JPH03267656A - Freezer - Google Patents

Freezer

Info

Publication number
JPH03267656A
JPH03267656A JP6866090A JP6866090A JPH03267656A JP H03267656 A JPH03267656 A JP H03267656A JP 6866090 A JP6866090 A JP 6866090A JP 6866090 A JP6866090 A JP 6866090A JP H03267656 A JPH03267656 A JP H03267656A
Authority
JP
Japan
Prior art keywords
temperature
refrigerant
compressor
discharge temperature
delivery temperature
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Pending
Application number
JP6866090A
Other languages
Japanese (ja)
Inventor
Kazuhiko Kadowaki
門脇 一彦
Kazuyuki Iguchi
和幸 井口
Yoshimi Iwata
岩田 儀美
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Daikin Industries Ltd
Original Assignee
Daikin Industries Ltd
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Daikin Industries Ltd filed Critical Daikin Industries Ltd
Priority to JP6866090A priority Critical patent/JPH03267656A/en
Publication of JPH03267656A publication Critical patent/JPH03267656A/en
Pending legal-status Critical Current

Links

Landscapes

  • Air Conditioning Control Device (AREA)

Abstract

PURPOSE:To control overheating degree with high precision at a low cost by a compact system by a method wherein a discharge temperature sensor detects the temperature of refrigerant delivered from a compressor and controls the opening degree of an electric expansion valve so as to make the refrigerant delivery temperature come up to a desired level. CONSTITUTION:An outdoor heat exchanger 3 and a room heat exchanger 5 are provided respectively with temperature sensors 10 and 11, and detection signals from these sensors 10 and 11 and a detection signal from an outdoor air temperature sensor 12 are input into a desired delivery temperature setting means 21. The means 21 calculates a desired delivery temperature corresponding to, for example, a condensation temperature measured by the temperature sensors 10 and 11 based on a desired delivery temperature calculation table for every operation frequency Hf. On the other hand, a delivery piping 1a is provided with a delivery temperature sensor 13 which detects refrigerant delivery temperature. The refrigerant delivery temperature and the desired delivery temperature are input into an opening degree controlling means 22, which has a function to adjust the opening degree of an electric expansion valve 4 so as to make the refrigerant delivery temperature come up to the desired level.

Description

【発明の詳細な説明】 (産業上の利用分野) この発明は過熱度を制御するための電動膨張弁を有する
冷凍装置に関するものである。
DETAILED DESCRIPTION OF THE INVENTION (Field of Industrial Application) The present invention relates to a refrigeration system having an electric expansion valve for controlling the degree of superheat.

(従来の技術) 圧縮能力可変形の圧縮機に、凝縮器、電動膨張弁、蒸発
器を接続して成る冷凍装置においては、冷凍装置の能力
確保及び液冷媒の還流による圧縮機信転性の低下防止の
ために、電動膨張弁の開度を調整して冷媒の過熱度(S
、H,)を制御することが従来から行われている。この
過熱度制御の第1の従来例では、冷媒回路にキャピラリ
チューブを有するバイパス回路を設けて冷媒の蒸発飽和
温度を検出すると共に、圧縮機の吸込温度を検出し、こ
の吸込温度と蒸発飽和温度とから上記過熱度を把握して
、過熱度を所定範囲内に制御するように電動膨張弁の開
度を制御していた。
(Prior art) In a refrigeration system that is constructed by connecting a condenser, an electric expansion valve, and an evaporator to a compressor with variable compression capacity, it is important to ensure the capacity of the refrigeration system and improve compressor reliability by refluxing liquid refrigerant. To prevent deterioration, the degree of superheat (S) of the refrigerant is adjusted by adjusting the opening degree of the electric expansion valve.
, H,) has been conventionally practiced. In the first conventional example of superheat degree control, a bypass circuit having a capillary tube is provided in the refrigerant circuit to detect the evaporation saturation temperature of the refrigerant, and the suction temperature of the compressor is detected, and the suction temperature and the evaporation saturation temperature are detected. Based on this, the degree of superheating is determined and the opening degree of the electric expansion valve is controlled to keep the degree of superheat within a predetermined range.

また第2の従来例である実開昭59−79777号では
、内外温度や凝縮器、蒸発器への送風量等の条件が一定
であれば、圧縮機の運転周波数から冷媒の吐出温度が推
定可能であるので、圧縮機の運転周波数から冷媒の目標
吐出温度を定め、圧縮機からの吐出温度が定められた目
標吐出温度になるように電動膨張弁の開度を調整するこ
とによって上記過熱度を制御していた。
In addition, in the second conventional example, Utility Model Application Publication No. 59-79777, if conditions such as the internal and external temperatures and the amount of air blown to the condenser and evaporator are constant, the discharge temperature of the refrigerant can be estimated from the operating frequency of the compressor. Therefore, the above degree of superheating can be achieved by determining the target discharge temperature of the refrigerant from the operating frequency of the compressor and adjusting the opening degree of the electric expansion valve so that the discharge temperature from the compressor reaches the determined target discharge temperature. was under control.

(発明が解決しようとする課題) しかしながら上記第1の従来例では、バイパス回路を設
ける必要がある等構造が複雑で、コストの増加と必要な
スペースが増大するという問題があり、小型の冷凍装置
には適さない。
(Problems to be Solved by the Invention) However, in the first conventional example, the structure is complicated, such as the need to provide a bypass circuit, and there are problems in that the cost and space required increase. Not suitable for

また第2の従来例では、圧縮機の運転周波数だけで目標
吐出温度を決定するため、例えば凝縮器への送風量が変
動して凝縮圧力が変化した場合、蒸発器への送風量が変
動した場合、或いは外気温が変化した場合には、それぞ
れ冷媒の吐出温度も変化することになり、上記運転周波
数だけでは一定過熱度を得るための正確な目標吐出温度
を設定できないという問題がある。
In addition, in the second conventional example, the target discharge temperature is determined only by the operating frequency of the compressor, so for example, if the amount of air blown to the condenser fluctuates and the condensing pressure changes, the amount of air blown to the evaporator changes. or when the outside temperature changes, the discharge temperature of the refrigerant also changes, and there is a problem that it is not possible to set an accurate target discharge temperature to obtain a constant degree of superheat using only the above operating frequency.

この発明は上記従来の問題を解消するためになされたも
のであって、その目的は、電動膨張弁を開度調整して過
熱度を制御する冷凍装置において、安価かつコンパクト
でありながら精度良好に過熱度を制御することができる
冷凍装置を提供することにある。
This invention was made to solve the above-mentioned conventional problems, and its purpose is to provide a refrigeration system that is inexpensive, compact, and highly accurate in controlling the degree of superheating by adjusting the opening of an electric expansion valve. An object of the present invention is to provide a refrigeration device that can control the degree of superheat.

(課題を解決するための手段) そこでこの発明の冷凍装置は、圧縮能力可変形の圧縮機
1に、凝縮器3、電動膨張弁4、蒸発器5を接続して成
る冷凍装置であって、上記圧縮機1の圧縮能力Ifを把
握する圧縮能力把握手段20と、上記凝縮器3での凝縮
温度Tc、蒸発器5での蒸発温度Te、外気温Tの少な
(ともいずれかの温度を検出する温度センサ10.11
.12と、上記圧縮能力Hfと検出温度Tcとに基づい
て圧縮機1からの吐出冷媒の目標吐出温度を設定する目
標吐出温度設定手段21と、上記圧縮機1からの冷媒吐
出温度TOを検出する吐出温度センサ13と、上記冷媒
吐出温度Toを目標吐出温度Tll1に近づけるべく上
記電動膨張弁4の開度を制御する開度制御手段22とを
備えている。
(Means for Solving the Problems) Therefore, the refrigeration system of the present invention is a refrigeration system comprising a variable compression capacity compressor 1, a condenser 3, an electric expansion valve 4, and an evaporator 5 connected to it. Compression capacity grasping means 20 grasps the compression capacity If of the compressor 1, detects the condensation temperature Tc in the condenser 3, the evaporation temperature Te in the evaporator 5, and the outside temperature T (all of which are detected). Temperature sensor 10.11
.. 12, target discharge temperature setting means 21 for setting a target discharge temperature of the refrigerant discharged from the compressor 1 based on the compression capacity Hf and the detected temperature Tc, and detecting the refrigerant discharge temperature TO from the compressor 1. It is equipped with a discharge temperature sensor 13 and an opening degree control means 22 that controls the opening degree of the electric expansion valve 4 in order to bring the refrigerant discharge temperature To closer to the target discharge temperature Tll1.

(作用) 上記構成によるこの発明の冷凍装置では、圧縮機1から
吐出された冷媒は、まず凝縮器3で凝縮した後に、電動
膨張弁4で減圧されて蒸発器5において蒸発して圧縮機
1へ返流とする。このような冷凍装置の運転状態におい
て、例えば温度センサ10で凝縮器3の凝縮温度Tcを
検出し、目標温度設定手段21は、検出温度Tcと圧縮
能力把握手段20からの圧縮機1の圧縮能力Hfとに基
づいて吐出冷媒の目標吐出温度TII+を設定する。一
方吐出温度センサ13は圧縮機1からの吐出冷媒温度T
(Function) In the refrigeration system of the present invention having the above configuration, the refrigerant discharged from the compressor 1 is first condensed in the condenser 3, then reduced in pressure by the electric expansion valve 4, and evaporated in the evaporator 5. Return flow to In such an operating state of the refrigeration system, for example, the temperature sensor 10 detects the condensing temperature Tc of the condenser 3, and the target temperature setting means 21 calculates the detected temperature Tc and the compression capacity of the compressor 1 from the compression capacity grasping means 20. A target discharge temperature TII+ of the discharge refrigerant is set based on Hf. On the other hand, the discharge temperature sensor 13 indicates the discharge refrigerant temperature T from the compressor 1.
.

を検出する。そして開度制御手段22は、吐出冷媒温度
Toを目標吐出温度Tmに近づけるように電動膨張弁4
の開度を制御して、過熱度を制御するのである。
Detect. The opening control means 22 controls the electric expansion valve 4 so that the discharge refrigerant temperature To approaches the target discharge temperature Tm.
The degree of superheating is controlled by controlling the degree of opening.

(実施例) 次にこの発明の冷凍装置の具体的な実施例について、同
面を参照しつつ詳細に説明する。
(Example) Next, a specific example of the refrigeration apparatus of the present invention will be described in detail with reference to the same page.

本発明を空気調和機に適用した場合を示す第2図におい
て、この空気調和機は室外ユニットXと室内ユニットY
とから成り、圧縮機1の吐出配管1aと吸込配管1bと
は四路切換弁2を介して冷媒配管9に接続している。こ
の冷媒配管9には室外熱交換器3、電動膨張弁4、閉鎖
弁6、室内熱交換器5、閉鎖弁7が順次に介設されてい
る。また上記吸込配管1bにはアキュームレータ15が
介設されている。さらに室外ユニットXには室外ファン
16が設けられ、また室内ユニットYには室内ファン1
7が設けられている。
In FIG. 2 showing the case where the present invention is applied to an air conditioner, this air conditioner has an outdoor unit X and an indoor unit Y.
A discharge pipe 1a and a suction pipe 1b of the compressor 1 are connected to a refrigerant pipe 9 via a four-way switching valve 2. An outdoor heat exchanger 3, an electric expansion valve 4, a closing valve 6, an indoor heat exchanger 5, and a closing valve 7 are sequentially installed in this refrigerant pipe 9. Further, an accumulator 15 is interposed in the suction pipe 1b. Further, the outdoor unit X is provided with an outdoor fan 16, and the indoor unit Y is provided with an indoor fan 1.
7 is provided.

そして室外熱交換器3、室内熱交換器5には、それぞれ
温度センサ10.11が設けられており、これら温度セ
ンサ10.11の検出信号、及び外気温度センサ12の
検出信号は、目標吐出温度設定手段21に入力されてい
る。また圧縮機1には、圧縮機1の運転周波数Hfを検
出することによって圧縮機lの圧縮能力を把握する圧縮
能力把握手段20が接続されており、この圧縮能力把握
手段20は、上記運転周波数Hfを、開度制御手段22
と目標吐出温度設定手段21とへ出力している。そして
目標吐出温度設定手段21は、暖房時の第4図及び冷房
時の第5図に示す目標吐出温度算出テーブルに基づいて
運転周波数If毎に、例えば温度センサ10又は11が
測定する凝縮温度Tcに対応した目標吐出温度T―を算
出するようになされている。一方上記吐出配管1aには
、吐出温度センサ13が付設されており、吐出温度セン
サ13は冷媒吐出温度Toを検出している。冷媒吐出温
度To及び目標吐出温度Tmは、開度制御手段22へ入
力されており、開度制御手段22は上記冷媒吐出温度T
Each of the outdoor heat exchanger 3 and the indoor heat exchanger 5 is provided with a temperature sensor 10.11, and the detection signal of these temperature sensors 10.11 and the detection signal of the outside air temperature sensor 12 are determined by the target discharge temperature. It is input into the setting means 21. Also connected to the compressor 1 is a compression capacity grasping means 20 that grasps the compression capacity of the compressor 1 by detecting the operating frequency Hf of the compressor 1. Hf, the opening control means 22
and is output to the target discharge temperature setting means 21. Then, the target discharge temperature setting means 21 sets the condensing temperature Tc measured by the temperature sensor 10 or 11 for each operating frequency If based on the target discharge temperature calculation table shown in FIG. 4 during heating and FIG. 5 during cooling. The target discharge temperature T- corresponding to the target discharge temperature T- is calculated. On the other hand, a discharge temperature sensor 13 is attached to the discharge pipe 1a, and the discharge temperature sensor 13 detects the refrigerant discharge temperature To. The refrigerant discharge temperature To and the target discharge temperature Tm are input to the opening degree control means 22, and the opening degree control means 22 controls the refrigerant discharge temperature T.
.

を目標吐出温度Tmに近づけるように、上記電動膨張弁
4の開度を調整する機能を備えている。
It has a function of adjusting the opening degree of the electric expansion valve 4 so that the temperature approaches the target discharge temperature Tm.

以上の構成による制御ブロックを第3図で説明すると、
ステップS1で運転周波数Hf、凝縮温度Tc、蒸発温
度Te及び外気温度Tを検出し、ステップS2で目標吐
出温度Ts+を算出し、一方ステップS3で吐出冷媒温
度Toを検出する。そして吐出冷媒温度T。
The control block with the above configuration is explained with reference to FIG.
In step S1, the operating frequency Hf, condensing temperature Tc, evaporation temperature Te, and outside air temperature T are detected, in step S2 the target discharge temperature Ts+ is calculated, and on the other hand, in step S3, the discharge refrigerant temperature To is detected. and discharge refrigerant temperature T.

を目標吐出温度TII+に近づけるように、ステップS
4で電動膨張弁4の開度を制御して、ステップS5で空
気調和機における冷媒過熱度を制御するようになってい
る。
In order to bring the temperature closer to the target discharge temperature TII+, step S
Step S4 controls the opening degree of the electric expansion valve 4, and step S5 controls the degree of superheating of the refrigerant in the air conditioner.

次に上記空気調和機の暖房運転時の作動状態を説明する
と、まず四路切換弁2を第2図に図示の状態とは逆に切
換えて冷媒を反時計回り方向に流す、高温の吐出冷媒は
、凝縮器として機能する室内熱交換器5で凝縮すると共
に、蒸発器として機能する室外熱交換器3で蒸発して圧
縮機1に返流される。そして暖房運転時の過熱度制御を
第6図のフローチャート図を参照して説明すると、ステ
ップS10で空気調和機が起動立上り時等の過渡期であ
るか否かを判定し、過渡期であるとき(YES)には、
ステップSllへ進み、圧縮能力把握手段20が圧縮機
1の運転周波数Hfを開度制御手段22へ入力する。そ
してステップ512では、開度制御手段22が運転周波
数Hfとパルス数とのテーブルから運転周波数Hfに応
じたパルス数を読出し、次のステップS13で電動膨張
弁4へそれに応じた数のパルスを出力して、電動膨張弁
4の開度を調整する。一方上記ステップSIOで過渡期
ではないとき(NO)には、ステップS14以降へ進み
、ステップS14で圧縮能力把握手段20が上記運転周
波数Hfを目標吐出温度設定手段21へ入力すると共に
、温度センサ12からの外気温T及び温度センサ10か
らの凝縮温度Tcをステップ515及びS16で目標吐
出温度設定手段21へ入力する。そしてステップ517
で目標吐出温度設定手段21が圧縮機1の運転周波数I
f、凝縮温度Tc及び外気温Tに応じて、そのときに最
適の目標吐出温度Tm、つまりモリエル線図上で最適な
過熱度が得られることとなる吐出温度Ta+を、上記第
4図のテーブルに基づいて算出する。なおこの場合、上
記テーブルを外気温度T毎に複数備えていてもよいし、
あるいは上記のようなテーブルから読出した温度を外気
温度Tに応じて修正してもよい。そしてステップS18
で吐出温度センサ13が吐出温度Toを検出した後に、
ステップS19へ進む。ステップS19では、吐出温度
Toを目標吐出温度Tmに近づけるための電動膨張弁4
の開度調整パルスが、予め設定されているパルス数の上
限、下限範囲内に含まれているか否かを判定し、含まれ
ている場合(YES )には、上記ステップ513へ進
んで、上記温度差に応じた数のパルスを出力し、以後同
様な制御を繰り返して圧縮機1からの吐出温度Toを目
標吐出温度Tl1lに近づけるような制御を行う。
Next, to explain the operating state of the above-mentioned air conditioner during heating operation, first, the four-way switching valve 2 is switched opposite to the state shown in FIG. 2 to flow the refrigerant in a counterclockwise direction. is condensed in the indoor heat exchanger 5, which functions as a condenser, and evaporated in the outdoor heat exchanger 3, which functions as an evaporator, and is returned to the compressor 1. Then, superheat degree control during heating operation will be explained with reference to the flowchart in FIG. (YES)
Proceeding to step Sll, the compression capacity grasping means 20 inputs the operating frequency Hf of the compressor 1 to the opening control means 22. Then, in step 512, the opening control means 22 reads the number of pulses corresponding to the operating frequency Hf from the table of operating frequency Hf and the number of pulses, and outputs the corresponding number of pulses to the electric expansion valve 4 in the next step S13. Then, the opening degree of the electric expansion valve 4 is adjusted. On the other hand, when it is determined that the transition period is not in step SIO (NO), the process proceeds to step S14 and subsequent steps. The outside air temperature T and the condensing temperature Tc from the temperature sensor 10 are input to the target discharge temperature setting means 21 in steps 515 and S16. and step 517
, the target discharge temperature setting means 21 sets the operating frequency I of the compressor 1.
f, depending on the condensing temperature Tc and the outside air temperature T, the optimal target discharge temperature Tm at that time, that is, the discharge temperature Ta+ at which the optimal degree of superheating is obtained on the Mollier diagram, is determined using the table shown in FIG. 4 above. Calculated based on. In this case, a plurality of the above tables may be provided for each outside temperature T, or
Alternatively, the temperature read from the table as described above may be corrected according to the outside temperature T. And step S18
After the discharge temperature sensor 13 detects the discharge temperature To at
The process advances to step S19. In step S19, the electric expansion valve 4 for bringing the discharge temperature To closer to the target discharge temperature Tm
It is determined whether or not the opening adjustment pulse is included in the preset upper and lower limit ranges of the number of pulses, and if it is included (YES), the process proceeds to step 513, and the above A number of pulses corresponding to the temperature difference are output, and the same control is repeated thereafter to perform control such that the discharge temperature To from the compressor 1 approaches the target discharge temperature Tl1l.

上記空気調和機においては、温度センサ10.12で室
内熱交換器3の凝縮温度Tc及び外気温度Tを検出し、
検出された凝縮温度Tc及び外気温度Tと圧縮能力把握
手段21からの圧縮機の運転周波数Ifに基づいて目標
温度設定手段21で吐出冷媒の目標吐出温度Tl11を
設定するので、従来のように運転周波数Hfだけに基づ
いて目標吐出温度Tmを設定する場合と比較して、精度
よく冷媒過熱度を制御できる。
In the above air conditioner, the temperature sensor 10.12 detects the condensing temperature Tc of the indoor heat exchanger 3 and the outside air temperature T,
Since the target temperature setting means 21 sets the target discharge temperature Tl11 of the discharged refrigerant based on the detected condensation temperature Tc, the outside air temperature T, and the compressor operating frequency If from the compression capacity grasping means 21, the operation can be performed as in the conventional manner. Compared to the case where the target discharge temperature Tm is set based only on the frequency Hf, the refrigerant superheat degree can be controlled with high accuracy.

また電動膨張弁4の開度調整は、以上の第6図に示す制
御プロセスによってなされる場合に限らず、例えば第7
図や第8図の制御プロセス、つまり外気温度Tの検出を
省略したり(第7図)、凝縮温度Tcの検出を省略する
こと(第8図)によっても可能である。なおこれら各プ
ロセスは、冷房運転時にも適用可能であり、冷房運転時
には第5図のテーブルに基づいて目標吐出温度Tmを算
出すればよい。また詳細な説明を省略しているが、上記
のように凝縮温度Tc、外気温度Tを使用せずに、或い
はこれらと共に蒸発温度Teを使用して前記同様の過熱
度制御を行うこともできる。
Further, the opening degree adjustment of the electric expansion valve 4 is not limited to the control process shown in FIG.
This is also possible by omitting the control process shown in FIG. 8 or FIG. 8, that is, by omitting the detection of the outside air temperature T (FIG. 7) or by omitting the detection of the condensation temperature Tc (FIG. 8). Each of these processes can also be applied during cooling operation, and the target discharge temperature Tm may be calculated based on the table shown in FIG. 5 during cooling operation. Further, although a detailed explanation is omitted, the same degree of superheat control can be performed without using the condensing temperature Tc and the outside air temperature T as described above, or by using the evaporation temperature Te together with these.

以上にこの発明の冷凍装置の具体的な実施例について説
明したが、この発明は上記実施例に限定されるものでは
なく、この発明の範囲内で種々変更して実施することが
可能である。例えば上記実施例においては、空気調和機
に適用した場合を例示しているが、他の冷凍装置にも応
用可能である。
Although specific embodiments of the refrigeration system of the present invention have been described above, the present invention is not limited to the above embodiments, and can be implemented with various modifications within the scope of the present invention. For example, in the above embodiment, the case where the present invention is applied to an air conditioner is exemplified, but the present invention can also be applied to other refrigeration equipment.

また、温度センサは凝縮温度、蒸発温度及び外気温度の
少なくともいずれかを測定するものであればよい。
Further, the temperature sensor may be any sensor that measures at least one of condensation temperature, evaporation temperature, and outside air temperature.

(発明の効果) 上記したようにこの発明の冷凍装置においては、過熱度
検出用のバイパス配管等が不要であると共に、既存の温
度センサを利用できるので、構造が簡単になって、安価
でかつコンパクトに冷凍装置を構成できる一方、温度セ
ンサで、例えば凝縮温度を検出し、検出温度と圧縮機の
圧縮能力とに基づいて吐出冷媒の目標吐出温度を設定す
るので、従来のように圧縮機能力だけに基づいて目標吐
出温度を設定する場合と比較して、精度よく冷媒過熱度
を制御できる。
(Effects of the Invention) As described above, the refrigeration system of the present invention does not require bypass piping for detecting the degree of superheat, and can use an existing temperature sensor, so the structure is simple, inexpensive, and While the refrigeration system can be configured compactly, a temperature sensor detects, for example, the condensing temperature, and the target discharge temperature of the discharged refrigerant is set based on the detected temperature and the compression capacity of the compressor, so the compression function is not as high as the conventional one. The degree of superheating of the refrigerant can be controlled with high accuracy compared to the case where the target discharge temperature is set solely based on the temperature.

【図面の簡単な説明】[Brief explanation of drawings]

第1図はこの発明の全体構成を示す機能ブロック図、第
2図はこの発明の一実施例にかかる空気調和機の配管系
統図2第3図は電動膨張弁の開度制御用の制御ブロック
図、第4図は暖房時の目標吐出温度のテーブル略図、第
5図は冷房時の目標吐出温度のテーブル略図、第6図、
第7図、第8図はそれぞれ制御プロセスを示すフローチ
ャート図である。 1・・・圧縮機、3・・・室外熱交換器、4・・・電動
膨張弁、5・・・室内熱交換器、10.11.12・・
・温度センサ、13・・・吐出温度センサ、20・・・
圧縮能力把握手段、21・・・目標吐出温度設定手段、
22・・・開度制御手段。
Fig. 1 is a functional block diagram showing the overall configuration of this invention, Fig. 2 is a piping system diagram of an air conditioner according to an embodiment of this invention, and Fig. 3 is a control block for controlling the opening of an electric expansion valve. Figure 4 is a schematic diagram of a table of target discharge temperature during heating, Figure 5 is a diagram of a table of target discharge temperature during cooling, and Figure 6.
FIGS. 7 and 8 are flowcharts showing the control process, respectively. 1...Compressor, 3...Outdoor heat exchanger, 4...Electric expansion valve, 5...Indoor heat exchanger, 10.11.12...
・Temperature sensor, 13...Discharge temperature sensor, 20...
Compression capacity grasping means, 21...Target discharge temperature setting means,
22...Opening degree control means.

Claims (1)

【特許請求の範囲】[Claims] 1、圧縮能力可変形の圧縮機(1)に、凝縮器(3)、
電動膨張弁(4)、蒸発器(5)を接続して成る冷凍装
置であって、上記圧縮機(1)の圧縮能力(Hf)を把
握する圧縮能力把握手段(20)と、上記凝縮器(3)
での凝縮温度(Tc)、蒸発器(5)での蒸発温度(T
e)、外気温(T)の少なくともいずれかの温度を検出
する温度センサ(10)(11)(12)と、上記圧縮
能力(Hf)と検出温度(Tc)とに基づいて圧縮機(
1)からの吐出冷媒の目標吐出温度を設定する目標吐出
温度設定手段(21)と、上記圧縮機(1)からの冷媒
吐出温度(To)を検出する吐出温度センサ(13)と
、上記冷媒吐出温度(To)を目標吐出温度(Tm)に
近づけるべく上記電動膨張弁(4)の開度を制御する開
度制御手段(22)とを備えていることを特徴とする冷
凍装置。
1. A variable compression capacity compressor (1), a condenser (3),
A refrigeration system comprising an electric expansion valve (4) and an evaporator (5) connected to each other, comprising a compression capacity determining means (20) for determining the compression capacity (Hf) of the compressor (1), and the condenser. (3)
condensation temperature (Tc) at evaporator (5), evaporation temperature (Tc) at evaporator (5)
e), a temperature sensor (10) (11) (12) that detects at least one of the outside air temperatures (T), and a compressor (10) based on the compression capacity (Hf) and detected temperature (Tc).
a target discharge temperature setting means (21) for setting a target discharge temperature of the refrigerant discharged from the compressor (1); a discharge temperature sensor (13) for detecting the refrigerant discharge temperature (To) from the compressor (1); A refrigeration system comprising an opening control means (22) for controlling the opening of the electric expansion valve (4) in order to bring the discharge temperature (To) closer to the target discharge temperature (Tm).
JP6866090A 1990-03-19 1990-03-19 Freezer Pending JPH03267656A (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP6866090A JPH03267656A (en) 1990-03-19 1990-03-19 Freezer

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP6866090A JPH03267656A (en) 1990-03-19 1990-03-19 Freezer

Publications (1)

Publication Number Publication Date
JPH03267656A true JPH03267656A (en) 1991-11-28

Family

ID=13380086

Family Applications (1)

Application Number Title Priority Date Filing Date
JP6866090A Pending JPH03267656A (en) 1990-03-19 1990-03-19 Freezer

Country Status (1)

Country Link
JP (1) JPH03267656A (en)

Cited By (7)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH05272822A (en) * 1992-03-24 1993-10-22 Daikin Ind Ltd Freezer
US5442926A (en) * 1993-03-29 1995-08-22 Sanyo Electric Co., Ltd. Control system for air-conditioner
JP2007212078A (en) * 2006-02-10 2007-08-23 Fujitsu General Ltd Air-conditioner control device
JP2014153040A (en) * 2013-02-14 2014-08-25 Fujitsu General Ltd Heat pump cycle device
WO2017094147A1 (en) * 2015-12-02 2017-06-08 三菱電機株式会社 Air conditioner
JP2017219307A (en) * 2017-09-25 2017-12-14 三菱電機株式会社 air conditioner
JP2019168169A (en) * 2018-03-23 2019-10-03 株式会社コロナ Heat pump cold source machine

Citations (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH01312358A (en) * 1988-06-10 1989-12-18 Hitachi Ltd Air conditioner

Patent Citations (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH01312358A (en) * 1988-06-10 1989-12-18 Hitachi Ltd Air conditioner

Cited By (12)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH05272822A (en) * 1992-03-24 1993-10-22 Daikin Ind Ltd Freezer
US5442926A (en) * 1993-03-29 1995-08-22 Sanyo Electric Co., Ltd. Control system for air-conditioner
JP2007212078A (en) * 2006-02-10 2007-08-23 Fujitsu General Ltd Air-conditioner control device
JP2014153040A (en) * 2013-02-14 2014-08-25 Fujitsu General Ltd Heat pump cycle device
WO2017094147A1 (en) * 2015-12-02 2017-06-08 三菱電機株式会社 Air conditioner
JPWO2017094147A1 (en) * 2015-12-02 2018-03-01 三菱電機株式会社 air conditioner
KR20180072740A (en) * 2015-12-02 2018-06-29 미쓰비시덴키 가부시키가이샤 Air conditioner
CN108369045A (en) * 2015-12-02 2018-08-03 三菱电机株式会社 Air conditioner
US10731904B2 (en) 2015-12-02 2020-08-04 Mitsubishi Electric Corporation Air conditioner
CN108369045B (en) * 2015-12-02 2021-03-30 三菱电机株式会社 Air conditioner
JP2017219307A (en) * 2017-09-25 2017-12-14 三菱電機株式会社 air conditioner
JP2019168169A (en) * 2018-03-23 2019-10-03 株式会社コロナ Heat pump cold source machine

Similar Documents

Publication Publication Date Title
KR20190115892A (en) Control method of air-conditioning system
JPH0868576A (en) Refrigerator
JPH03267656A (en) Freezer
JP2921254B2 (en) Refrigeration equipment
JP2695288B2 (en) Multi-room air conditioner
JP2755037B2 (en) Refrigeration equipment
JPH1038398A (en) Controller of electric expansion valve
JPH0239179Y2 (en)
JPH0611174A (en) Operation control device for air conditioner
JP2893844B2 (en) Air conditioner
JP2904354B2 (en) Air conditioner
JPH0231300B2 (en)
JP2504997Y2 (en) Air conditioner
KR100557038B1 (en) Method for Controlling Expansion Valve of Heat pump
JPH0257874A (en) Operation controller for heat recovery type air conditioner
JPH02195155A (en) Air conditioner
JP3511708B2 (en) Operation control unit for air conditioner
JP2536337B2 (en) Operation control device for air conditioner
JP2755040B2 (en) Heat pump system
JP2625556B2 (en) Operation control device for air conditioner
JPH0261466A (en) Operation control device of air conditioning apparatus
JPH0718599B2 (en) Air conditioner
JPH08145482A (en) Multi-chamber split type heater
JPH0579894B2 (en)
JPH0486457A (en) Freezer device