallium and nitrogen containing laser diode dazzling devices and methods of use
US9287684B2 (en) 2011-04-04 2016-03-15 Soraa Laser Diode, Inc. Laser package having multiple emitters with color wheel
US9343871B1 (en) 2012-04-05 2016-05-17 Soraa Laser Diode, Inc. Facet on a gallium and nitrogen containing laser diode
US9379522B1 (en) 2010-11-05 2016-06-28 Soraa Laser Diode, Inc. Method of strain engineering and related optical device using a gallium and nitrogen containing active region
US9531164B2 (en) 2009-04-13 2016-12-27 Soraa Laser Diode, Inc. Optical device structure using GaN substrates for laser applications
US9646827B1 (en) 2011-08-23 2017-05-09 Soraa, Inc. Method for smoothing surface of a substrate containing gallium and nitrogen
US9787963B2 (en) 2015-10-08 2017-10-10 Soraa Laser Diode, Inc. Laser lighting having selective resolution
US9800016B1 (en) 2012-04-05 2017-10-24 Soraa Laser Diode, Inc. Facet on a gallium and nitrogen containing laser diode
US9800017B1 (en) 2009-05-29 2017-10-24 Soraa Laser Diode, Inc. Laser device and method for a vehicle
US9810383B2 (en) 2011-01-24 2017-11-07 Soraa Laser Diode, Inc. Laser package having multiple emitters configured on a support member
US9829780B2 (en) 2009-05-29 2017-11-28 Soraa Laser Diode, Inc. Laser light source for a vehicle
US10108079B2 (en) 2009-05-29 2018-10-23 Soraa Laser Diode, Inc. Laser light source for a vehicle
US10147850B1 (en) 2010-02-03 2018-12-04 Soraa, Inc. System and method for providing color light sources in proximity to predetermined wavelength conversion structures
US10222474B1 (en) 2017-12-13 2019-03-05 Soraa Laser Diode, Inc. Lidar systems including a gallium and nitrogen containing laser light source
JP2019530253A (en) * 2016-09-19 2019-10-17 キング・アブドゥッラー・ユニバーシティ・オブ・サイエンス・アンド・テクノロジー Susceptor
US10551728B1 (en) 2018-04-10 2020-02-04 Soraa Laser Diode, Inc. Structured phosphors for dynamic lighting
US10559939B1 (en) 2012-04-05 2020-02-11 Soraa Laser Diode, Inc. Facet on a gallium and nitrogen containing laser diode
US10771155B2 (en) 2017-09-28 2020-09-08 Soraa Laser Diode, Inc. Intelligent visible light with a gallium and nitrogen containing laser source
US11070031B2 (en) 2009-09-17 2021-07-20 Kyocera Sld Laser, Inc. Low voltage laser diodes on {20-21} gallium and nitrogen containing surfaces
US11239637B2 (en) 2018-12-21 2022-02-01 Kyocera Sld Laser, Inc. Fiber delivered laser induced white light system
US11421843B2 (en) 2018-12-21 2022-08-23 Kyocera Sld Laser, Inc. Fiber-delivered laser-induced dynamic light system
US11884202B2 (en) 2019-01-18 2024-01-30 Kyocera Sld Laser, Inc. Laser-based fiber-coupled white light system

Cited By (144)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US5876504A (en) * 1995-03-20 1999-03-02 Matsushita Electric Industrial Co., Ltd Process for producing oxide thin films and chemical vapor deposition apparatus used therefor
US5712001A (en) * 1995-03-20 1998-01-27 Matsushita Electric Industrial Co., Ltd. Chemical vapor deposition process for producing oxide thin films
US8847249B2 (en) 2008-06-16 2014-09-30 Soraa, Inc. Solid-state optical device having enhanced indium content in active regions
US9711941B1 (en) 2008-07-14 2017-07-18 Soraa Laser Diode, Inc. Methods and apparatus for photonic integration in non-polar and semi-polar oriented wave-guided optical devices
US9239427B1 (en) 2008-07-14 2016-01-19 Soraa Laser Diode, Inc. Methods and apparatus for photonic integration in non-polar and semi-polar oriented wave-guided optical devices
US8956894B2 (en) 2008-08-04 2015-02-17 Soraa, Inc. White light devices using non-polar or semipolar gallium containing materials and phosphors
USRE47711E1 (en) 2008-08-04 2019-11-05 Soraa, Inc. White light devices using non-polar or semipolar gallium containing materials and phosphors
US8422525B1 (en) 2009-03-28 2013-04-16 Soraa, Inc. Optical device structure using miscut GaN substrates for laser applications
US9531164B2 (en) 2009-04-13 2016-12-27 Soraa Laser Diode, Inc. Optical device structure using GaN substrates for laser applications
US9099844B2 (en) 2009-04-13 2015-08-04 Soraa Laser Diode, Inc. Optical device structure using GaN substrates and growth structures for laser applications
US10374392B1 (en) 2009-04-13 2019-08-06 Soraa Laser Diode, Inc. Optical device structure using GaN substrates and growth structures for laser applications
US8969113B2 (en) 2009-04-13 2015-03-03 Soraa Laser Diode, Inc. Optical device structure using GaN substrates and growth structures for laser applications
US8837545B2 (en) 2009-04-13 2014-09-16 Soraa Laser Diode, Inc. Optical device structure using GaN substrates and growth structures for laser applications
US11862937B1 (en) 2009-04-13 2024-01-02 Kyocera Sld Laser, Inc. Optical device structure using GaN substrates and growth structures for laser applications
US9735547B1 (en) 2009-04-13 2017-08-15 Soraa Laser Diode, Inc. Optical device structure using GaN substrates and growth structures for laser applications
US9722398B2 (en) 2009-04-13 2017-08-01 Soraa Laser Diode, Inc. Optical device structure using GaN substrates for laser applications
US9941665B1 (en) 2009-04-13 2018-04-10 Soraa Laser Diode, Inc. Optical device structure using GaN substrates and growth structures for laser applications
US9553426B1 (en) 2009-04-13 2017-01-24 Soraa Laser Diode, Inc. Optical device structure using GaN substrates and growth structures for laser applications
US9071039B2 (en) 2009-04-13 2015-06-30 Soraa Laser Diode, Inc. Optical device structure using GaN substrates for laser applications
US10862274B1 (en) 2009-04-13 2020-12-08 Soraa Laser Diode, Inc. Optical device structure using GaN substrates and growth structures for laser applications
US9356430B2 (en) 2009-04-13 2016-05-31 Soraa Laser Diode, Inc. Optical device structure using GaN substrates and growth structures for laser applications
US10862273B1 (en) 2009-04-13 2020-12-08 Soraa Laser Diode, Inc. Optical device structure using GaN substrates and growth structures for laser applications
US11088507B1 (en) 2009-05-29 2021-08-10 Kyocera Sld Laser, Inc. Laser source apparatus
US10084281B1 (en) 2009-05-29 2018-09-25 Soraa Laser Diode, Inc. Laser device and method for a vehicle
US9014229B1 (en) 2009-05-29 2015-04-21 Soraa Laser Diode, Inc. Gallium nitride based laser dazzling method
US9013638B2 (en) 2009-05-29 2015-04-21 Soraa Laser Diode, Inc. Laser based display method and system
US11101618B1 (en) 2009-05-29 2021-08-24 Kyocera Sld Laser, Inc. Laser device for dynamic white light
US11796903B2 (en) 2009-05-29 2023-10-24 Kyocera Sld Laser, Inc. Laser based display system
US10108079B2 (en) 2009-05-29 2018-10-23 Soraa Laser Diode, Inc. Laser light source for a vehicle
US8837546B1 (en) 2009-05-29 2014-09-16 Soraa Laser Diode, Inc. Gallium nitride based laser dazzling device and method
US9250044B1 (en) 2009-05-29 2016-02-02 Soraa Laser Diode, Inc. Gallium and nitrogen containing laser diode dazzling devices and methods of use
US10205300B1 (en) 2009-05-29 2019-02-12 Soraa Laser Diode, Inc. Gallium and nitrogen containing laser diode dazzling devices and methods of use
US9800017B1 (en) 2009-05-29 2017-10-24 Soraa Laser Diode, Inc. Laser device and method for a vehicle
US11817675B1 (en) 2009-05-29 2023-11-14 Kyocera Sld Laser, Inc. Laser device for white light
US9071772B2 (en) 2009-05-29 2015-06-30 Soraa Laser Diode, Inc. Laser based display method and system
US9100590B2 (en) 2009-05-29 2015-08-04 Soraa Laser Diode, Inc. Laser based display method and system
US10904506B1 (en) 2009-05-29 2021-01-26 Soraa Laser Diode, Inc. Laser device for white light
US10297977B1 (en) 2009-05-29 2019-05-21 Soraa Laser Diode, Inc. Laser device and method for a vehicle
US11619871B2 (en) 2009-05-29 2023-04-04 Kyocera Sld Laser, Inc. Laser based display system
US11016378B2 (en) 2009-05-29 2021-05-25 Kyocera Sld Laser, Inc. Laser light source
US9019437B2 (en) 2009-05-29 2015-04-28 Soraa Laser Diode, Inc. Laser based display method and system
US9829780B2 (en) 2009-05-29 2017-11-28 Soraa Laser Diode, Inc. Laser light source for a vehicle
US9829778B2 (en) 2009-05-29 2017-11-28 Soraa Laser Diode, Inc. Laser light source
US11070031B2 (en) 2009-09-17 2021-07-20 Kyocera Sld Laser, Inc. Low voltage laser diodes on {20-21} gallium and nitrogen containing surfaces
US9142935B2 (en) 2009-09-17 2015-09-22 Soraa Laser Diode, Inc. Laser diodes with scribe structures
US8905588B2 (en) 2010-02-03 2014-12-09 Sorra, Inc. System and method for providing color light sources in proximity to predetermined wavelength conversion structures
US10147850B1 (en) 2010-02-03 2018-12-04 Soraa, Inc. System and method for providing color light sources in proximity to predetermined wavelength conversion structures
US20110247556A1 (en) * 2010-03-31 2011-10-13 Soraa, Inc. Tapered Horizontal Growth Chamber
US10923878B1 (en) 2010-05-17 2021-02-16 Soraa Laser Diode, Inc. Method and system for providing directional light sources with broad spectrum
US8848755B1 (en) 2010-05-17 2014-09-30 Soraa Laser Diode, Inc. Method and system for providing directional light sources with broad spectrum
US9106049B1 (en) 2010-05-17 2015-08-11 Soraa Laser Diode, Inc. Method and system for providing directional light sources with broad spectrum
US10122148B1 (en) 2010-05-17 2018-11-06 Soraa Laser Diodide, Inc. Method and system for providing directional light sources with broad spectrum
US10505344B1 (en) 2010-05-17 2019-12-10 Soraa Laser Diode, Inc. Method and system for providing directional light sources with broad spectrum
US11791606B1 (en) 2010-05-17 2023-10-17 Kyocera Sld Laser, Inc. Method and system for providing directional light sources with broad spectrum
US9362720B1 (en) 2010-05-17 2016-06-07 Soraa Laser Diode, Inc. Method and system for providing directional light sources with broad spectrum
US9837790B1 (en) 2010-05-17 2017-12-05 Soraa Laser Diode, Inc. Method and system for providing directional light sources with broad spectrum
US9570888B1 (en) 2010-11-05 2017-02-14 Soraa Laser Diode, Inc. Method of strain engineering and related optical device using a gallium and nitrogen containing active region
US11715931B1 (en) 2010-11-05 2023-08-01 Kyocera Sld Laser, Inc. Strained and strain control regions in optical devices
US10283938B1 (en) 2010-11-05 2019-05-07 Soraa Laser Diode, Inc. Method of strain engineering and related optical device using a gallium and nitrogen containing active region
US11152765B1 (en) 2010-11-05 2021-10-19 Kyocera Sld Laser, Inc. Strained and strain control regions in optical devices
US9379522B1 (en) 2010-11-05 2016-06-28 Soraa Laser Diode, Inc. Method of strain engineering and related optical device using a gallium and nitrogen containing active region
US10637210B1 (en) 2010-11-05 2020-04-28 Soraa Laser Diode, Inc. Strained and strain control regions in optical devices
US9786810B2 (en) 2010-11-09 2017-10-10 Soraa Laser Diode, Inc. Method of fabricating optical devices using laser treatment
US9048170B2 (en) 2010-11-09 2015-06-02 Soraa Laser Diode, Inc. Method of fabricating optical devices using laser treatment
US11573374B2 (en) 2011-01-24 2023-02-07 Kyocera Sld Laser, Inc. Gallium and nitrogen containing laser module configured for phosphor pumping
US9810383B2 (en) 2011-01-24 2017-11-07 Soraa Laser Diode, Inc. Laser package having multiple emitters configured on a support member
US9835296B2 (en) 2011-01-24 2017-12-05 Soraa Laser Diode, Inc. Laser package having multiple emitters configured on a support member
US11543590B2 (en) 2011-01-24 2023-01-03 Kyocera Sld Laser, Inc. Optical module having multiple laser diode devices and a support member
US10247366B2 (en) 2011-01-24 2019-04-02 Soraa Laser Diode, Inc. Laser package having multiple emitters configured on a support member
US10655800B2 (en) 2011-01-24 2020-05-19 Soraa Laser Diode, Inc. Laser package having multiple emitters configured on a support member
US9093820B1 (en) 2011-01-25 2015-07-28 Soraa Laser Diode, Inc. Method and structure for laser devices using optical blocking regions
US9236530B2 (en) 2011-04-01 2016-01-12 Soraa, Inc. Miscut bulk substrates
US9287684B2 (en) 2011-04-04 2016-03-15 Soraa Laser Diode, Inc. Laser package having multiple emitters with color wheel
US10050415B1 (en) 2011-04-04 2018-08-14 Soraa Laser Diode, Inc. Laser device having multiple emitters
US11005234B1 (en) 2011-04-04 2021-05-11 Kyocera Sld Laser, Inc. Laser bar device having multiple emitters
US11742634B1 (en) 2011-04-04 2023-08-29 Kyocera Sld Laser, Inc. Laser bar device having multiple emitters
US9716369B1 (en) 2011-04-04 2017-07-25 Soraa Laser Diode, Inc. Laser package having multiple emitters with color wheel
US10587097B1 (en) 2011-04-04 2020-03-10 Soraa Laser Diode, Inc. Laser bar device having multiple emitters
CN102851648A (en) * 2011-06-30 2013-01-02 三星显示有限公司 Apparatus for atomic layer deposition, sealing method and nozzle set for deposition
US9646827B1 (en) 2011-08-23 2017-05-09 Soraa, Inc. Method for smoothing surface of a substrate containing gallium and nitrogen
US9166374B1 (en) 2011-10-13 2015-10-20 Soraa Laser Diode, Inc. Laser devices using a semipolar plane
US10069282B1 (en) 2011-10-13 2018-09-04 Soraa Laser Diode, Inc. Laser devices using a semipolar plane
US10879674B1 (en) 2011-10-13 2020-12-29 Soraa Laser Diode, Inc. Laser devices using a semipolar plane
US9590392B1 (en) 2011-10-13 2017-03-07 Soraa Laser Diode, Inc. Laser devices using a semipolar plane
US8971370B1 (en) 2011-10-13 2015-03-03 Soraa Laser Diode, Inc. Laser devices using a semipolar plane
US11749969B1 (en) 2011-10-13 2023-09-05 Kyocera Sld Laser, Inc. Laser devices using a semipolar plane
US11387630B1 (en) 2011-10-13 2022-07-12 Kyocera Sld Laser, Inc. Laser devices using a semipolar plane
US10522976B1 (en) 2011-10-13 2019-12-31 Soraa Laser Diode, Inc. Laser devices using a semipolar plane
US11201452B1 (en) 2012-02-17 2021-12-14 Kyocera Sld Laser, Inc. Systems for photonic integration in non-polar and semi-polar oriented wave-guided optical devices
US10630050B1 (en) 2012-02-17 2020-04-21 Soraa Laser Diode, Inc. Methods for photonic integration in non-polar and semi-polar oriented wave-guided optical devices
US11677213B1 (en) 2012-02-17 2023-06-13 Kyocera Sld Laser, Inc. Systems for photonic integration in non-polar and semi-polar oriented wave-guided optical devices
US10090638B1 (en) 2012-02-17 2018-10-02 Soraa Laser Diode, Inc. Methods and apparatus for photonic integration in non-polar and semi-polar oriented wave-guided optical devices
US9020003B1 (en) 2012-03-14 2015-04-28 Soraa Laser Diode, Inc. Group III-nitride laser diode grown on a semi-polar orientation of gallium and nitrogen containing substrates
US11742631B1 (en) 2012-04-05 2023-08-29 Kyocera Sld Laser, Inc. Facet on a gallium and nitrogen containing laser diode
US11121522B1 (en) 2012-04-05 2021-09-14 Kyocera Sld Laser, Inc. Facet on a gallium and nitrogen containing laser diode
US11139634B1 (en) 2012-04-05 2021-10-05 Kyocera Sld Laser, Inc. Facet on a gallium and nitrogen containing laser diode
US10559939B1 (en) 2012-04-05 2020-02-11 Soraa Laser Diode, Inc. Facet on a gallium and nitrogen containing laser diode
US9800016B1 (en) 2012-04-05 2017-10-24 Soraa Laser Diode, Inc. Facet on a gallium and nitrogen containing laser diode
US9343871B1 (en) 2012-04-05 2016-05-17 Soraa Laser Diode, Inc. Facet on a gallium and nitrogen containing laser diode
US9985417B1 (en) 2012-06-29 2018-05-29 Soraa Laser Diode, Inc. Narrow sized laser diode
US9640949B1 (en) 2012-06-29 2017-05-02 Soraa Laser Diode, Inc. Narrow sized laser diode
US11217966B1 (en) 2012-06-29 2022-01-04 Kyocera Sld Laser, Inc. Narrow sized laser diode
US9088135B1 (en) 2012-06-29 2015-07-21 Soraa Laser Diode, Inc. Narrow sized laser diode
US11664643B1 (en) 2012-06-29 2023-05-30 Kyocera Sld Laser, Inc. Narrow sized laser diode
US10490980B1 (en) 2012-06-29 2019-11-26 Soraa Laser Diode, Inc. Narrow sized laser diode
US9608407B1 (en) 2012-08-30 2017-03-28 Soraa Laser Diode, Inc. Laser diodes with an etched facet and surface treatment
US9184563B1 (en) 2012-08-30 2015-11-10 Soraa Laser Diode, Inc. Laser diodes with an etched facet and surface treatment
US10862272B1 (en) 2012-08-30 2020-12-08 Soraa Laser Diode, Inc. Laser diodes with a surface treatment
US10096973B1 (en) 2012-08-30 2018-10-09 Soraa Laser Diode, Inc. Laser diodes with an etched facet and surface treatment
US11626708B1 (en) 2012-08-30 2023-04-11 Kyocera Sld Laser, Inc. Laser diodes with an etched facet and surface treatment
US10511149B1 (en) 2012-08-30 2019-12-17 Soraa Laser Diode, Inc. Laser diodes with an etched facet and surface treatment
US11172182B2 (en) 2015-10-08 2021-11-09 Kyocera Sld Laser, Inc. Laser lighting having selective resolution
US9787963B2 (en) 2015-10-08 2017-10-10 Soraa Laser Diode, Inc. Laser lighting having selective resolution
US11800077B2 (en) 2015-10-08 2023-10-24 Kyocera Sld Laser, Inc. Laser lighting having selective resolution
US10506210B2 (en) 2015-10-08 2019-12-10 Soraa Laser Diode, Inc. Laser lighting having selective resolution
US11339478B2 (en) 2016-09-19 2022-05-24 King Abdullah University Of Science And Technology Susceptor
JP2019530253A (en) * 2016-09-19 2019-10-17 キング・アブドゥッラー・ユニバーシティ・オブ・サイエンス・アンド・テクノロジー Susceptor
US10784960B2 (en) 2017-09-28 2020-09-22 Soraa Laser Diode, Inc. Fiber delivered laser based white light source configured for communication
US10873395B2 (en) 2017-09-28 2020-12-22 Soraa Laser Diode, Inc. Smart laser light for communication
US11277204B2 (en) 2017-09-28 2022-03-15 Kyocera Sld Laser, Inc. Laser based white light source configured for communication
US11153011B2 (en) 2017-09-28 2021-10-19 Kyocera Sld Laser, Inc. Intelligent visible light with a gallium and nitrogen containing laser source
US10771155B2 (en) 2017-09-28 2020-09-08 Soraa Laser Diode, Inc. Intelligent visible light with a gallium and nitrogen containing laser source
US11502753B2 (en) 2017-09-28 2022-11-15 Kyocera Sld Laser, Inc. Intelligent visible light with a gallium and nitrogen containing laser source
US11121772B2 (en) 2017-09-28 2021-09-14 Kyocera Sld Laser, Inc. Smart laser light for a vehicle
US10880005B2 (en) 2017-09-28 2020-12-29 Soraa Laser Diode, Inc. Laser based white light source configured for communication
US10649086B2 (en) 2017-12-13 2020-05-12 Soraa Laser Diode, Inc. Lidar systems including a gallium and nitrogen containing laser light source
US10338220B1 (en) 2017-12-13 2019-07-02 Soraa Laser Diode, Inc. Integrated lighting and LIDAR system
US11867813B2 (en) 2017-12-13 2024-01-09 Kyocera Sld Laser, Inc. Distance detecting systems for use in mobile machines including gallium and nitrogen containing laser diodes
US11199628B2 (en) 2017-12-13 2021-12-14 Kyocera Sld Laser, Inc. Distance detecting systems including gallium and nitrogen containing laser diodes
US11231499B2 (en) 2017-12-13 2022-01-25 Kyocera Sld Laser, Inc. Distance detecting systems for use in automotive applications including gallium and nitrogen containing laser diodes
US11841429B2 (en) 2017-12-13 2023-12-12 Kyocera Sld Laser, Inc. Distance detecting systems for use in mobile machine applications
US10222474B1 (en) 2017-12-13 2019-03-05 Soraa Laser Diode, Inc. Lidar systems including a gallium and nitrogen containing laser light source
US11287527B2 (en) 2017-12-13 2022-03-29 Kyocera Sld Laser, Inc. Distance detecting systems for use in mobile machines including gallium and nitrogen containing laser diodes
US11249189B2 (en) 2017-12-13 2022-02-15 Kyocera Sld Laser, Inc. Distance detecting systems for use in mobile machines including gallium and nitrogen containing laser diodes
US10345446B2 (en) 2017-12-13 2019-07-09 Soraa Laser Diode, Inc. Integrated laser lighting and LIDAR system
US11294267B1 (en) 2018-04-10 2022-04-05 Kyocera Sld Laser, Inc. Structured phosphors for dynamic lighting
US11811189B1 (en) 2018-04-10 2023-11-07 Kyocera Sld Laser, Inc. Structured phosphors for dynamic lighting
US10551728B1 (en) 2018-04-10 2020-02-04 Soraa Laser Diode, Inc. Structured phosphors for dynamic lighting
US10809606B1 (en) 2018-04-10 2020-10-20 Soraa Laser Diode, Inc. Structured phosphors for dynamic lighting
US11788699B2 (en) 2018-12-21 2023-10-17 Kyocera Sld Laser, Inc. Fiber-delivered laser-induced dynamic light system
US11239637B2 (en) 2018-12-21 2022-02-01 Kyocera Sld Laser, Inc. Fiber delivered laser induced white light system
US11594862B2 (en) 2018-12-21 2023-02-28 Kyocera Sld Laser, Inc. Fiber delivered laser induced white light system
US11421843B2 (en) 2018-12-21 2022-08-23 Kyocera Sld Laser, Inc. Fiber-delivered laser-induced dynamic light system
US11884202B2 (en) 2019-01-18 2024-01-30 Kyocera Sld Laser, Inc. Laser-based fiber-coupled white light system

Similar Documents

Publication Publication Date Title
JPH03287770A (en) Single wafer processing atmospheric cvd device
JP3373990B2 (en) Film forming apparatus and method
JP3581388B2 (en) Deposited polysilicon film with improved uniformity and apparatus therefor
US5246500A (en) Vapor phase epitaxial growth apparatus
JP3184000B2 (en) Method and apparatus for forming thin film
US20030049372A1 (en) High rate deposition at low pressures in a small batch reactor
US5164012A (en) Heat treatment apparatus and method of forming a thin film using the apparatus
JPH0786174A (en) Film deposition system
US20130137272A1 (en) Method of manufacturing semiconductor device and substrate processing apparatus
JP2013197507A (en) Substrate processing apparatus, substrate processing method, and semiconductor device manufacturing method
JP2002155366A (en) Method and device of leaf type heat treatment
JPH0786173A (en) Film deposition
JP3131855B2 (en) Film forming method and apparatus
JP3056241B2 (en) Heat treatment equipment
JP4031601B2 (en) Vertical heat treatment equipment
KR20030074418A (en) Substrate processing method and apparatus
JPH08115883A (en) Film forming apparatus
JPH088257B2 (en) Atmospheric pressure CVD equipment
JPH10223538A (en) Vertical heat-treating apparatus
JP2963145B2 (en) Method and apparatus for forming CVD film
JP2006186015A (en) Substrate processor
JP3281467B2 (en) Film formation method
JPH03287772A (en) Single wafer processing atmospheric cvd device
JPS63266072A (en) Vapor phase reactor
JP2004134625A (en) Method and apparatus for manufacturing semiconductor device