JPH03284707A - Method for compensating shape of quartz group optical waveguide - Google Patents

Method for compensating shape of quartz group optical waveguide

Info

Publication number
JPH03284707A
JPH03284707A JP8639390A JP8639390A JPH03284707A JP H03284707 A JPH03284707 A JP H03284707A JP 8639390 A JP8639390 A JP 8639390A JP 8639390 A JP8639390 A JP 8639390A JP H03284707 A JPH03284707 A JP H03284707A
Authority
JP
Japan
Prior art keywords
film
compensating
core
refractive index
core glass
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Granted
Application number
JP8639390A
Other languages
Japanese (ja)
Other versions
JP2738121B2 (en
Inventor
Katsuyuki Imoto
克之 井本
Toshikazu Kamoshita
敏和 鴨志田
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Hitachi Cable Ltd
Original Assignee
Hitachi Cable Ltd
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Hitachi Cable Ltd filed Critical Hitachi Cable Ltd
Priority to JP8639390A priority Critical patent/JP2738121B2/en
Publication of JPH03284707A publication Critical patent/JPH03284707A/en
Application granted granted Critical
Publication of JP2738121B2 publication Critical patent/JP2738121B2/en
Anticipated expiration legal-status Critical
Expired - Fee Related legal-status Critical Current

Links

Landscapes

  • Optical Integrated Circuits (AREA)

Abstract

PURPOSE:To prevent the increment of light dispersion loss due to surface roughness by constituting a metal film on a core glass film formed on a base having a low refractive index layer, forming a compensating glass thin film on the surface of the metal film, exposing the metal film by dry etching, and then coating the etched surface with a clad film. CONSTITUTION:When the metal films 4 respectively having width W0 are formed on cores 31, 32 and then dry-etched, the sizes of the cores 31, 32 are slightly thinned. After forming a compensating core film 8 having a refractive index slightly smaller than that of the cores 31, 32 by pressure-reduced plasma CVD method, the film 8 formed on the film 4 and a buffer layer 2 is etched by means of CHF3 gas in a dry etching process. Then, the film 4 is dry-etched by NF3 gas and removed, a clad 6 with a refractive index nc (nc is smaller than the refractive index nw of the cores 31, 32) is formed and the whole block including a base 1 is annealed at a high temperature. Since the rough part of the surface is coated with the compensating core films 8, light dispersion loss can sharply reduced.

Description

【発明の詳細な説明】 [産業上の利用分野コ 本発明は、石英系光導波路の製造、特に光導波路のパタ
ーン化工程における形状の偏差を補償する方法に関する
ものである。
DETAILED DESCRIPTION OF THE INVENTION [Industrial Field of Application] The present invention relates to the manufacture of silica-based optical waveguides, and particularly to a method for compensating for deviations in shape during the patterning process of optical waveguides.

[従来の技術: 近年、Siあるいは石英基板上に石英系光導波路を形成
し、光合分波器、光方向性結合器、光スターカプラ、光
フィルタなどの光回路を平面的に構成する、いわゆる光
集積回路の研究が活発化している。この光集積回路を構
成する際、石英系の単一モード光ファイバとの整合性を
良くするため、通常、光の伝搬するコアの厚み及び幅は
10μm前後の値に設計される。
[Conventional technology: In recent years, so-called so-called optical circuits such as optical multiplexers/demultiplexers, optical directional couplers, optical star couplers, optical filters, etc. are configured in a planar manner by forming quartz-based optical waveguides on Si or quartz substrates. Research on optical integrated circuits is becoming more active. When constructing this optical integrated circuit, the thickness and width of the core through which light propagates is usually designed to be around 10 μm in order to improve the compatibility with a silica-based single mode optical fiber.

第3図は本発明者が先に提案した石英系光導波路の製造
方法の工程図を示したものである。同図に示すように、
まず基板1 (SiO□ガラス)上に低屈折率のバッフ
ァ層2及び所望厚みT(約10μ霧)のコア層3を形成
した後(同図(a))、メタル(WS i )膜4を形
成しく同図(b))、その上にホトレジスト5を塗布し
、ホトリソグラフィによりバターニングを行う(同図(
C))、そして、このホトレジスト5の膜をマスクにし
て、メタル膜4をバターニングする0次に、ホトレジス
ト膜5及びメタル膜4のマスクを基にして、上記低屈折
率層上に形成された厚さTが約10μmのコア層3の膜
を、ドライエツチングによりバターニングし、l1iW
(約10μre)の矩形状パターンに加工する(同図(
d))、最後に、ホトレジスト膜5及びメタル膜4を除
去して2つのコア31及び32を得た後(同図(e) 
) 、低屈折率のクラッド層6て被覆することにより(
同図(f))、埋込み型の石英系光導波路が実現される
FIG. 3 shows a process diagram of a method for manufacturing a silica-based optical waveguide previously proposed by the present inventor. As shown in the figure,
First, a buffer layer 2 with a low refractive index and a core layer 3 with a desired thickness T (approx. 10 μm) are formed on a substrate 1 (SiO□ glass) (FIG. 1(a)), and then a metal (WS i ) film 4 is formed. The photoresist 5 is applied thereon, and patterning is performed by photolithography (see figure (b)).
C)) Then, using the photoresist film 5 as a mask, the metal film 4 is patterned. Next, based on the photoresist film 5 and the metal film 4 mask, a pattern is formed on the low refractive index layer. The film of the core layer 3 having a thickness T of about 10 μm was buttered by dry etching, and
(approximately 10μre) into a rectangular pattern (see the same figure).
d)) Finally, after removing the photoresist film 5 and the metal film 4 to obtain two cores 31 and 32 (see (e) in the same figure).
), by coating with a low refractive index cladding layer 6 (
As shown in (f) of the same figure, a buried silica-based optical waveguide is realized.

「発明か解決しようとする課題] しかし、上記製造方法を用いて第4図に示すような構造
の方向性結合器型光分波器を作製する場合、2つのコア
31及び32が数IIの長さにわたって2μ印程度の間
隔Sを保って平行に配置された構造を実現しようとする
と、次のような問題点が生ずることがわかった。
[Problem to be solved by the invention] However, when manufacturing a directional coupler type optical demultiplexer having the structure shown in FIG. 4 using the above manufacturing method, the two cores 31 and 32 are It has been found that when attempting to realize a structure in which the elements are arranged in parallel with an interval S of about 2 μm maintained over the length, the following problem occurs.

ナなおち、ホトレジスト膜5及び金属M4のパターンを
マスクにして、厚さTが約10μmのコア層3の膜を、
ドライエツチングプロセスにより矩形状に加工すると、
コア31及び32の幅Wかマスク幅WOに比し、作成の
たびに0.2〜1.0μ印の範囲で幅減りを生じた。
Now, using the photoresist film 5 and the pattern of the metal M4 as a mask, a film of the core layer 3 having a thickness T of about 10 μm is formed.
When processed into a rectangular shape by dry etching process,
Compared to the width W of the cores 31 and 32 or the mask width WO, the width was reduced in the range of 0.2 to 1.0 μm each time the cores were manufactured.

この@減りは、ドライエツチング時のアンダーカットに
よるものであり、コアの厚みTか10μf程度と厚い場
合にはどうしてもさけられない現象であった。そして、
この%、4つは、光分波器の中心波長ずれ及び阻止域で
のアイソレージヨシの低下を招くという問題点につなが
った。
This reduction is due to undercutting during dry etching, and is an unavoidable phenomenon when the core thickness T is as thick as about 10 μf. and,
This percentage of 4 led to problems such as a shift in the center wavelength of the optical demultiplexer and a decrease in isolation in the stop band.

第5図ra)〜(C)にこの中心波長すれ特性を示す、
これは第5図(d)に示す基本的な光合分波器について
、本発明者が計算した感度解析特性の結果を示したもの
であり、同図において、fa)はコア福Wの偏差特性、
(b)はクラッドのコアに対する比屈折率差Δn(%)
の備差特性、(b)は厚さTの備差特性を示す。
Figure 5 ra) to (C) show this center wavelength deviation characteristic.
This shows the results of the sensitivity analysis characteristics calculated by the inventor for the basic optical multiplexer/demultiplexer shown in Figure 5(d). In the figure, fa) is the deviation characteristic of the core Fuku W. ,
(b) is the relative refractive index difference Δn (%) of the cladding with respect to the core
(b) shows the difference characteristic of the thickness T.

・上記@減りを、予めホトリソグラフィ用マスクの設計
時に考慮しておくことにより、多少の改善は可能である
が、大きな改善は期待できない、なぜならば、コア間隔
Sがもともと2μ印程度のため、上記幅減りをホトリソ
グラフィ用マスクに考慮すると、その開隔は0.5〜1
.5μtとなり、この値はマスクの作成精度及びホトリ
ソグラフィの分解能によって実現国数な値となるためで
ある。
- By considering the above reduction in advance when designing the photolithography mask, some improvement is possible, but a major improvement cannot be expected because the core spacing S is originally around 2 μm. Considering the width reduction mentioned above for photolithography masks, the opening distance is 0.5 to 1
.. This is because the value is 5 μt, which is a value that can be realized in many countries depending on the precision of mask creation and the resolution of photolithography.

本発明の目的は前記した従来技術の問題点を解消し、所
望のマスク精度の石英系光導波路を実現する方法を提供
することにある。
An object of the present invention is to provide a method for solving the problems of the prior art described above and realizing a silica-based optical waveguide with desired mask precision.

二課題を解決するための手段] 本発明の石英系光導波路の形状補償方法は、低屈折率層
を有する基板上に形成されたコア用ガラス膜の上にメタ
ル及びホトレジスト膜のパターン化したマスクを構成し
、該2つのマスクを基にしてコア用ガラス膜をドライエ
ツチングにより矩形状にパターン化し、次いで該ホトレ
ジスト膜を取り除いた該パターン表面上に補償用コアガ
ラスの薄膜を形成させ、その後、ドライエツチングによ
りメタル膜表面が露出するまで該補償用コアガラス膜の
エツチング、次いでメタル膜のエツチングを行った後、
クラツド膜を被覆するものである。
Means for Solving Two Problems] The shape compensation method for a silica-based optical waveguide of the present invention includes a mask patterned with a metal and photoresist film on a core glass film formed on a substrate having a low refractive index layer. The core glass film is patterned into a rectangular shape by dry etching based on the two masks, and then a thin film of compensating core glass is formed on the patterned surface from which the photoresist film has been removed. After dry etching the compensating core glass film until the surface of the metal film is exposed, and then etching the metal film,
It covers the cladding film.

上記補償用コアガラスの薄膜形成には減圧プラズマCV
D法が適する。この補償用コアガラス薄膜としては、屈
折率がコア用ガラス膜のそれと等しいか或いは低い乙の
、または、軟化温度がコア用ガラス膜のそれと等しいか
或いは低いものを用いることができる。しかし、補償用
コアガラス薄膜の代りに、補償用コアガラス薄膜とクラ
ッド用ガラス薄膜の2層膜を形成させることもできる。
Low-pressure plasma CV is used to form the thin film of the compensation core glass.
D method is suitable. As the compensating core glass thin film, a film having a refractive index equal to or lower than that of the core glass film or a softening temperature equal to or lower than that of the core glass film can be used. However, instead of the compensating core glass thin film, it is also possible to form a two-layer film of a compensating core glass thin film and a cladding glass thin film.

二作用] 本発明の具体的形態は、例えば、基板に形成されたコア
用ガラス膜の上にホトレジスト及びメタル膜をパターン
化し、該パターン化した膜をマスクにしてコア用ガラス
膜をドライエツチングプロセスにより矩形状にパターン
化した後、ホトレジストのみを取り除いた上記パターン
化した表面上に、減圧プラズマCVD法により、補償用
コア膜を厚さ0.数μmから1μmの範囲で形成させ、
次にドライエツチングにより、メタル膜表面か゛露出す
るまで上記補償用コア膜をエツチングし、その後、メタ
ル膜をエツチングしてからクラツド膜を被覆することに
より、ドライエツチングによるコア幅の幅減りを補償す
るようにしたものである。
[Two functions] In a specific embodiment of the present invention, for example, a photoresist and a metal film are patterned on a core glass film formed on a substrate, and the core glass film is subjected to a dry etching process using the patterned film as a mask. After patterning it into a rectangular shape, a compensating core film is formed to a thickness of 0.5 mm by low pressure plasma CVD on the patterned surface from which only the photoresist has been removed. Formed in the range of several μm to 1 μm,
Next, the compensating core film is etched by dry etching until the metal film surface is exposed, and then the metal film is etched and then covered with a cladding film to compensate for the reduction in core width due to dry etching. This is how it was done.

補償用コア膜は屈折率がコアの屈折率と同じか、それよ
りもわずかに低い材質のものを用いる。
The compensating core film is made of a material whose refractive index is the same as or slightly lower than that of the core.

補償用コア膜によりコア幅の幅減りを補償できるのは、
次の理由による。
The compensation core film can compensate for the decrease in core width because:
Due to the following reasons.

減圧プラズマCVD法によるガラス膜の形成は、アスペ
クト此の大きな凸凹の段差のあるパターン表面上にも均
一な厚みに形成することができる。
By forming a glass film by the low pressure plasma CVD method, it is possible to form a glass film with a uniform thickness even on a pattern surface having a large unevenness in aspect ratio.

したがって、ます、矩形状のコアのコア幅減り分の膜厚
の補償用コア膜を減圧プラズマCVD法により形成させ
ておく。次に、ドライエツチングにより、メタル膜及び
バッファ槽上の上記補償用コア膜をエツチングするが、
このドライエツチングでは厚み方向のエツチング速度が
厚み方向と垂直な方向へのエツチング速度よりもはるか
に大きい(5倍以上)ため、上記メタル膜及びバッファ
層上の補償用コア膜はエツチングされるが、矩形状のコ
ア側面の補償用コア膜はほとんどエツチングされない。
Therefore, first, a core film for compensating the thickness of the rectangular core by the reduction in core width is formed by low pressure plasma CVD. Next, the metal film and the compensation core film on the buffer tank are etched by dry etching.
In this dry etching, the etching rate in the thickness direction is much higher (more than 5 times) than the etching rate in the direction perpendicular to the thickness direction, so the compensation core film on the metal film and buffer layer is etched. The compensating core film on the side surface of the rectangular core is hardly etched.

これにより、コア幅の幅減りを補償することができる。This makes it possible to compensate for the decrease in core width.

なお、本発明の方法は、コア側面の表面荒れによる光散
乱損失を補償用コア膜の被着により、大幅に低減するこ
とができるという別の特徴もある。
Note that another feature of the method of the present invention is that light scattering loss due to surface roughness on the side surface of the core can be significantly reduced by depositing a compensating core film.

[実施例] 第1図に本発明による石英光導波路の形状補償方法の実
施例を示す。
[Example] FIG. 1 shows an example of the method for compensating the shape of a quartz optical waveguide according to the present invention.

同図fa)は第3図fd)のドライエツチング後にメタ
ル膜4上のホトレジストM5を除去した場合の概略断面
を示したものである。
Figure fa) shows a schematic cross section when the photoresist M5 on the metal film 4 is removed after the dry etching of Figure fd).

ここで、基板1には、石英系ガラス、多成分系ガラス、
サファイア、Siなどが用いられる。バフフッ層2には
、SiO2、あるいはSin、にB、P、Ti、Ge、
Ta、Affl、Fなどの屈折率制御用添加物を少なく
とも一種含んだもので、その屈折率はnbである。コア
31及び32には、屈折率がn、(n= >nb >で
S i O2にTi。
Here, the substrate 1 includes quartz glass, multi-component glass,
Sapphire, Si, etc. are used. The buffing layer 2 contains SiO2 or Sin, B, P, Ti, Ge,
It contains at least one type of refractive index controlling additive such as Ta, Affl, F, etc., and its refractive index is nb. The cores 31 and 32 have a refractive index of n, (n=>nb> and S i O2 and Ti.

P、Ge、AJ  B、Ta、F  Er、Nd。P, Ge, AJ B, Ta, F Er, Nd.

Na、Yb、に、Sm、Znなどの屈折率制御用添加物
を少なくとも一種含んだもの、あるいはSiO□が用い
られる。メタル膜4には、W、WSi、MoSi、Mo
、Cr、 αsiなどが用いられる。
A material containing at least one kind of refractive index controlling additive such as Sm or Zn in addition to Na, Yb, or SiO□ is used. The metal film 4 includes W, WSi, MoSi, Mo
, Cr, αsi, etc. are used.

単一モード光導波路を構成しようとすると、コア31及
び32の厚みTO約8μm、幅Wo約10μm、コアと
バッファ層との間の屈折率差約0、数%に設定される。
When attempting to configure a single mode optical waveguide, the thickness TO of the cores 31 and 32 is set to about 8 μm, the width Wo is set to about 10 μm, and the refractive index difference between the core and the buffer layer is set to about 0, several percent.

また方向性結合器、合分波器などを構成しようとすると
、コア31と32との間の間陽S○は2μm程度に設定
される。
Furthermore, when constructing a directional coupler, multiplexer/demultiplexer, etc., the gap S between the cores 31 and 32 is set to about 2 μm.

第1図(a)の段階において、たとえば、W。At the stage of FIG. 1(a), for example, W.

10μm 、  5o=2 μll、To=8 μl1
としてドライエツチングを行なった場合、W、は約9μ
m、Slは約3μ川となった。
10 μm, 5o=2 μll, To=8 μl1
When dry etching is performed as
m, Sl was about 3μ river.

そこで、第1図(b)に示すように、コア31及び32
の屈折率と等しいか、若干低い値の補償用コア膜8を、
減圧プラズマCVD法により、厚さ0.5μm形成させ
た。
Therefore, as shown in FIG. 1(b), the cores 31 and 32
A compensating core film 8 having a refractive index equal to or slightly lower than the refractive index of
It was formed to a thickness of 0.5 μm by low pressure plasma CVD method.

ここで、減圧プラズマCVD法は次のようにして行った
。すなわち、第1図(a)の基板を反応容器の下部電極
上に置き、350 ’Cに加熱し、反応容器内を10−
’Torrに保った6次に、下部電極に対向する上部電
極側よりシャワー状にして S 1(OC2Hs )4とPO(OC2Hl)sの蒸
気を、02のキャリアガスと共に、上記基板上に吹きつ
けた。そして両電極間に高周波電力を印加することによ
り、プラズマを発生させ、補償用コア膜8を形成させた
Here, the low pressure plasma CVD method was performed as follows. That is, the substrate shown in FIG. 1(a) is placed on the lower electrode of a reaction vessel, heated to 350'C, and the inside of the reaction vessel is heated to 10-
Next, the vapors of S1(OC2Hs)4 and PO(OC2Hl)s were blown onto the above substrate along with the carrier gas of 02 in a shower form from the upper electrode side opposite to the lower electrode. Ta. Then, by applying high frequency power between both electrodes, plasma was generated and the compensating core film 8 was formed.

この状態で形成された補償用コアII!8の屈折率は、
コア31及び32のそれよりも低い。すなわち、上記補
償用コア膜8は低温で形成されているので、屈折率は若
干低い値であるが、最後の(e)のクラツド膜形成の前
、あるいは後に、高温(〉1200°C)でアニールす
ることによって、コア31及び32の屈折率とほぼ等し
い値に変わる。
Compensation core II formed in this state! The refractive index of 8 is
It is lower than that of cores 31 and 32. That is, since the compensating core film 8 is formed at a low temperature, its refractive index is slightly low, but it is formed at a high temperature (>1200°C) before or after the final cladding film formation in (e). By annealing, the refractive index changes to a value approximately equal to that of the cores 31 and 32.

次にfc)に示すように、ドライエツチングプロセスを
用いて、メタル膜8及びバッファ層2上の補償用コア膜
8をエツチングする。このドライエツチングは、CHF
 sガスを用い、反応性イオンエツチング装置を使って
行われる。
Next, as shown in fc), the compensation core film 8 on the metal film 8 and buffer layer 2 is etched using a dry etching process. This dry etching is CHF
This is done using reactive ion etching equipment using s gas.

その後、(d)に示すように、メタル1114をNF、
のガスを使ってドライエツチングすることにより除去す
る。
After that, as shown in (d), the metal 1114 is NF,
Remove by dry etching using gas.

そして最後に(e)に示すように、屈折率nc(n、 
<n、 )のクラッド6を形成させる。このプロセス(
e)の前、あるいは後に、基板こと高温でアニールされ
る。
Finally, as shown in (e), the refractive index nc(n,
<n, ) cladding 6 is formed. This process (
Before or after step e), the substrate is annealed at high temperature.

この方法によれば、コア31及び32の幅をメタルマス
ク幅Woになるように作ることができる。
According to this method, the width of the cores 31 and 32 can be made to match the metal mask width Wo.

さらには最初のマスク設計時のマスク幅になるようにす
ることもできるなめ、コア幅の減少による光学特性の劣
化(たとえば、光合分波器の中心波長すれ、3dB方向
方向性器の係合特性すれ等)を補償することができる。
Furthermore, since the mask width can be made to match the original mask width, optical characteristics may deteriorate due to a decrease in core width (for example, the center wavelength of an optical multiplexer/demultiplexer may be shifted, or the engagement characteristics of a 3 dB directional device may be affected). etc.) can be compensated.

また、第2図(C)から(d)のプロセスで厚さToが
約8μtのコア層3を1時間以上もかけてドライエツチ
ングするために、エツチングされたコア31および32
の側面はホトレジスト5及びメタル4のマスクエッヂ荒
れに比例した表面荒れが生じる。この表面荒れは光導波
路の散乱損失を誘引する。
In addition, in order to dry-etch the core layer 3 having a thickness To of about 8 μt for more than one hour in the process shown in FIGS. 2(C) to (d), the etched cores 31 and 32 are
Surface roughness occurs on the side surface in proportion to the mask edge roughness of the photoresist 5 and metal 4. This surface roughness induces scattering loss in the optical waveguide.

本発明の方法では、その表面荒れ部分を補償用コア膜8
で被覆してしまうため、上記散乱損失を大巾に低減する
ことができる。また、この補償用コアWA8にコア31
及び32のガラスの軟化温度よりも低いガラス、たとえ
ばSiO□−P 205B20.系ガラス、SiO□−
TiO□P2O5B2O3系ガラス、SiO□ GeO2B2O3系ガラスなどを用いれば、第1図(e
)のクラツド膜形成前、あるいは後の高温でのアニール
において、コア31及び32の表面荒れ部分に補償用コ
ア膜8かすき間なく埋め込まれるので、散乱損失は大巾
に低減される。
In the method of the present invention, the surface roughness is removed by the compensating core film 8.
Since the scattering loss is covered with , the above-mentioned scattering loss can be greatly reduced. In addition, core 31 is added to this compensation core WA8.
and a glass whose softening temperature is lower than that of glass No. 32, such as SiO□-P 205B20. system glass, SiO□-
If TiO□P2O5B2O3-based glass, SiO□GeO2B2O3-based glass, etc. are used,
) During the high temperature annealing before or after the formation of the cladding film, the compensating core film 8 is embedded without any gaps in the roughened portions of the cores 31 and 32, so that the scattering loss is greatly reduced.

第2図は、本発明の石英系光導波路の形状補償方法の別
の実施例を示したものである。
FIG. 2 shows another embodiment of the method for compensating the shape of a silica-based optical waveguide according to the present invention.

これは同図(a)のドライエツチング及びホトレジスト
膜除去のプロセス後に、減圧プラズマCVD法を用いて
、まず補償用コア膜8を膜厚O1数μmから1μmの範
囲で形成させ、次いで(b)の如く、クラッド6の屈折
率と等しいかあるいはそれよりも低い屈折率を有する薄
L!(ffさ0゜数μmから1μm程度)のクラツド膜
9を形成させて、コア膜3及び補償用コアll18をプ
ロセスの汚染から保護する。その後の(C)から(e)
のプロセスは第1図の場合と同様である。
After the process of dry etching and photoresist film removal shown in FIG. 5(a), a compensating core film 8 is first formed using a low pressure plasma CVD method to have a film thickness of O1 in the range of several μm to 1 μm, and then (b) A thin L! having a refractive index equal to or lower than the refractive index of the cladding 6! A cladding film 9 (ff: 0°, several μm to 1 μm) is formed to protect the core film 3 and the compensating core 118 from contamination during the process. Subsequent (C) to (e)
The process is similar to that in FIG.

このように、第1図(b)及び第2図(b)の膜形成プ
ロセスでは、膜は屈折率1組成、軟化温度などの物理的
特性の異なるものを複数層に形成してもよい。
In this manner, in the film forming process shown in FIG. 1(b) and FIG. 2(b), the film may be formed into a plurality of layers having different physical properties such as a composition with a refractive index of 1 and a softening temperature.

本発明は上記実施例に限定されない。The present invention is not limited to the above embodiments.

たとえば、光導波路は埋め込み型以外に、リッジ型でも
よい。また基板1に石英ガラス基板を用いた場合には、
バッファ層2はなくてもよい。
For example, the optical waveguide may be a ridge type instead of a buried type. Furthermore, when a quartz glass substrate is used as the substrate 1,
Buffer layer 2 may be omitted.

[発明の効果] 以上のように、本発明によれば、ドラエツチングプロセ
スによるコア幅の幅減りを補償することかできるので、
たとえば、光合分波器、光フィルタ、3dB光カプラな
どを作った場合の中心波長ずれ、アイソレーション特性
及び結合比の劣化などを抑制することができる。またコ
ア側の表面荒れによる光散乱損失の増大を低減させるこ
ともできる。
[Effects of the Invention] As described above, according to the present invention, it is possible to compensate for the decrease in core width due to the dretching process.
For example, it is possible to suppress center wavelength shift, deterioration of isolation characteristics, coupling ratio, etc. when optical multiplexers/demultiplexers, optical filters, 3 dB optical couplers, etc. are manufactured. It is also possible to reduce the increase in light scattering loss due to surface roughness on the core side.

【図面の簡単な説明】[Brief explanation of drawings]

第1図は及び第2図は本発明の石英系光導波路の形状補
償方法の実施例を示した図、第3図は本発明者が先に提
案した石英系光導波路の製造方法の工程図を示した図、
第4図は従来の方向性結合器型光分波器の概略を示した
もので、[a)は平面図、(b)はそのA−A断面図、
第5図は本発明者が計算した光合分波器の感度解析特性
を結果を示したものである。 図中、1は基板、2はバッファ層、3はコア層、4はメ
タル膜、5はホトレジスト膜、6はクラッド、8は補償
用コア膜、9は薄膜クラッド、31゜32はコアを示す
。 特許比願人  日立電線株式会社
Figures 1 and 2 are diagrams showing an embodiment of the method for compensating the shape of a silica-based optical waveguide according to the present invention, and Figure 3 is a process diagram of a method for manufacturing a silica-based optical waveguide previously proposed by the present inventor. A diagram showing
FIG. 4 shows an outline of a conventional directional coupler type optical demultiplexer, in which [a] is a plan view, (b) is a sectional view taken along line A-A,
FIG. 5 shows the results of the sensitivity analysis characteristics of the optical multiplexer/demultiplexer calculated by the inventor. In the figure, 1 is the substrate, 2 is the buffer layer, 3 is the core layer, 4 is the metal film, 5 is the photoresist film, 6 is the cladding, 8 is the compensation core film, 9 is the thin film cladding, and 31° and 32 are the cores. . Patent applicant Hitachi Cable Co., Ltd.

Claims (1)

【特許請求の範囲】 1、低屈折率層を有する基板上に形成されたコア用ガラ
ス膜の上にメタル及びホトレジスト膜のパターン化した
マスクを構成し、該2つのマスクを基にしてコア用ガラ
ス膜をドライエッチングにより矩形状にパターン化し、
次いで該ホトレジスト膜を取り除いた該パターン表面上
に補償用コアガラスの薄膜を形成させ、その後、ドライ
エッチングによりメタル膜表面が露出するまで該補償用
コアガラス膜のエッチング、次いでメタル膜のエッチン
グを行つた後、クラッド膜を被覆することを特徴とする
石英系光導波路の形状補償方法。 2、上記補償用コアガラスの薄膜形成に減圧プラズマC
VD法を用いたことを特徴とする請求項1記載の石英系
光導波路の形状補償方法。 3、上記補償用コアガラス薄膜として、屈折率がコア用
ガラス膜のそれと等しいか、あるいは低いものを用いた
ことを特徴とする請求項1記載の石英系光導波路の形状
補償方法。 4、上記補償用コアガラス薄膜として、軟化温度がコア
用ガラス膜のそれと等しいか、あるいは低いものを用い
たことを特徴とする請求項1記載の石英系光導波路の形
状補償方法。 5、上記補償用コアガラス薄膜の代りに、補償用コアガ
ラス薄膜とクラッド用ガラス薄膜の2層膜を形成させた
ことを特徴とする請求項1記載の石英系光導波路の形状
補償方法。
[Claims] 1. A patterned mask of a metal and a photoresist film is formed on a core glass film formed on a substrate having a low refractive index layer, and based on these two masks, a core glass film is formed. The glass film is patterned into a rectangular shape by dry etching,
Next, a thin film of compensating core glass is formed on the pattern surface from which the photoresist film has been removed, and then the compensating core glass film is etched by dry etching until the metal film surface is exposed, and then the metal film is etched. A method for compensating the shape of a silica-based optical waveguide, the method comprising: covering the silica-based optical waveguide with a cladding film. 2. Low-pressure plasma C for forming a thin film of the above-mentioned compensating core glass
2. The method for compensating the shape of a silica-based optical waveguide according to claim 1, characterized in that a VD method is used. 3. The method for compensating the shape of a silica-based optical waveguide according to claim 1, wherein the compensating core glass thin film is made of a material whose refractive index is equal to or lower than that of the core glass film. 4. The method for compensating the shape of a silica-based optical waveguide according to claim 1, wherein the compensating core glass thin film has a softening temperature equal to or lower than that of the core glass film. 5. The method for compensating the shape of a silica-based optical waveguide according to claim 1, characterized in that, instead of the compensating core glass thin film, a two-layer film consisting of a compensating core glass thin film and a cladding glass thin film is formed.
JP8639390A 1990-03-30 1990-03-30 Method for manufacturing silica-based optical waveguide Expired - Fee Related JP2738121B2 (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP8639390A JP2738121B2 (en) 1990-03-30 1990-03-30 Method for manufacturing silica-based optical waveguide

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP8639390A JP2738121B2 (en) 1990-03-30 1990-03-30 Method for manufacturing silica-based optical waveguide

Publications (2)

Publication Number Publication Date
JPH03284707A true JPH03284707A (en) 1991-12-16
JP2738121B2 JP2738121B2 (en) 1998-04-08

Family

ID=13885633

Family Applications (1)

Application Number Title Priority Date Filing Date
JP8639390A Expired - Fee Related JP2738121B2 (en) 1990-03-30 1990-03-30 Method for manufacturing silica-based optical waveguide

Country Status (1)

Country Link
JP (1) JP2738121B2 (en)

Cited By (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US6937806B2 (en) * 2002-03-21 2005-08-30 Dalsa Semiconductor Inc. Method of making photonic devices with SOG interlayer
KR100679229B1 (en) * 2004-12-09 2007-02-05 한국전자통신연구원 Planar optical waveguide and a method for fabricating the same

Cited By (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US6937806B2 (en) * 2002-03-21 2005-08-30 Dalsa Semiconductor Inc. Method of making photonic devices with SOG interlayer
KR100679229B1 (en) * 2004-12-09 2007-02-05 한국전자통신연구원 Planar optical waveguide and a method for fabricating the same

Also Published As

Publication number Publication date
JP2738121B2 (en) 1998-04-08

Similar Documents

Publication Publication Date Title
US6946238B2 (en) Process for fabrication of optical waveguides
JP2988916B2 (en) Fabrication method of optical waveguide
US6775454B2 (en) Silica-based optical waveguide circuit and fabrication method thereof
US6732550B2 (en) Method for performing a deep trench etch for a planar lightwave circuit
US6902871B2 (en) Method for manufacturing polymer microstructures and polymer waveguides
US4931077A (en) Method of manufacturing a planar optical component
US6859602B2 (en) Method for fabricating planar light waveguide circuits with vertical taper structure
JP3602514B2 (en) Fabrication method of quartz optical waveguide circuit
JPH03284707A (en) Method for compensating shape of quartz group optical waveguide
JP2004286959A (en) Method of manufacturing optical waveguide and optical waveguide
US6483964B1 (en) Method of fabricating an optical component
KR101789026B1 (en) Method of manufacturing of LiNbO3 substrate for optical modulator
KR100377186B1 (en) Fabrication method of polymeric arrayed waveguide grating wavelength multiplexer /demultiplexer
JPH0980246A (en) Production of quartz-glass waveguide
JPS592008A (en) Production of embedding type quartz optical waveguide
KR100361097B1 (en) Fabricating method of optical waveguide using inductively coupled plasma etcher
JP2000121859A (en) Production of buried optical fiber
JPH05181031A (en) Optical waveguide and its production
JPH0843654A (en) Silica glass waveguide and its production
JP2570822B2 (en) Manufacturing method of optical waveguide
JPWO2003067293A1 (en) Manufacturing method of optical waveguide
JP2004198589A (en) Manufacturing method of optical waveguide
AU2450300A (en) Methods of fabricating etched structures
JP2005345953A (en) Optical waveguide and manufacturing method thereof
JPH06331844A (en) Quartz optical waveguide and its production

Legal Events

Date Code Title Description
S531 Written request for registration of change of domicile

Free format text: JAPANESE INTERMEDIATE CODE: R313531

R350 Written notification of registration of transfer

Free format text: JAPANESE INTERMEDIATE CODE: R350

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20090116

Year of fee payment: 11

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20100116

Year of fee payment: 12

LAPS Cancellation because of no payment of annual fees