JPH03274735A - Manufacture of semiconductor device with schottky electrode - Google Patents

Manufacture of semiconductor device with schottky electrode

Info

Publication number
JPH03274735A
JPH03274735A JP2073338A JP7333890A JPH03274735A JP H03274735 A JPH03274735 A JP H03274735A JP 2073338 A JP2073338 A JP 2073338A JP 7333890 A JP7333890 A JP 7333890A JP H03274735 A JPH03274735 A JP H03274735A
Authority
JP
Japan
Prior art keywords
layer
high melting
point metal
melting point
film
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Pending
Application number
JP2073338A
Other languages
Japanese (ja)
Inventor
Nobutaka Fuchigami
渕上 伸隆
Hiroto Oda
浩人 小田
Junji Shigeta
淳二 重田
Yoshinori Imamura
今村 慶憲
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Hitachi ULSI Engineering Corp
Hitachi Ltd
Original Assignee
Hitachi ULSI Engineering Corp
Hitachi Ltd
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Hitachi ULSI Engineering Corp, Hitachi Ltd filed Critical Hitachi ULSI Engineering Corp
Priority to JP2073338A priority Critical patent/JPH03274735A/en
Publication of JPH03274735A publication Critical patent/JPH03274735A/en
Pending legal-status Critical Current

Links

Landscapes

  • Junction Field-Effect Transistors (AREA)

Abstract

PURPOSE:To prevent the lowering of adhesive properties with a resist by forming a Schottky junction by forming a first layer composed of the silicide of a high melting point metal onto a semiconductor substrate, shaping a second layer consisting of the high melting-point metal onto the first layer, forming a third layer made up of the silicide, etc., of the high melting-point metal and forming a Schottky electrode. CONSTITUTION:Si<+> ions are implanted into a semi-insulating GaAs substrate 1 as donor impurities, and a conductive layer 2 is formed through annealing. A WSix film 3, a W film 4 and a WSix film 5 are superposed and applied successively onto the conductive layer 2. Since WSix has adhesive properties with a photo-resist better than W, the resist is hardly peeled when the photo-resist 6 is applied onto the WSix film 5 as an uppermost layer, thus improving yield. The photo-resist 6 is patterned, and the WSix film 5, the W film 4 and the WSix film 3 are machined through reactive ion etching, thus shaping a gate electrode. The photo resist 6 is removed, the ohmic electrodes of a source and a drain are formed and the electrodes and the conductive layer 2 are coated with an inter-layer insulating film 10, and a semiconductor device is completed through wiring 11.

Description

【発明の詳細な説明】 〔産業上の利用分野〕 本発明はショットキー電極を有する半導体装置の製造方
法に関する。
DETAILED DESCRIPTION OF THE INVENTION [Field of Industrial Application] The present invention relates to a method of manufacturing a semiconductor device having a Schottky electrode.

〔従来の技術〕[Conventional technology]

高融点金属やその硅化物をショットキー電極として用い
るGaAs  MESFET (MetalSemic
onductor Field Effect Tra
nsistor)において、熱安定性に優れ、かつ半導
体基板との密着性が良好なタングステン・シリサイド等
の高融点金属シリサイドを1層目に用い、その上に金融
タングステン等の高融点金属層を重ねて、ゲート抵抗を
低減する技術が特開昭61−214481号公報におい
て知られている。
GaAs MESFET (MetalSemiconductor
onductor Field Effect Tra
nsistor), a high melting point metal silicide such as tungsten silicide, which has excellent thermal stability and good adhesion to the semiconductor substrate, is used as the first layer, and a high melting point metal layer such as financial tungsten is layered on top of it. A technique for reducing gate resistance is known from Japanese Patent Laid-Open No. 61-214481.

〔発明が解決しようとする課題〕[Problem to be solved by the invention]

GaAs  MESFETのゲート電極として重ね膜ゲ
ート(下層はW S i x膜、上層は金属タングステ
ン膜)を用いた場合、レジストの剥離が生じ易くゲート
形成の歩留まりの低下を招く問題があった。
When a stacked film gate (lower layer is a WSi x film and upper layer is a metal tungsten film) is used as a gate electrode of a GaAs MESFET, there is a problem in that the resist is likely to peel off, resulting in a decrease in the yield of gate formation.

本発明の目的は、高融点金属をショットキーゲート電極
材料として用いた場合に生じるレジストとの密着性の低
下を防止することにある。
An object of the present invention is to prevent a decrease in adhesion to a resist that occurs when a high melting point metal is used as a Schottky gate electrode material.

〔課題を解決するための手段〕[Means to solve the problem]

上記目的は、半導体基板上に高融点金属のシリサイドか
ら成る第1の層を直接形成してショットキー接合を形成
する工程、該第1の層上に高融点金属から成る第2の層
を直接又は高融点金属を含む層を介して形成する工程、
該第2の層上に高融点金属のシリサイド、高融点金属の
窒化物及びシリコンから成る群から選ばれた少なくとも
1つの材料から成る第3の層を直接形成する工程、該第
3の層上にレジスト膜を直接形成する工程、該レジスト
膜をバターニングする工程、及び該パターニングされた
レジスト膜をマスクとして上記第1の層および該層上に
形成された層をエツチングしてショットキー電極を形成
することにより遠戚できる。
The above object is a step of directly forming a first layer made of silicide of a high melting point metal on a semiconductor substrate to form a Schottky junction, and a step of forming a second layer made of a high melting point metal directly on the first layer. or a step of forming through a layer containing a high melting point metal,
Directly forming a third layer made of at least one material selected from the group consisting of high melting point metal silicide, high melting point metal nitride, and silicon on the second layer, on the third layer. a step of directly forming a resist film, a step of buttering the resist film, and a step of etching the first layer and the layer formed thereon using the patterned resist film as a mask to form a Schottky electrode. By forming a distant relative.

〔作用〕[Effect]

本発明においては、ゲート電極の最下層(第1の層)と
して高融点金属シリサイドを用いるので半導体界面で良
好なショットキー接合を形成することが可能となる。ま
た、第2の層として高融点金属を用いるのでゲートの低
抵抗化が可能となる。
In the present invention, since high melting point metal silicide is used as the bottom layer (first layer) of the gate electrode, it is possible to form a good Schottky junction at the semiconductor interface. Furthermore, since a high melting point metal is used as the second layer, it is possible to reduce the resistance of the gate.

さらに、最上層としてレジストとの密着性の良い第3の
層を形成するのでレジストの剥れを防止できる。
Furthermore, since the third layer having good adhesion to the resist is formed as the uppermost layer, peeling of the resist can be prevented.

ゲート電極に配線層を接続する場合、第3の層を除去し
て第2の層に直接配線層を接続すると接触抵抗を低減で
きる。
When connecting a wiring layer to the gate electrode, contact resistance can be reduced by removing the third layer and directly connecting the wiring layer to the second layer.

〔実施例〕〔Example〕

以下、本発明を実施例により説明する。 The present invention will be explained below using examples.

実施例ではGaAs  MESFETのゲート電極とし
て用いる場合について説明するが、InP、InGaA
s、I n A Q A s等の他の化合物半導体及び
シリコン等の単元素半導体に使用することが可能であり
、ショットキー・ダイオード、I G F E T (
Insulated Gate FET)等のゲート電
極として用いることも可能である。
In the example, the case where it is used as a gate electrode of GaAs MESFET will be explained, but InP, InGaA
It can be used for other compound semiconductors such as s, I n A Q A s, and single element semiconductors such as silicon, and can be used for Schottky diodes, I G F E T (
It is also possible to use it as a gate electrode of an insulated gate FET) or the like.

実施例、1 本発明の実施例1を第1図及び第2図に従い説明する。Example, 1 Embodiment 1 of the present invention will be described with reference to FIGS. 1 and 2.

半絶縁性GaAs基板1に、ドナー不純物としてSi+
イオンを打込み、アニールを行なって導電層2を形成す
る。その上にW S i x膜3を1100n、W膜4
を200nm、WSix膜5を10nm重ねて被着する
。WSi、3,5の被着は焼結体のW5Si3ターゲッ
トをAr”イオンでスパッタリングすることで行い、ス
パッタリング中のArガスの圧力を9 mtorr、パ
ワーを直流で0,35kwとする時W S i x膜の
組Iffcxは0.22、膜内応力は引張り方向に3 
X 10”dyne/dであった。
Si+ is added to the semi-insulating GaAs substrate 1 as a donor impurity.
A conductive layer 2 is formed by implanting ions and performing annealing. On top of that, a W Si x film 3 of 1100n, a W film 4
The WSix film 5 is overlaid with a thickness of 200 nm and a thickness of 10 nm. The deposition of WSi,3,5 was performed by sputtering a sintered W5Si3 target with Ar'' ions, and the pressure of Ar gas during sputtering was 9 mtorr, and the power was 0.35 kW DC. x film set Iffcx is 0.22, and the internal stress is 3 in the tensile direction.
X 10"dyne/d.

Wl114の被着はWターゲットのスパッタリングで行
い、Arガスの圧力は5 mtorr、パワーは直流で
0.36kwとする。この時W膜の膜内応力は、GaA
s基板に対しては圧縮方向に7×10 ’dyne/ 
alを示すが、実際はW S i x膜上に被着する為
、WSIXどの界面で応力が散逸してしまい、W S 
i x膜3とW膜4の合計の応力はGaAs基板に対し
てはほとんど零となる。最上層のW S i x膜5の
応力は薄い為、はとんど無視できる。W S i xは
Wよりもホトレジストに対する密着性がよいので、最上
層のW S i x膜S上にホトレジスト6を塗布すれ
ばレジスト剥離はほとんど起きない為、従来のW / 
W S i xの2層構造のゲートの場合よりも歩留り
が向上する。
The deposition of Wl114 is performed by sputtering using a W target, with an Ar gas pressure of 5 mtorr and a direct current power of 0.36 kW. At this time, the internal stress of the W film is GaA
For the s substrate, 7×10 'dyne/
al, but since it is actually deposited on the W S i x film, the stress will be dissipated at any interface of the W S
The total stress of the i x film 3 and the W film 4 becomes almost zero with respect to the GaAs substrate. Since the stress in the uppermost W Si x film 5 is thin, it can be almost ignored. W Si x has better adhesion to photoresist than W, so if photoresist 6 is applied on top layer W S i x film S, resist peeling will hardly occur, so conventional W/
The yield is improved compared to the case of a gate with a two-layer structure of W Si x.

ホトレジスト6のパターニングを行った後、反応性イオ
ンエツチングでW S i x膜5、W膜4、WSix
膜3を加工して、ゲート電極を形成する。
After patterning the photoresist 6, the WSi x film 5, W film 4, WSix
The film 3 is processed to form a gate electrode.

本実施例で形威したゲート電極のシート抵抗は、約0.
9Ω/口であり、単層のW S i xゲート(約7Ω
/口)の場合の約178である。加工後のゲート金属の
断面形状を第1図に示す。
The sheet resistance of the gate electrode used in this example is approximately 0.
9Ω/port, and a single layer W Si x gate (approximately 7Ω
/ mouth) is about 178. FIG. 1 shows the cross-sectional shape of the gate metal after processing.

次に、ホトレジスト6を除去した後、ソースとドレイン
のオーミック電極を形威しく図示せず)、層間絶縁膜1
0を被覆し、配線11を行うことで本実施例は完成する
Next, after removing the photoresist 6, the source and drain ohmic electrodes (not shown for clarity) are removed, and the interlayer insulating film 1 is removed.
The present embodiment is completed by covering 0 and wiring 11.

配線金属(Au)11と最上層W S i X膜5との
接触抵抗はコンタクト穴を1×1μm2の正方形とした
場合で3〜5Ωある。しかし、コンタクト穴の部分で最
上層WSix膜5を除去し、配線金属と中間層W膜4と
を接触させた場合の接触抵抗は0.6〜0.8Ωに低減
できる為、ゲートの寄生抵抗を2〜4Ω減らすことが可
能となる。この場合の断面構造を第2図に示す。
The contact resistance between the wiring metal (Au) 11 and the uppermost layer WSiX film 5 is 3 to 5 Ω when the contact hole is a square of 1×1 μm 2 . However, when the uppermost layer WSix film 5 is removed at the contact hole portion and the wiring metal is brought into contact with the intermediate layer W film 4, the contact resistance can be reduced to 0.6 to 0.8Ω, so the parasitic resistance of the gate It becomes possible to reduce the resistance by 2 to 4 Ω. The cross-sectional structure in this case is shown in FIG.

実施例、2 実施例1では第3の層である最上層のW S i !膜
5の膜厚を5〜10nmに設定したが、それよりも厚く
した場合についてゲート電極の断面形状を第3図に示す
。最上層のW S i X膜5の厚さは50nmである
Example, 2 In Example 1, W S i ! of the third layer, the uppermost layer! Although the film thickness of the film 5 was set to 5 to 10 nm, FIG. 3 shows the cross-sectional shape of the gate electrode in the case where it was made thicker. The thickness of the uppermost WSiX film 5 is 50 nm.

CHF3、CF4、NF、ガス等を用いるドライエッチ
工程では、W S i xのエツチングレートはWより
も2〜4倍大きい為、中間層のW膜4をエツチングする
最中に最上層のW S I X層5は側面からのサイド
エッチが生じ、サイドエッチ部分からW層4が露出する
。この結果、中間層のW膜4の断面形状は台形となる。
In the dry etching process using CHF3, CF4, NF, gas, etc., the etching rate of W S i x is 2 to 4 times higher than that of W. Side etching occurs in the IX layer 5 from the side surface, and the W layer 4 is exposed from the side etched portion. As a result, the cross-sectional shape of the intermediate layer W film 4 becomes trapezoidal.

最下層のWS ix膜3の加工中はエツチングガスから
生成したポリマーが側面に付着する為、最上層のW S
 i x膜5に比べてエツチングが遅く、サイドエッチ
は僅かである。
During processing of the bottom layer WSix film 3, polymer generated from the etching gas adheres to the side surfaces, so
Etching is slower than that of the i x film 5, and side etching is slight.

本実施例のゲート電極は、実施例1の場合に比ベゲート
抵抗が若干大きくなる欠点はあるもののゲート電極に眉
間絶縁膜を被着した時の平坦性が向上する利点がある。
Although the gate electrode of this example has the disadvantage that the gate resistance is slightly larger than that of Example 1, it has the advantage that the flatness is improved when the glabella insulating film is applied to the gate electrode.

実施例、3 本発明の実施例を第4図に示す。ドライエッチ工程にお
いてW S i XのエツチングレートはWより大きい
為、W S i x層とW層とを200nmずつ重ねた
2層構造では下段の”JJ S i x層に大きなサイ
ドエッチが生じる。そこで、本実施例では、W S i
 X層3とW層4の厚さを各1100nとして、これを
2回繰り返して4層構造とし、更に最上層に数nmの厚
さのW S i x層5を被着する。
Example 3 An example of the present invention is shown in FIG. In the dry etching process, the etching rate of W Si Therefore, in this embodiment, W Si
The X layer 3 and the W layer 4 each have a thickness of 1100 nm, and this is repeated twice to obtain a 4-layer structure, and then a W Si x layer 5 with a thickness of several nm is deposited on the top layer.

この場合、wsix層3を薄くしたので、この層のサイ
ドエッチ量が減り、ゲート電極の断面形状は矩形に近づ
く。
In this case, since the wsix layer 3 is made thinner, the amount of side etching of this layer is reduced, and the cross-sectional shape of the gate electrode approaches a rectangle.

実施例、4 実施例1〜3では最上層5に最下層3と同しW S x
 *を用いた。この理由はスパッタリングのターゲット
をW s S l xからWに、そして再びW3Si、
に切り換えることで最下層3、中間層4、最上層5を連
続的に形成できる利点がある為である。
Example 4 In Examples 1 to 3, the top layer 5 has the same W S x as the bottom layer 3.
* was used. The reason for this is that the sputtering target was changed from WsSlx to W, and then again to W3Si,
This is because there is an advantage that the lowermost layer 3, intermediate layer 4, and uppermost layer 5 can be formed continuously by switching to the above.

しかし、最上層5はW S i X N y、或いはW
N。
However, the top layer 5 is W Si X N y or W
N.

を用いることも可能であり、W、Si3又はWのターゲ
ットを窒化雰囲気中でスパッタリングさせることで形成
できる。この場合、W S l xNy、WH,はAf
l配線やゲート電極中のWに対するバリヤメタルとして
作用し、コンタクト穴でのエレクトロマイグレーション
を抑え、集積回路の信頼性向上と製品寿命の延長を図る
ことができる。
It is also possible to use a target of W, Si3, or W to be formed by sputtering in a nitriding atmosphere. In this case, W S l xNy, WH, is Af
It acts as a barrier metal against W in wiring and gate electrodes, suppresses electromigration in contact holes, and improves the reliability of integrated circuits and extends product life.

最上層5の材料には、この他TaSix、MoSix、
TiSix、I rsix等の他の硅化物、或いはWN
、、T a Nx、等の窒化物、WB、、TaB、等の
硼化物やWC,SiC,TiC等の炭化物、或いはSi
等を用いることも可能である。
Other materials for the top layer 5 include TaSix, MoSix,
Other silicides such as TiSix, Irsix, or WN
,, nitrides such as T a Nx, borides such as WB, TaB, carbides such as WC, SiC, TiC, or Si
It is also possible to use .

実施例、5 集積回路の負荷FETでは、ゲート電極とソース側のオ
ーミック電極とを直接接続させることでセル面積を小さ
くすることができる。この場合、断面形状が矩形のゲー
ト電極では側端の角の部分でオーミック電極が断線する
不良が発生する。この問題を解決する方法として、ゲー
ト電極のソース側端部となる領域のゲート電極材の最上
層としてSi膜を形威し、ゲート電極形成時のドライエ
ツチングにより上記Si膜がサイドエッチされることを
利用して、ゲート電極のソース側端をテーパ状に加工す
ることにより段差被覆性を向上させる方法が特開平1−
187876号公報において知られている。
Example 5 In a load FET of an integrated circuit, the cell area can be reduced by directly connecting the gate electrode and the ohmic electrode on the source side. In this case, in a gate electrode having a rectangular cross-sectional shape, a defect occurs in which the ohmic electrode is disconnected at the corner portion of the side end. A method to solve this problem is to form a Si film as the top layer of the gate electrode material in the region that will become the source side end of the gate electrode, and to side-etch the Si film by dry etching when forming the gate electrode. A method of improving step coverage by processing the source side end of the gate electrode into a tapered shape using
It is known from the publication No. 187876.

また、Siは本発明の目的も達成できるので本発明と上
記従来技術を組み合せることが可能である。
Further, since Si can also achieve the object of the present invention, it is possible to combine the present invention and the above-mentioned prior art.

実施例5として、この組合せをインバータ回路を有する
集積回路に適用した例を示す。第5図はその断面図であ
り、第6図(a)乃至第6図(e)は負荷FET部分の
製造工程図である。
As a fifth embodiment, an example will be shown in which this combination is applied to an integrated circuit having an inverter circuit. FIG. 5 is a sectional view thereof, and FIGS. 6(a) to 6(e) are manufacturing process diagrams of the load FET portion.

半絶縁性基板1に、駆動FET、負荷FETの能動層2
を形成し、DC(直流)スパッタリングでW S i 
x層3、W層4を1o○、200nm被着し、更にRF
(高周波)スパッタリングでSi層7を50nm被着す
る。この時、W、Ii4とSi層7の界面にはスパッタ
のミキシングと拡散とによってW S i x層5が形
威される(第6図(a))。
A semi-insulating substrate 1, an active layer 2 of a drive FET and a load FET.
was formed, and WSi was formed by DC (direct current) sputtering.
The x layer 3 and the W layer 4 are deposited to a thickness of 100 nm and 200 nm, and further RF
A 50 nm Si layer 7 is deposited by (high frequency) sputtering. At this time, a W Si x layer 5 is formed at the interface between the W, Ii 4 and the Si layer 7 by sputter mixing and diffusion (FIG. 6(a)).

このW S i x層5の厚さはS i f@ 7を被
着する際のRFパワーを大きくすることで1〜2nmに
できるが、赤外線ランプによる加熱で更に厚くすること
も可能である。次に、負荷FETのゲート電極を形成す
る領域のうちソース側のみにSi層7を残し、他の領域
のS i f@ 7を除去する。その後、ホトレジスト
6を1μm塗布し、ゲート電極のパターニングを行う(
第6図(b))。
The thickness of this W S i x layer 5 can be made 1 to 2 nm by increasing the RF power when depositing S i f@ 7, but it is also possible to make it even thicker by heating with an infrared lamp. Next, the Si layer 7 is left only on the source side of the region where the gate electrode of the load FET is to be formed, and the Si layer 7 is removed from other regions. After that, photoresist 6 is applied to a thickness of 1 μm, and the gate electrode is patterned (
Figure 6(b)).

ホトレジスト6をマスクにトライエツチングを行い、ゲ
ート電極を加工する。この時、Siのエツチングレート
はWより1桁大きい為、W層4をエツチングする間にS
 i Nl 7は側面からのサイドエッチが進行する。
Tri-etching is performed using the photoresist 6 as a mask to process the gate electrode. At this time, since the etching rate of Si is one order of magnitude higher than that of W, the etching rate of Si is etched while etching the W layer 4.
In i Nl 7, side etching progresses from the side.

この結果、W層4はS i M 7を残した部分ではテ
ーパ状に加工される。この時の負荷FETの断面構造を
第6図(c)に示す。
As a result, the W layer 4 is processed into a tapered shape in the portion where the S i M 7 remains. The cross-sectional structure of the load FET at this time is shown in FIG. 6(c).

本工程において、負荷FETのゲート電極では、ホトレ
ジスト6の下面は上記のようにSi又はW S I X
に接しており、また、開動FETのゲート電極では、ホ
トレジスト6の下面はW S x xに接しているので
、本工程中にホトレジスト6が剥離することはない。
In this step, in the gate electrode of the load FET, the lower surface of the photoresist 6 is made of Si or WSIX as described above.
Furthermore, since the lower surface of the photoresist 6 is in contact with W S x x in the gate electrode of the open FET, the photoresist 6 will not peel off during this process.

次に、ホトレジスト6を除去した後、イオン打込みで高
濃度導電層(n”Fg)9を形威し、さらにSi○2膜
12全12全12D学気相成長)法で約300nm被着
した後800℃15分の活性化アニールでn+層9の活
性化を行う。つづいて、有機レジスト膜13を約1μm
塗布した後、これをマスクとしてオーミック電極形成領
域および負荷FETのゲートとソースとの配線領域のS
in。
Next, after removing the photoresist 6, a high-concentration conductive layer (n''Fg) 9 was formed by ion implantation, and a Si○2 film 12 of about 300 nm was deposited using a D chemical vapor deposition method. Afterwards, the n+ layer 9 is activated by activation annealing at 800°C for 15 minutes.Subsequently, the organic resist film 13 is formed to a thickness of about 1 μm.
After coating, use this as a mask to form S in the ohmic electrode formation area and the wiring area between the gate and source of the load FET.
in.

膜12およびSi層7を除去する。次に、オーミック金
属(AuGe)8を厚さ0.2μm蒸着する(第6図(
d))。
Film 12 and Si layer 7 are removed. Next, ohmic metal (AuGe) 8 is deposited to a thickness of 0.2 μm (Fig. 6 (
d)).

次に、有機レジスト膜13およびSi○2膜12を除去
して(ソフトオフ法)オーミック電極が形成される。こ
の時の負荷FETの断面構造を第6図(e)に示す。ソ
ース側のオーミック電極8はゲート電極と直接接続して
おり、ドレイン側に比べて占有面積は小さくできる。
Next, the organic resist film 13 and the Si*2 film 12 are removed (soft-off method) to form an ohmic electrode. The cross-sectional structure of the load FET at this time is shown in FIG. 6(e). The ohmic electrode 8 on the source side is directly connected to the gate electrode, and can occupy a smaller area than the ohmic electrode 8 on the drain side.

この時のインバータ回路の断面図は第5図のようになっ
ている。この後1層間絶縁膜を被着し、配線工程を行う
ことで積積回路は完成する(図示せず)。
A cross-sectional view of the inverter circuit at this time is as shown in FIG. Thereafter, an interlayer insulating film is deposited and a wiring process is performed to complete the integrated circuit (not shown).

〔発明の効果〕〔Effect of the invention〕

本発明によってタングステンを用いた低抵抗のゲート電
極を形成する際に生じるホトレジストの剥離がなくなり
、集積回路の歩留り向上を図れる効果がある。
The present invention eliminates the peeling of photoresist that occurs when forming a low-resistance gate electrode using tungsten, and has the effect of improving the yield of integrated circuits.

又、最上層に高融点金属窒化物、或いは高融点金属の硅
化物と窒化物の混合体を用いることで配線金属やゲート
電極中のタングステンが外方拡散するのを抑え、エレク
トロマイグレーション寿命(EM寿命)を延ばす効果が
ある。
Furthermore, by using a high melting point metal nitride or a mixture of high melting point metal silicide and nitride in the top layer, outward diffusion of tungsten in the wiring metal and gate electrode is suppressed, and the electromigration life (EM) is suppressed. It has the effect of extending lifespan.

更に、最上層にSi等のエツチング速度の大きい材料を
選ぶことで、ゲート電極の側端にテーパを設けて段差被
覆性を向上できる効果がある。この効果は負荷FETで
のゲート・ソース直接接続によってセル面積縮小を図っ
た集積回路における歩留り向上に有効である。
Furthermore, by selecting a material with a high etching rate, such as Si, for the uppermost layer, it is possible to provide a taper at the side edge of the gate electrode, thereby improving step coverage. This effect is effective in improving the yield of integrated circuits in which the cell area is reduced by direct gate-source connection in the load FET.

【図面の簡単な説明】[Brief explanation of drawings]

第1図は本発明の重ねゲートを用いた実施例1のMES
FETの断面図、第2図は実施例1の配線後の断面構造
図、第3図は最上層のW S i x膜を厚くした実施
例2の断面構造図、第4図は4層構造の重ねゲートに本
発明を適用した実施例3の断面構造図。 第5図は負荷FETのソース側のオーミック電極とゲー
ト電極とを直接接続する為に、ゲート電極のソース側を
テーパ状に加工する方法について示した実施例5の断面
構造図、第6図(a)乃至第6図(e)は実施例5の負
荷FETの部分のプロセス工程図である。 符号の説明 1・・・半絶縁性基板、2・・・導電層、3,5・・・
高融点金属硅化物、又は窒化物、4・・・高融点金属、
6・・ホトレジスト、7・・・シリコン、8・・・オー
ミック金属、9・・・n+層、10・・・層間絶縁膜、
11・・・配線金属。
Figure 1 shows the MES of Example 1 using the stacked gate of the present invention.
A cross-sectional view of the FET. Figure 2 is a cross-sectional structural diagram of Example 1 after wiring. Figure 3 is a cross-sectional structural diagram of Example 2 with a thicker top layer W S i x film. Figure 4 is a four-layer structure. FIG. 3 is a cross-sectional structural diagram of Embodiment 3 in which the present invention is applied to a stacked gate. FIG. 5 is a cross-sectional structural diagram of Example 5 showing a method of processing the source side of the gate electrode into a tapered shape in order to directly connect the ohmic electrode on the source side of the load FET and the gate electrode, and FIG. 6(a) to 6(e) are process flow diagrams of the load FET portion of Example 5. Explanation of symbols 1... Semi-insulating substrate, 2... Conductive layer, 3, 5...
High melting point metal silicide or nitride, 4... High melting point metal,
6... Photoresist, 7... Silicon, 8... Ohmic metal, 9... N+ layer, 10... Interlayer insulating film,
11...Wiring metal.

Claims (1)

【特許請求の範囲】 1、半導体基板上に高融点金属シリサイドから成る第1
の層を直接形成する工程、該第1の層上に高融点金属か
ら成る第2の層を直接または高融点金属を含む層を介し
て形成する工程、該第2の層上に高融点金属シリサイド
、高融点金属窒化物およびシリコンから成る群から選ば
れた少なくとも1種から成る第3の層を直接形成する工
程、該第3の層上にレジスト膜を直接形成する工程、該
レジスト膜をパターニングする工程、および該パターニ
ングされたレジスト膜をマスクとして上記第1の層およ
び該層上に積層された層をエッチングしてショットキー
電極を形成することを特徴とするショットキー電極を有
する半導体装置の製造方法。 2、上記高融点金属を含む層は、高融点金属層および高
融点金属シリサイド層をこの順序に積層した層の組を少
なくとも1組有している特許請求の範囲第1項記載のシ
ョットキー電極を有する半導体装置の製造方法。 3、上記ショットキー電極形成後、上記第3の層の一部
または全部を除去する工程を有する特許請求の範囲第1
項又は第2項記載のショットキー電極を有する半導体装
置の製造方法。 4、半導体基板上に高融点金属シリサイドから成る第1
の層を直接形成する工程、該第1の層上に高融点金属か
ら成る第2の層を直接または高融点金属を含む層を介し
て形成する工程、該第2の層上にシリコンから成る第3
の層を直接形成する工程、該第3の層上に第1のレジス
ト膜を直接形成する工程、該第1のレジスト膜をパター
ニングする工程、および該パターニングされた第1のレ
ジスト膜をマスクとして上記第3の層をエッチングする
と共に上記第3の層形成時に上記第2の層と上記第3の
層の界面に形成された上記第2の層の構成材料のシリサ
イド層を露出する工程、該エッチングにより残った上記
第3の層および該層に連続した部分の上記第2の層の構
成材料のシリサイド層を、少なくとも一端が上記第3の
層で終端するように第3のレジスト膜で被覆する工程、
およびに該第2のレジスト膜をマスクとして上記第1の
層および該層上に形成された層をドライエッチングして
ショットキー電極形状と成す工程を有し、該ドライエッ
チング工程において上記第3の層で終端した部分のショ
ットキー電極の側面はその断面の上記半導体基板側の角
度が鋭角である如くに加工されたテーパ部を有すること
を特徴とするショットキー電極を有する半導体装置の製
造方法。 5、上記ショットキー電極は電界効果トランジスタのゲ
ート電極であり、上記ドライエッチング工程の後上記第
3の層を除去する工程および上記電界効果トランジスタ
のゲート電極とソース電極の間が露出した状態で該両電
極間に導電体膜を被着し該両電極間を電気的に接続する
工程を有する特許請求の範囲第4項記載のショットキー
電極を有する半導体装置の製造方法。
[Claims] 1. A first layer made of high melting point metal silicide on a semiconductor substrate.
a step of forming a second layer made of a high melting point metal directly or via a layer containing a high melting point metal on the first layer; a step of forming a second layer made of a high melting point metal on the second layer; a step of directly forming a third layer made of at least one selected from the group consisting of silicide, high melting point metal nitride, and silicon; a step of directly forming a resist film on the third layer; A semiconductor device having a Schottky electrode, comprising a step of patterning, and etching the first layer and the layer laminated thereon using the patterned resist film as a mask to form a Schottky electrode. manufacturing method. 2. The Schottky electrode according to claim 1, wherein the layer containing the high melting point metal has at least one set of layers in which a high melting point metal layer and a high melting point metal silicide layer are laminated in this order. A method for manufacturing a semiconductor device having the following. 3. Claim 1, which includes a step of removing part or all of the third layer after forming the Schottky electrode.
A method for manufacturing a semiconductor device having a Schottky electrode according to item 1 or 2. 4. A first layer made of high melting point metal silicide on a semiconductor substrate
a step of forming a second layer made of a high melting point metal directly or via a layer containing a high melting point metal on the first layer; a step of forming a second layer made of silicon on the second layer Third
a step of directly forming a first resist film on the third layer, a step of patterning the first resist film, and a step of using the patterned first resist film as a mask. a step of etching the third layer and exposing a silicide layer of the constituent material of the second layer formed at the interface between the second layer and the third layer when forming the third layer; The third layer remaining after the etching and the silicide layer of the constituent material of the second layer in a continuous portion thereof are covered with a third resist film so that at least one end is terminated with the third layer. The process of
and a step of dry etching the first layer and the layer formed thereon using the second resist film as a mask to form a Schottky electrode shape, and in the dry etching step, the third resist film is dry etched. A method for manufacturing a semiconductor device having a Schottky electrode, characterized in that a side surface of the Schottky electrode at a portion terminated with a layer has a tapered portion processed so that the angle of the cross section toward the semiconductor substrate side is an acute angle. 5. The Schottky electrode is a gate electrode of a field effect transistor, and after the dry etching step, the third layer is removed and the field effect transistor is exposed between the gate electrode and the source electrode. 5. A method of manufacturing a semiconductor device having a Schottky electrode according to claim 4, further comprising the step of depositing a conductive film between both electrodes and electrically connecting the two electrodes.
JP2073338A 1990-03-26 1990-03-26 Manufacture of semiconductor device with schottky electrode Pending JPH03274735A (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP2073338A JPH03274735A (en) 1990-03-26 1990-03-26 Manufacture of semiconductor device with schottky electrode

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP2073338A JPH03274735A (en) 1990-03-26 1990-03-26 Manufacture of semiconductor device with schottky electrode

Publications (1)

Publication Number Publication Date
JPH03274735A true JPH03274735A (en) 1991-12-05

Family

ID=13515275

Family Applications (1)

Application Number Title Priority Date Filing Date
JP2073338A Pending JPH03274735A (en) 1990-03-26 1990-03-26 Manufacture of semiconductor device with schottky electrode

Country Status (1)

Country Link
JP (1) JPH03274735A (en)

Cited By (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US10833199B2 (en) 2016-11-18 2020-11-10 Acorn Semi, Llc Nanowire transistor with source and drain induced by electrical contacts with negative Schottky barrier height
US10872964B2 (en) 2016-06-17 2020-12-22 Acorn Semi, Llc MIS contact structure with metal oxide conductor
US10879366B2 (en) 2011-11-23 2020-12-29 Acorn Semi, Llc Metal contacts to group IV semiconductors by inserting interfacial atomic monolayers
US10937880B2 (en) 2002-08-12 2021-03-02 Acorn Semi, Llc Method for depinning the Fermi level of a semiconductor at an electrical junction and devices incorporating such junctions
US11043571B2 (en) 2002-08-12 2021-06-22 Acorn Semi, Llc Insulated gate field effect transistor having passivated schottky barriers to the channel

Cited By (13)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US11043571B2 (en) 2002-08-12 2021-06-22 Acorn Semi, Llc Insulated gate field effect transistor having passivated schottky barriers to the channel
US10937880B2 (en) 2002-08-12 2021-03-02 Acorn Semi, Llc Method for depinning the Fermi level of a semiconductor at an electrical junction and devices incorporating such junctions
US10950707B2 (en) 2002-08-12 2021-03-16 Acorn Semi, Llc Method for depinning the Fermi level of a semiconductor at an electrical junction and devices incorporating such junctions
US11018237B2 (en) 2002-08-12 2021-05-25 Acorn Semi, Llc Method for depinning the fermi level of a semiconductor at an electrical junction and devices incorporating such junctions
US11056569B2 (en) 2002-08-12 2021-07-06 Acorn Semi, Llc Method for depinning the fermi level of a semiconductor at an electrical junction and devices incorporating such junctions
US11355613B2 (en) 2002-08-12 2022-06-07 Acorn Semi, Llc Method for depinning the Fermi level of a semiconductor at an electrical junction and devices incorporating such junctions
US10879366B2 (en) 2011-11-23 2020-12-29 Acorn Semi, Llc Metal contacts to group IV semiconductors by inserting interfacial atomic monolayers
US11610974B2 (en) 2011-11-23 2023-03-21 Acorn Semi, Llc Metal contacts to group IV semiconductors by inserting interfacial atomic monolayers
US11804533B2 (en) 2011-11-23 2023-10-31 Acorn Semi, Llc Metal contacts to group IV semiconductors by inserting interfacial atomic monolayers
US10872964B2 (en) 2016-06-17 2020-12-22 Acorn Semi, Llc MIS contact structure with metal oxide conductor
US11843040B2 (en) 2016-06-17 2023-12-12 Acorn Semi, Llc MIS contact structure with metal oxide conductor
US10833199B2 (en) 2016-11-18 2020-11-10 Acorn Semi, Llc Nanowire transistor with source and drain induced by electrical contacts with negative Schottky barrier height
US11462643B2 (en) 2016-11-18 2022-10-04 Acorn Semi, Llc Nanowire transistor with source and drain induced by electrical contacts with negative Schottky barrier height

Similar Documents

Publication Publication Date Title
JP3287392B2 (en) Semiconductor device and manufacturing method thereof
US4503599A (en) Method of fabricating field effect transistors
JPH04290232A (en) Formation method of groove-buried interconnection
JPH0354464B2 (en)
US5516726A (en) Method of manufacturing local interconnection for semiconductors
KR930011800B1 (en) Mos type semiconductor device
JPH03274735A (en) Manufacture of semiconductor device with schottky electrode
JP3023853B2 (en) Method for manufacturing semiconductor device
US5851920A (en) Method of fabrication of metallization system
JPH07221181A (en) Formation of metal wiring of semiconductor element
US5631479A (en) Semiconductor device with laminated refractory metal schottky barrier gate electrode
JPS63211672A (en) Semiconductor integrated circuit device
JPH0684827A (en) Local interconnection provided with germanium layer
JPS6257255A (en) Manufacture of compound semiconductor device
US5136361A (en) Stratified interconnect structure for integrated circuits
US5686323A (en) Method of manufacturing a semiconductor device having an out diffusion preventing film
JP4147441B2 (en) Compound semiconductor device
EP0120918A1 (en) An aluminum-metal silicide interconnect structure for integrated circuits and method of manufacture thereof.
JP3096461B2 (en) Semiconductor device and manufacturing method thereof
JPH03157966A (en) Manufacture of semiconductor device
JP2969830B2 (en) Method for manufacturing semiconductor device
CA1184672A (en) Method of fabricating field effect transistors
JPH05335348A (en) Semiconductor device
TW550715B (en) Method for manufacturing a microelectronic device and device manufacturing in accordance with said method
JPH05326518A (en) Semiconductor device, peripheral wiring and their manufacture