JPH03273689A - Highly sensitive thermopile - Google Patents

Highly sensitive thermopile

Info

Publication number
JPH03273689A
JPH03273689A JP2071839A JP7183990A JPH03273689A JP H03273689 A JPH03273689 A JP H03273689A JP 2071839 A JP2071839 A JP 2071839A JP 7183990 A JP7183990 A JP 7183990A JP H03273689 A JPH03273689 A JP H03273689A
Authority
JP
Japan
Prior art keywords
thermopile
thermocouple
pattern
insulating substrate
sensitivity
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Pending
Application number
JP2071839A
Other languages
Japanese (ja)
Inventor
Tetsuo Baba
馬場 哲郎
Michio Nemoto
根本 道夫
Akihiro Enomoto
榎本 明宏
Masahiro Sato
正博 佐藤
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Tokin Corp
Original Assignee
Tokin Corp
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Tokin Corp filed Critical Tokin Corp
Priority to JP2071839A priority Critical patent/JPH03273689A/en
Publication of JPH03273689A publication Critical patent/JPH03273689A/en
Pending legal-status Critical Current

Links

Landscapes

  • Radiation Pyrometers (AREA)

Abstract

PURPOSE:To achieve a sufficient output voltage over a wide temperature range of an object to be measured including normal temperature and obtain a highly sensitive thermopile where influence of fluctuation of room temperature is eliminated by placing a cooling means near one edge of a connection terminal. CONSTITUTION:A thin-film thermocouple pattern 2 according to combination of a first thermoelectric material 2a and a second thermocouple material 2b is located on an insulating substrate 1. A connection terminal at an inside of the thermocouple pattern 2 constitutes a warm contact 21 and the outside connection terminal constitutes a cool contact 22. An insulating layer 3 is coated at a region including a circumferential part of the warm contact 21 and a infrared-ray absorbent layer 4 such as gold black is formed on it. A thin-film Peltier element pattern 5 is located at an outside region of the thin-film thermocouple pattern 2 and at a rear part of the insulating substrate 1. The configuration constitute an absorption junction part 51 and a heat build-up junction part 52 which combines an n-type thermocouple semiconductor 5a and a p-type thermocouple semiconductor 5b and interlocks one inner terminal and the other outer terminal alternately.

Description

【発明の詳細な説明】 [産業上の利用分野] 本発明は、各種非接触温度検出及び人体検出等に用いら
れる熱電対を多数並列に接続したサーモパイルに関する
DETAILED DESCRIPTION OF THE INVENTION [Field of Industrial Application] The present invention relates to a thermopile in which a large number of thermocouples are connected in parallel for use in various types of non-contact temperature detection, human body detection, etc.

[従来の技術] 従来のサーモパイルの構成を示す平面図を第5図、断面
図を第6図に夫々示す。
[Prior Art] A plan view showing the structure of a conventional thermopile is shown in FIG. 5, and a cross-sectional view is shown in FIG. 6, respectively.

第5図及び第6図において、絶縁基板1−の上に第1の
熱電材料2a−及び第2の熱電材料2b”の組合わせの
薄膜の熱電対が直列に配列された薄膜熱電対パターン2
′が蒸着あるいはスパッタ等の手段により形成されてい
る。
5 and 6, a thin film thermocouple pattern 2 in which thin film thermocouples of a combination of a first thermoelectric material 2a- and a second thermoelectric material 2b" are arranged in series on an insulating substrate 1-
' is formed by means such as vapor deposition or sputtering.

第1及び第2の熱電材料2g−及び2b−の組合わせと
しては、通常B1−3b、B1−B1Sb、B1−Te
等の熱電能αの大なる組合わせが選択されている。
The combinations of the first and second thermoelectric materials 2g- and 2b- are usually B1-3b, B1-B1Sb, B1-Te.
A large combination of thermoelectric powers α such as is selected.

夫々、薄膜熱電対パターン2′の内側は、温接点21゛
が配列され外側は冷接点22″が配列され、夫々第1及
び第2の熱電対パターンの端部を互い違いに接続してい
る。また、基板の冷接点22″の部分の裏面は、ヒート
シンク6−のリング状部分に固定される。薄膜熱電対パ
ターン2′の温接点21′の外周を含む領域に絶縁層3
′がコーテングされ、その上に全黒等の赤外線吸収層4
−が形成されている。
On the inside of each thin film thermocouple pattern 2', hot junctions 21'' are arranged and on the outside, cold junctions 22'' are arranged, alternately connecting the ends of the first and second thermocouple patterns, respectively. Further, the back surface of the cold contact 22'' portion of the board is fixed to a ring-shaped portion of the heat sink 6-. An insulating layer 3 is provided in a region including the outer periphery of the hot junction 21' of the thin film thermocouple pattern 2'.
' is coated, and an infrared absorbing layer 4 of completely black or the like is coated on top of that.
- is formed.

ここで、サーモパイルが赤外線を検出する原理を第5図
及び第6図を参照して説明する。
Here, the principle by which a thermopile detects infrared rays will be explained with reference to FIGS. 5 and 6.

被検出物体から発生した赤外線は、赤外線吸収層4−に
吸収され、赤外線吸収層4′の温度が上昇し、絶縁層3
−を介して、薄膜熱電対パターン2−の温接点21′の
温度を上昇させる。その温度をThとする。冷接点22
′の温度は、はぼヒートシンク6′の温度Te(はぼ室
温と等しい)に保たれているので、温接点21′と冷接
点22゛との間には、温度差ΔT−Th−Te(単位℃
)が生じる。このΔTに基づく出力電圧V。′は、次式
(1)で表される。
The infrared rays generated from the object to be detected are absorbed by the infrared absorbing layer 4-, the temperature of the infrared absorbing layer 4' increases, and the insulating layer 3
- to increase the temperature of the hot junction 21' of the thin film thermocouple pattern 2-. Let that temperature be Th. cold junction 22
' is maintained at approximately the temperature Te of the heat sink 6' (approximately equal to room temperature), so there is a temperature difference ΔT-Th-Te (approximately equal to room temperature) between the hot junction 21' and the cold junction 22'. Unit ℃
) occurs. Output voltage V based on this ΔT. ' is expressed by the following equation (1).

■o −α×ΔT−XN  ・・・(1)(但し、ΔT
−−Th−Te) ここで、aは薄膜熱電対パターン一対当りの熱電能(μ
V/’C)であり、Nは薄膜熱電対パターンの対の数で
ある。
■o −α×ΔT−XN ...(1) (However, ΔT
--Th-Te) Here, a is the thermoelectric power per pair of thin film thermocouple patterns (μ
V/'C), and N is the number of pairs in the thin film thermocouple pattern.

従って、上記(1)式の出力電圧V。−が図中の出力端
子81.81−間に生じる。
Therefore, the output voltage V in the above equation (1). - occurs between output terminals 81 and 81 in the figure.

[発明が解決しようとする課題] 従来の第5図及び第6図のサーモパイルには、以下の問
題点(イ)、(ロ)がある。
[Problems to be Solved by the Invention] The conventional thermopiles shown in FIGS. 5 and 6 have the following problems (a) and (b).

(イ)被検出物体の温度が室温と近い場合、熱電対パタ
ーン温接点とヒートシンクとの温度差ΔTが非常に少と
なるので、出力電圧V。−が小となるので、増幅時のノ
イズレベル以下となり、正確な温度検出ができない。
(a) When the temperature of the object to be detected is close to room temperature, the temperature difference ΔT between the thermocouple pattern hot junction and the heat sink is very small, so the output voltage V. Since - is small, it is below the noise level during amplification, and accurate temperature detection cannot be performed.

(ロ)室温の変動により、ヒートシンクの温度もそれに
追従して変化するた出力電圧vO−が室温の変動を受け
る。
(b) As the temperature of the heat sink changes as the room temperature changes, the output voltage vO- is subject to changes in the room temperature.

そこで、本発明の技術的課題は、従来の欠点を改善し、
被測定物の温度が常温を含む高範囲に渡って十分な出力
電圧を実現し、且つ室温の変動の影響を無くした高感度
のサーモパイルを提供することにある。
Therefore, the technical problem of the present invention is to improve the conventional drawbacks, and
It is an object of the present invention to provide a highly sensitive thermopile that achieves a sufficient output voltage over a wide temperature range of the object to be measured, including room temperature, and eliminates the influence of room temperature fluctuations.

[課題を解決するための手段] 本発明によれば、絶縁基板上に赤外線吸収部と、該吸収
部から外れた位置に異種金属の接続端の一端を配置し、
他端を該赤外線吸収部に配置した熱電対とを形成したサ
ーモパイルにおいて、前記接続端の一端近傍に冷却手段
を配置したことを特徴とする高感度サーモパイルが得ら
れる。
[Means for Solving the Problems] According to the present invention, an infrared absorbing portion is disposed on an insulating substrate, and one end of a connecting end of a dissimilar metal is disposed at a position away from the absorbing portion,
A highly sensitive thermopile is obtained in which a thermopile is formed with a thermocouple whose other end is disposed in the infrared absorbing portion, and a cooling means is disposed near one end of the connection end.

本発明によれば、前記高感度サーモパイルにおいて、前
記熱電対は前記絶縁基板上に蒸着またはスパッタにより
形成された薄膜熱電対パターンであることを特徴とする
高感度サーモパイルが得られる。
According to the present invention, there is obtained a high-sensitivity thermopile characterized in that the thermocouple is a thin film thermocouple pattern formed on the insulating substrate by vapor deposition or sputtering.

本発明によれば、前記したいずれかの高感度サーモパイ
ルにおいて、前記冷却手段はベルチェ素子の吸熱接合部
を備えていることを特徴とする高感度サーモパイルが得
られる。
According to the present invention, there is obtained a high-sensitivity thermopile according to any one of the above-described high-sensitivity thermopiles, characterized in that the cooling means includes a heat-absorbing junction of a Beltier element.

本発明によれば、前記高感度サーモパイルにおいて、前
記ベルチェ素子は、前記絶縁基板近傍に配されたヒート
シンクに発熱接合部を有することを特徴とする高感度サ
ーモパイルが得られる。
According to the present invention, there is obtained a high-sensitivity thermopile characterized in that in the high-sensitivity thermopile, the Bertier element has a heat-generating joint on a heat sink disposed near the insulating substrate.

本発明によれば、前記高感度サーモパイルにおいて、前
記絶縁基板表面に熱電対パターン、該表面に対向する裏
面に薄膜ペルチェ素子パターンを設けたことを特徴とす
る高感度サーモパイルが得られる。
According to the present invention, there is obtained a high-sensitivity thermopile characterized in that a thermocouple pattern is provided on the surface of the insulating substrate, and a thin film Peltier element pattern is provided on the back surface opposite to the surface.

本発明によれば、前記したいずれかの高感度サーモパイ
ルにおいて、前記絶縁基板上の前記異種金属の接続端の
他端近傍に薄膜温度検出素子パターンを設けたことを特
徴とする高感度サーモパイルが得られる。
According to the present invention, there is obtained a high-sensitivity thermopile characterized in that, in any of the above-described high-sensitivity thermopiles, a thin film temperature detection element pattern is provided near the other end of the connection end of the dissimilar metal on the insulating substrate. It will be done.

[実施例コ 本発明の実施例を図面を参照して説明する。[Example code] Embodiments of the present invention will be described with reference to the drawings.

第1図に本発明によるサーモパイルの一実施例の平面図
を、第2図に第1図の断面図を夫々示す。
FIG. 1 shows a plan view of an embodiment of a thermopile according to the present invention, and FIG. 2 shows a sectional view of FIG. 1.

第1図及び第2図において、絶縁基板1には従来と同様
に、ポリイミド、ポリエステル等の有機フィルム(厚み
5〜10μm)が用いられている。
In FIGS. 1 and 2, an organic film (5 to 10 μm thick) made of polyimide, polyester, or the like is used as the insulating substrate 1, as in the past.

絶縁基板1の上には、第1の熱電材料2a及び第2の熱
電材料2bの組合わせによる熱電対の直列接続よりなる
薄膜熱電対パターン2が蒸着あるいは、スパッタ等の手
段により形成されている。
On the insulating substrate 1, a thin film thermocouple pattern 2 consisting of a series connection of thermocouples made of a combination of a first thermoelectric material 2a and a second thermoelectric material 2b is formed by means such as vapor deposition or sputtering. .

熱電対パターン2の内側の接続端は、温接点21を構成
し、外側の接続端は冷接点22を構成する。
The inner connection end of the thermocouple pattern 2 constitutes a hot junction 21, and the outer connection end constitutes a cold junction 22.

温接点21の円周部を含む領域に絶縁層3がコーテング
され、その上に金魚等の赤外線吸収層4が形成されてい
る。
An insulating layer 3 is coated on a region including the circumference of the hot junction 21, and an infrared absorbing layer 4 such as goldfish is formed thereon.

薄膜熱電対パターン2の外側領域で、絶縁基板1の裏側
部分には、薄膜ペルチェ素子パターン5が設けられてい
る。その構成は、n型熱電半導体5aと、P型熱電半導
体5bとを組合わせて、内方の一端と外方の他端とを互
い違いに連結する吸熱接合部51と発熱接合部52を夫
々形成することにより、直列に多数列直列接続した構成
である。
In the outer region of the thin film thermocouple pattern 2 and on the back side of the insulating substrate 1, a thin film Peltier element pattern 5 is provided. Its structure is such that an n-type thermoelectric semiconductor 5a and a P-type thermoelectric semiconductor 5b are combined to form a heat-absorbing joint 51 and a heat-generating joint 52, which alternately connect one inner end and the other outer end. By doing so, it is a configuration in which multiple lines are connected in series.

図中のベルチェ素子群の一端部に接続された端子13.
14を用いて矢印の方向に、通電電流Iを流すことによ
り、前記のように吸熱接合部51に吸熱の機能が、発熱
接合部52に発熱機能が夫々実現される。
Terminal 13 connected to one end of the Bertier element group in the figure.
14 to flow the current I in the direction of the arrow, the heat-absorbing function is realized in the heat-absorbing joint 51, and the heat-generating function is realized in the heat-generating joint 52, as described above.

吸熱接合部51は、熱電対パターン2の各冷接点22を
絶縁基板1の裏側から丁度囲む領域の大きさに設定され
、一方発熱接合部52はヒートシンク6に熱的に接合さ
れており、従って、吸熱接合部51から発熱接合部52
へ熱が連続的に移動する。また、薄膜熱電対パターン2
の冷接点22の端子近傍には、端子15.16を有する
薄膜温度検出素子7が形成されている。
The heat-absorbing joints 51 are set to a size that just surrounds each cold junction 22 of the thermocouple pattern 2 from the back side of the insulating substrate 1, while the heat-generating joints 52 are thermally joined to the heat sink 6, and thus , from the heat-absorbing joint 51 to the heat-generating joint 52
Heat is continuously transferred to In addition, thin film thermocouple pattern 2
A thin film temperature sensing element 7 having terminals 15 and 16 is formed near the terminal of the cold junction 22 .

即ち、この薄膜温度検出素子7は絶縁基板1の薄膜熱電
対パターン2と同一面側に形成されている。
That is, this thin film temperature detection element 7 is formed on the same side as the thin film thermocouple pattern 2 of the insulating substrate 1.

第3図は本発明の実施例に係る高感度サーモパイルに接
続されるベルチェ素子への電流供給制御を示す図である
FIG. 3 is a diagram showing current supply control to a Vertier element connected to a high-sensitivity thermopile according to an embodiment of the present invention.

第3図において、熱電対の冷接点22の温度は、温度検
出素子により検出され、外部に設けられた電流供給制御
回路60で、ベルチェ素子に供給される電流を制御して
、熱電対の冷接点部の温度を一定値に制御する。
In FIG. 3, the temperature of the cold junction 22 of the thermocouple is detected by a temperature detection element, and an externally provided current supply control circuit 60 controls the current supplied to the Bertier element to cool the thermocouple. Controls the temperature of the contact part to a constant value.

次に、第1図〜第3図を参照して、本発明の実施例に係
る高感度サーモパイルの検出原理について説明する。
Next, the detection principle of the high-sensitivity thermopile according to the embodiment of the present invention will be explained with reference to FIGS. 1 to 3.

被検出物体から発生した赤外線は、赤外線吸収層4に吸
収され、この赤外線吸収層4の温度が上昇し、絶縁層3
を介して薄膜熱電対パターン2の温接点21の温度を上
昇させる。このときの温度をTHとする。
The infrared rays generated from the object to be detected are absorbed by the infrared absorbing layer 4, and the temperature of this infrared absorbing layer 4 rises, causing the insulating layer 3 to rise.
The temperature of the hot junction 21 of the thin film thermocouple pattern 2 is increased through the process. The temperature at this time is defined as TH.

一方、薄膜熱電対パターン2の冷接点の温度は、絶縁基
板1を介して薄膜ペルチェ素子パターン5の吸熱接合部
51により、冷却されており、又、冷接点22の近傍に
設けられた薄膜温度検出素子7の出力により、供給電流
制御回路60を用いてペルチェ素子パターン5に流す電
流を制御することにより一定温度に制御されている。そ
の温度は、室温より十分低い温度T、に保持されている
On the other hand, the temperature of the cold junction of the thin film thermocouple pattern 2 is cooled by the endothermic junction 51 of the thin film Peltier element pattern 5 via the insulating substrate 1, and the temperature of the thin film provided near the cold junction 22 is The temperature is controlled to be constant by controlling the current flowing through the Peltier element pattern 5 using the supply current control circuit 60 based on the output of the detection element 7. Its temperature is maintained at a temperature T, which is sufficiently lower than room temperature.

従って、出力端子8.8−からの出力電圧V。Therefore, the output voltage V from the output terminal 8.8-.

は、 vO”αXΔTxN (但し、ΔT−TH−TL)・・
・(2) ここで、αは薄膜熱電対パターン2の一対当りの熱電能
(μV/”C)、Nは薄膜熱電対パターン2の対の数で
ある。
is vO"αXΔTxN (However, ΔT-TH-TL)...
-(2) Here, α is the thermoelectric power (μV/''C) per pair of thin film thermocouple pattern 2, and N is the number of pairs of thin film thermocouple pattern 2.

本発明の実施例における高感度サーモパイルは、従来例
に比較して以下のような改善点(い)。
The high-sensitivity thermopile according to the embodiment of the present invention has the following improvements compared to the conventional example.

(ろ)が実現される。(ro) is realized.

(い)冷接点22の温度を薄膜ペルチェ素子バターン5
の吸熱接合部51により、冷却しているので同一被測定
物温度に対して、温接点21と冷接点22の温度差ΔT
は、従来よりも大となるように構成している。従って、
本発明の実施例のサーモパイルと従来と比べた出力電圧
特性は、(ΔT〉ΔT′、従ってv、>v、−(1)。
(i) The temperature of the cold junction 22 is determined by the thin film Peltier element pattern 5.
Since the heat-absorbing junction 51 is used for cooling, the temperature difference ΔT between the hot junction 21 and the cold junction 22 for the same measured object temperature is
is configured to be larger than before. Therefore,
The output voltage characteristics of the thermopile according to the embodiment of the present invention compared with the conventional one are (ΔT>ΔT', therefore v, >v, -(1).

(2)式参照)である。(see formula (2)).

第4図は本発明の実施例に係るサーモパイルの出力電圧
特性を示す図である。第4図に示す如く、本発明の実施
例によるサーモパイルは、従来の特性カーブを上側へ平
行移動した曲線を描く。
FIG. 4 is a diagram showing the output voltage characteristics of the thermopile according to the embodiment of the present invention. As shown in FIG. 4, the thermopile according to the embodiment of the present invention draws a curve that is an upward translation of the conventional characteristic curve.

従って、従来よりも出力電圧が高く、高感度となり、又
、従来において問題となっていた被測定物温度が常温近
傍での検出における出力電圧がアンプノイズ以下となる
問題が解決されている。
Therefore, the output voltage is higher and the sensitivity is higher than that of the conventional device, and the conventional problem of the output voltage being less than the amplifier noise when the temperature of the object to be measured is near normal temperature is solved.

尚、図中の斜線部分は、アンプのノイズレベルを示して
いる。
Note that the shaded area in the figure indicates the noise level of the amplifier.

(ろ)ペルチェ素子による吸熱接合部51での温度制御
により、冷接点22の温度TLを一定温度に保持してい
るので、従来において、問題となっていた出力電圧が室
温の影響を受ける事がなく、精度の高い非接触温度検出
可能となる。
(b) The temperature TL of the cold junction 22 is maintained at a constant temperature by controlling the temperature at the heat-absorbing junction 51 using a Peltier element, so the output voltage is no longer affected by room temperature, which was a problem in the past. This enables highly accurate non-contact temperature detection.

[発明の効果] 以上説明したように、本発明によれば、従来よりも出力
電圧を高くしアンプノイズの影響を受けない高感度サー
モパイルを提供することができる。
[Effects of the Invention] As described above, according to the present invention, it is possible to provide a highly sensitive thermopile that has a higher output voltage than the conventional thermopile and is not affected by amplifier noise.

【図面の簡単な説明】[Brief explanation of drawings]

第1図は本発明による高感度サーモパイルの一実施例を
示す平面図、第2図は第1図の断面図、第3図は本発明
の実施例に係る高感度サーモパイルに接続されるペルチ
ェ素子への電流供給制御を示す図、第4図は本発明の実
施例に係るサーモパイルと従来例に係るサーモパイルの
出力電圧特性を比較説明図、第5図は従来のサーモパイ
ルの一例を示す図、m6図は第5図の断面図である。 図中、1.1′は絶縁基板、2,2′は薄膜熱電対パタ
ーン、2a、2a−はMlの熱電材料、2b、2b=は
第2の熱電材料、21.21−は温接点、22.2’;
l”は冷接点、3.3′は絶縁層、4.4′は赤外線吸
収層、5は薄膜ペルチェ素子パターン、5aはn型半導
体、5bはP型熱で半導体、51は吸熱接合部、52は
発熱接合部、6.6゛はヒートシンク、60は供給電力
#Im回路、7は薄膜温度検出素子、8.8−.81゜
81−は薄膜熱電対パターン出力端子。 第1図 第2図 第3図 6゜ 第4図 □被測定物温度 (”C) 第5図 第6ffl
FIG. 1 is a plan view showing an embodiment of the high-sensitivity thermopile according to the present invention, FIG. 2 is a sectional view of FIG. 1, and FIG. 3 is a Peltier element connected to the high-sensitivity thermopile according to the embodiment of the present invention. FIG. 4 is a comparative illustration of the output voltage characteristics of a thermopile according to an embodiment of the present invention and a conventional thermopile. FIG. 5 is a diagram showing an example of a conventional thermopile. The figure is a sectional view of FIG. 5. In the figure, 1.1' is an insulating substrate, 2, 2' are thin film thermocouple patterns, 2a, 2a- are Ml thermoelectric materials, 2b, 2b= are second thermoelectric materials, 21.21- are hot junctions, 22.2';
1'' is a cold junction, 3.3' is an insulating layer, 4.4' is an infrared absorbing layer, 5 is a thin film Peltier element pattern, 5a is an n-type semiconductor, 5b is a P-type thermal semiconductor, 51 is an endothermic junction, 52 is a heat generating junction, 6.6゛ is a heat sink, 60 is a power supply #Im circuit, 7 is a thin film temperature detection element, 8.8-.81゜81- is a thin film thermocouple pattern output terminal. Figure 3 Figure 6゜ Figure 4 □ Measured object temperature ("C) Figure 5 Figure 6ffl

Claims (1)

【特許請求の範囲】 1、絶縁基板上に赤外線吸収部と、該吸収部から外れた
位置に異種金属の接続端の一端を配置し他端を該赤外線
吸収部に配置した熱電対とを形成したサーモパイルにお
いて、前記接続端の一端近傍に冷却手段を配置したこと
を特徴とする高感度サーモパイル。 2、第1の請求項記載の高感度サーモパイルにおいて、
前記熱電対は前記絶縁基板上に蒸着またはスパッタによ
り形成された薄膜熱電対パターンであることを特徴とす
る高感度サーモパイル。 3、第1又は第2の請求項記載の高感度サーモパイルに
おいて、前記冷却手段はペルチェ素子の吸熱接合部を備
えていることを特徴とする高感度サーモパイル。 4、第3の請求項記載の高感度サーモパイルにおいて、
前記ペルチェ素子は、前記絶縁基板近傍に配されたヒー
トシンクに発熱接合部を有することを特徴とする高感度
サーモパイル。 5、第4の請求項記載の高感度サーモパイルにおいて、
前記絶縁基板表面に熱電対パターン、該表面に対向する
裏面に薄膜ペルチェ素子パターンを設けたことを特徴と
する高感度サーモパイル。 6、第1〜第5の請求項のいずれか記載の高感度サーモ
パイルにおいて、前記絶縁基板上の前記異種金属の接続
端の他端近傍に薄膜温度検出素子パターンを設けたこと
を特徴とする高感度サーモパイル。
[Claims] 1. Forming an infrared absorbing section on an insulating substrate, and a thermocouple in which one end of a connection end of a dissimilar metal is disposed at a position away from the absorbing section, and the other end is disposed in the infrared absorbing section. A highly sensitive thermopile characterized in that a cooling means is disposed near one end of the connection end. 2. In the high-sensitivity thermopile according to the first claim,
A highly sensitive thermopile characterized in that the thermocouple is a thin film thermocouple pattern formed on the insulating substrate by vapor deposition or sputtering. 3. The high-sensitivity thermopile according to claim 1 or 2, wherein the cooling means includes a heat-absorbing joint of a Peltier element. 4. In the high-sensitivity thermopile according to the third claim,
The high-sensitivity thermopile is characterized in that the Peltier element has a heat-generating joint on a heat sink disposed near the insulating substrate. 5. In the high-sensitivity thermopile according to the fourth claim,
A highly sensitive thermopile characterized in that a thermocouple pattern is provided on the surface of the insulating substrate, and a thin film Peltier element pattern is provided on the back surface opposite to the surface. 6. The high-sensitivity thermopile according to any one of claims 1 to 5, characterized in that a thin film temperature sensing element pattern is provided near the other end of the connection end of the dissimilar metal on the insulating substrate. Sensitivity thermopile.
JP2071839A 1990-03-23 1990-03-23 Highly sensitive thermopile Pending JPH03273689A (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP2071839A JPH03273689A (en) 1990-03-23 1990-03-23 Highly sensitive thermopile

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP2071839A JPH03273689A (en) 1990-03-23 1990-03-23 Highly sensitive thermopile

Publications (1)

Publication Number Publication Date
JPH03273689A true JPH03273689A (en) 1991-12-04

Family

ID=13472113

Family Applications (1)

Application Number Title Priority Date Filing Date
JP2071839A Pending JPH03273689A (en) 1990-03-23 1990-03-23 Highly sensitive thermopile

Country Status (1)

Country Link
JP (1) JPH03273689A (en)

Cited By (8)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH11233837A (en) * 1998-02-18 1999-08-27 Matsushita Electric Works Ltd Thermoelectric conversion module
JP2001116621A (en) * 1999-09-03 2001-04-27 Braun Gmbh Infrared sensor capable of stabilization of temperature and infrared thermometer having the same type sensor
WO2001050102A1 (en) * 2000-01-07 2001-07-12 Kazuhito Sakano Thermopile sensor and temperature measuring method by infrared rays
WO2001088495A1 (en) * 2000-04-20 2001-11-22 Kazuhito Sakano Infrared thermometer and method of measuring temperature with infrared thermometer
DE10151738B4 (en) * 2000-10-19 2005-02-10 Murata Manufacturing Co. Ltd. Thermoelectric conversion component
US7648475B2 (en) 2001-12-28 2010-01-19 Gambro Lundia Ab Non-invasive device for measuring blood temperature in a circuit for the extracorporeal circulation of blood, and equipment provided with this device
JP2010185839A (en) * 2009-02-13 2010-08-26 Seiko Instruments Inc Infrared sensor and thermal image generating apparatus
JP2012098088A (en) * 2010-10-29 2012-05-24 Tdk Corp Temperature sensor

Cited By (9)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH11233837A (en) * 1998-02-18 1999-08-27 Matsushita Electric Works Ltd Thermoelectric conversion module
JP2001116621A (en) * 1999-09-03 2001-04-27 Braun Gmbh Infrared sensor capable of stabilization of temperature and infrared thermometer having the same type sensor
JP4619499B2 (en) * 1999-09-03 2011-01-26 ブラウン ゲーエムベーハー Infrared sensor capable of stabilizing temperature and infrared thermometer having this type of sensor
WO2001050102A1 (en) * 2000-01-07 2001-07-12 Kazuhito Sakano Thermopile sensor and temperature measuring method by infrared rays
WO2001088495A1 (en) * 2000-04-20 2001-11-22 Kazuhito Sakano Infrared thermometer and method of measuring temperature with infrared thermometer
DE10151738B4 (en) * 2000-10-19 2005-02-10 Murata Manufacturing Co. Ltd. Thermoelectric conversion component
US7648475B2 (en) 2001-12-28 2010-01-19 Gambro Lundia Ab Non-invasive device for measuring blood temperature in a circuit for the extracorporeal circulation of blood, and equipment provided with this device
JP2010185839A (en) * 2009-02-13 2010-08-26 Seiko Instruments Inc Infrared sensor and thermal image generating apparatus
JP2012098088A (en) * 2010-10-29 2012-05-24 Tdk Corp Temperature sensor

Similar Documents

Publication Publication Date Title
Lahiji et al. A batch-fabricated silicon thermopile infrared detector
US6203194B1 (en) Thermopile sensor for radiation thermometer or motion detector
US5054936A (en) Sensor for active thermal detection
US4896039A (en) Active infrared motion detector and method for detecting movement
KR100628283B1 (en) Infrared sensor stabilisable in temperature, and infrared thermometer with a sensor of this type
KR100205384B1 (en) Infrared sensor and method of temperature compensation
JPS6129648B2 (en)
Lenggenhager et al. Thermoelectric infrared sensors in CMOS technology
EP1333504A3 (en) Monolithically-integrated infrared sensor
JPH03273689A (en) Highly sensitive thermopile
Mzerd et al. Improvement of thermal sensors based on Bi2Te3, Sb2Te3 and Bi0. 1Sb1. 9Te3
US7064328B2 (en) Ultra sensitive silicon sensor millimeter wave passive imager
JP3316970B2 (en) Cooking equipment
JP2906154B2 (en) Thermopile
JPH0345778B2 (en)
Shupenev et al. Bismuth-telluride-based radiation thermopiles prepared by pulsed laser deposition
JPH09264792A (en) Non-contact temperature sensor
JPS61124861A (en) Humidity detection element
JP2564939Y2 (en) Thermopile infrared detector
RU2681224C1 (en) Optimized thermocouple sensor
JPH09257584A (en) Thermal type infrared ray detecting device
JP2003254824A (en) Infrared sensor device, non-contacting temperature measuring instrument, and non-contacting clinical thermometer
WO2001050102A1 (en) Thermopile sensor and temperature measuring method by infrared rays
JPH04113237A (en) Array-type thermopile and speed detecting device and size measuring device using the same
JP2002286519A (en) Thermal flow velocity sensor