JPH03267039A - Eye refractometer - Google Patents

Eye refractometer

Info

Publication number
JPH03267039A
JPH03267039A JP2065932A JP6593290A JPH03267039A JP H03267039 A JPH03267039 A JP H03267039A JP 2065932 A JP2065932 A JP 2065932A JP 6593290 A JP6593290 A JP 6593290A JP H03267039 A JPH03267039 A JP H03267039A
Authority
JP
Japan
Prior art keywords
eye
fixation target
inspected
examined
measurement
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Pending
Application number
JP2065932A
Other languages
Japanese (ja)
Inventor
Motoya Takai
元也 高井
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Canon Inc
Original Assignee
Canon Inc
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Canon Inc filed Critical Canon Inc
Priority to JP2065932A priority Critical patent/JPH03267039A/en
Publication of JPH03267039A publication Critical patent/JPH03267039A/en
Pending legal-status Critical Current

Links

Landscapes

  • Eye Examination Apparatus (AREA)

Abstract

PURPOSE:To obtain results of measurement with a higher reliability by providing a display means to display an optical distance of a fixed target in an eye refrac tometer which measures a far point refraction capacity exceeding at least two latitudes in a eye to be inspected. CONSTITUTION:This is provided with presentation optical systems 1, 2 and 4 to present a fixed target 3 with a variable optical distance to an eye E to be inspected and measuring optical systems 16-24 to measure eye refraction capacity of the eye to be inspected and a far point refraction capacity exceeding at least two latitudes is measured. Here, a TV monitor 27 displays the optical distance of the fixed target 3. This enables the checking to determine whether the eye to be inspected is led to a misty condition normally or not, namely, whether a measured value is reliable or not, thereby achieving a correct measure ment.

Description

【発明の詳細な説明】 [産業上の利用分野1 本発明は、例えば眼鏡店や眼科医院で用いられる眼屈折
計に関するものである。
DETAILED DESCRIPTION OF THE INVENTION [Industrial Field of Application 1] The present invention relates to an eye refractometer used, for example, in eyeglass stores and eye clinics.

[従来の技術] 従来、この種の装置においては、被検眼を固視させるた
めの固視標を内蔵しているが、被検眼が器械の筐体内部
にある固視標を覗き込むときに所謂機械近視を生ずるの
で、これを除(ために固視標の光学的な距離を移動させ
て、被検眼を所望の調節状態にする雲霧法が行われてい
る。
[Prior Art] Conventionally, this type of device has a built-in fixation target for fixating the subject's eye, but when the subject's eye looks into the fixation target inside the instrument housing, This results in so-called mechanical myopia, so in order to eliminate this, a fog method is used in which the optical distance of the fixation target is moved to bring the subject's eye into a desired accommodative state.

第5図はこのような従来装置の同視標提示光学系の構成
を示し、被検眼E側から投影レンズl、2、固視標3、
投影光源4が光軸上に配置されている。この固視標3及
び投影光源4は、例えばカム筒5等により光軸方向に共
動するようにされており、ギア6を介したステッピング
モータ7等によりカム筒5の回転量を制御することによ
り光軸方向の位置が制御できる。また、この際にステッ
ピングモータ7の駆動回路8には、装置の演算制御回路
9からの駆動出力が与えられており、またカム筒5の基
準回転位置を検出するための零検出機構10が設けられ
ている。
FIG. 5 shows the configuration of the optical target presenting optical system of such a conventional device, in which projection lenses l, 2, fixation target 3,
A projection light source 4 is arranged on the optical axis. The fixation target 3 and the projection light source 4 are configured to move together in the optical axis direction by, for example, a cam barrel 5, and the amount of rotation of the cam barrel 5 is controlled by a stepping motor 7 or the like via a gear 6. The position in the optical axis direction can be controlled by Further, at this time, the drive circuit 8 of the stepping motor 7 is given a drive output from the arithmetic control circuit 9 of the device, and a zero detection mechanism 10 is provided for detecting the reference rotational position of the cam cylinder 5. It is being

このような従来装置では、投影光源4を発して固視標3
を通過した光束は、投影レンズ2によって被検眼Eに投
影される。このとき、被検眼Eでは固視標3の像が明視
できるように調節が働(が、ここで演算制御回路9から
の信号により駆動回路8がステッピングモータ7を駆動
し、ギア6、カム筒5を介して同視標3及び投影光源4
を移動すると、被検眼Eの調節位置が変化することにな
る。装置はこのような方法で固視標3を僅かずつ移動し
、図示しない眼屈折力測定部で眼屈折力の各パラメータ
を測定する操作を自動的に繰り返し、その都度の測定値
の変化から被検眼Eが所望の雲霧状態に達したと判断す
ると、この際の測定値を最終測定値とする。このような
従来装置では、被検眼Eが固視標3の移動に確実に追従
して固視標3を明視できるように調節を行うことが前提
となっている。
In such a conventional device, the projection light source 4 emits the fixation target 3.
The light flux that has passed is projected onto the eye E by the projection lens 2. At this time, the eye E to be examined is adjusted so that the image of the fixation target 3 can be seen clearly. The same visual target 3 and the projection light source 4 are connected through the tube 5.
When , the accommodation position of the eye E to be examined changes. In this way, the device moves the fixation target 3 little by little and automatically repeats the operation of measuring each parameter of the eye refractive power with the eye refractive power measuring section (not shown), and calculates the fluctuations in the measured values each time. When the optometry E determines that the desired fog state has been reached, the measured value at this time is taken as the final measured value. Such a conventional device is based on the premise that adjustment is performed so that the eye E to be examined can reliably follow the movement of the fixation target 3 and see the fixation target 3 clearly.

[発明が解決しようとする課題] しかしながら、被検眼Eの調節が悪かったり調節速度が
遅かったり、或いは被検者が測定に集中していない場合
に、装置が間違った判断をしてしまっても、検者には被
検眼Eが正しく雲霧状態に導かれたか否かを確認する手
段がな(、測定結果の信頼度は余り高くない。
[Problem to be solved by the invention] However, even if the device makes a wrong judgment when the accommodation of the subject's eye E is poor or the accommodation speed is slow, or when the subject is not concentrating on the measurement, (The reliability of the measurement results is not very high.)

本発明の目的は、上述の問題点を解消し、信頼性の高い
測定結果が得られる眼屈折計を提供することにある。
An object of the present invention is to provide an eye refractometer that solves the above-mentioned problems and provides highly reliable measurement results.

[課題を解決するための手段] 上述の目的を達成するために、本発明に係る眼屈折計に
おいては、被検眼に光学的距離が可変な固視標を提示す
る提示光学系と、被検眼の眼屈折力を測定する測定光学
系とを備え、少なくとも被検眼の2経線以上の遠点屈折
力を測定する眼屈折計において、前記固視標の光学的距
離を表示する表示手段を設けたことを特徴とするもので
ある。
[Means for Solving the Problems] In order to achieve the above object, the ocular refractometer according to the present invention includes a presentation optical system that presents a fixation target with a variable optical distance to the eye to be examined; an eye refractometer that measures the far point refractive power of at least two meridians or more of the eye to be examined; It is characterized by this.

[作用] 上述の構成を有する眼屈折計は、測定中の同視標の位置
を検出して、表示手段によりその光学的距離を表示する
[Function] The ocular refractometer having the above-mentioned configuration detects the position of the isotropy target under measurement and displays its optical distance using the display means.

[実施例] 本発明を第1図〜第4図に図示の実施例に基づいて詳細
に説明する。なお、第5図と同一の符号は同一の部材を
表している。
[Example] The present invention will be explained in detail based on the example illustrated in FIGS. 1 to 4. Note that the same reference numerals as in FIG. 5 represent the same members.

第1図は構成図であり、被検眼E側から斜設した光路分
割ミラー11、同様に斜設し可視光を透過して赤外光を
反射するグイクロイックミラー12、前眼部結像レンズ
13、ハーフミラ−14、撮像素子15が光軸路O1上
に配置されている。グイクロイックミラー12によって
折曲される光路02上には、レンズ16、ミラー17、
穴あきミラー18、投影チャート19、コンデンサレン
ズ20、測定用赤外光源21が配置されている。また、
穴あきミラー18とハーフミラ−14間の光路03上に
は、複数の開口を有する受光用絞り22、レンズ23、
楔プリズム板24が設けられている。一方、光路分割ミ
ラー11によって折曲される光路04上には前述した従
来例と同様に、投影レンズ1.2、固視標3、投影光源
4が設けられている。また、同視標3、投影光源4を共
働させる駆動機構であるカム筒5、ギア6、ステッピン
グモータ7、及び駆動回路8、演算制御回路9、零検出
機構10も前述の従来例と同様に設けられている。
FIG. 1 is a configuration diagram, in which an optical path splitting mirror 11 is installed obliquely from the eye E side, a guichroic mirror 12 which is also installed obliquely and transmits visible light and reflects infrared light, and anterior segment imaging. A lens 13, a half mirror 14, and an image sensor 15 are arranged on the optical axis path O1. On the optical path 02 bent by the guichroic mirror 12, a lens 16, a mirror 17,
A perforated mirror 18, a projection chart 19, a condenser lens 20, and a measuring infrared light source 21 are arranged. Also,
On the optical path 03 between the perforated mirror 18 and the half mirror 14, a light receiving aperture 22 having a plurality of apertures, a lens 23,
A wedge prism plate 24 is provided. On the other hand, on the optical path 04 bent by the optical path splitting mirror 11, a projection lens 1.2, a fixation target 3, and a projection light source 4 are provided, similar to the conventional example described above. Further, the cam cylinder 5, gear 6, stepping motor 7, drive circuit 8, arithmetic control circuit 9, and zero detection mechanism 10, which are the drive mechanism for cooperating the visual target 3 and the projection light source 4, are also the same as in the conventional example described above. It is provided.

撮像素子15の出力信号は演算制御回路9に入力され、
演算制御回路9はこの信号から眼屈折力の各パラメータ
を算出するアルゴリズムを備え、更に信号を出力する機
能を有しており、この制御信号は駆動回路8に駆動入力
として与えられている。また、零検出機構10の出力は
演算制御回路9に接続され、演算制御回路9は固視標3
の調整位置を例えば基準位置からのデイオプタ量で出力
されるようになっている。この位置出力及び前述の演算
結果は、ビデオ信号を発生してテレビ画面上に文字を表
示する機能を有するテキスト表示メモリ25に送出され
ており、このテキスト表示メモリ25のビデオ出力は、
撮像素子15の出力信号と合成回路26で合成されテレ
ビモニタ27に人力されている。
The output signal of the image sensor 15 is input to the arithmetic control circuit 9,
The arithmetic control circuit 9 is equipped with an algorithm for calculating each parameter of the eye refractive power from this signal, and also has a function of outputting a signal, and this control signal is given to the drive circuit 8 as a drive input. Further, the output of the zero detection mechanism 10 is connected to an arithmetic control circuit 9, and the arithmetic control circuit 9 detects the fixation target 3.
The adjusted position is output as, for example, a diopter amount from the reference position. This position output and the aforementioned calculation results are sent to a text display memory 25 which has the function of generating a video signal and displaying characters on the television screen, and the video output of this text display memory 25 is
The output signal of the image sensor 15 is combined with the combining circuit 26 and displayed manually on a television monitor 27 .

従って、投影光源4により照明された固視標3は、投影
レンズ1.2の作用により光路分割ミラー11を介して
被検眼Eに提示されることになる。ここで、外光によっ
て照明される前眼部の可視像は、結像レンズ13の作用
によって撮像素子15上に結像される。被検眼Eの正視
眼眼底と撮像素子15はグイクロイックミラー12で反
射される赤外光に対して互いに共役な位置に配置されて
おり、測定用赤外光源21を発した赤外光は、コンデン
サレンズ20、投影チャート19を経て穴あきミラー1
8の孔部を通り、ミラー17、レンズ16を経由し、更
にダイクロイックミラー2によって反射されて被検眼E
に進み、被検眼Eが正視眼であれば測定用赤外光源21
の像が被検眼Eの眼底に結像する。また、眼底で反射し
た光束は同一の経路を逆行し、穴あきミラー18の周辺
部で反射され、受光用絞り22により複数本の光束に分
割される。これらの光束はレンズ23、楔プリズム板2
4により別々の方向に偏向され、ハーフミラ−14で反
射されて撮像素子15上に複数の点像を結像する。
Therefore, the fixation target 3 illuminated by the projection light source 4 is presented to the eye E through the optical path splitting mirror 11 by the action of the projection lens 1.2. Here, a visible image of the anterior segment illuminated by external light is formed on the imaging element 15 by the action of the imaging lens 13. The fundus of the emmetropic eye of the eye E to be examined and the image sensor 15 are arranged in positions that are conjugate to each other with respect to the infrared light reflected by the gyroic mirror 12, and the infrared light emitted from the measurement infrared light source 21 is , a condenser lens 20, a projection chart 19, and a perforated mirror 1.
8, passes through the mirror 17 and the lens 16, and is further reflected by the dichroic mirror 2 to form the eye E.
If the eye E to be examined is an emmetropic eye, the measurement infrared light source 21
is formed on the fundus of the eye E to be examined. Further, the light beam reflected from the fundus travels backward along the same path, is reflected at the periphery of the perforated mirror 18, and is divided into a plurality of light beams by the light-receiving aperture 22. These light beams pass through the lens 23 and the wedge prism plate 2.
4 in different directions and reflected by the half mirror 14 to form a plurality of point images on the image sensor 15.

測定を行う際には、前述したように先ず被検眼Eに投影
光源4で照明された固視標3を提示しておき、装置と被
検眼Eとのアライメントをテレビモニタ27に映出され
た前眼部像を見ながら調整する。次いで、測定用赤外光
源21を発光すると投影チャート19のパターンが被検
眼Eの投影され、被検眼Eの眼底からの赤外光による反
射光束が撮像素子15上に複数の点像を結び、これらの
相対位置から演算制御回路9により眼屈折力の各パラメ
ータを算出する。このようにして、固視標3が初期設定
された例えばDデイオプタの位置で第1回目の測定が行
われ最初の屈折力が得られる。そこで、演算制御回路9
は得られた屈折力に相当する位置に、固視標3を移動さ
せる制御出力を駆動回路8に与え、同視標3の移動が行
われると次回の測定が開始され次の屈折力が得られる。
When performing measurements, as described above, first the fixation target 3 illuminated by the projection light source 4 is presented to the eye E to be examined, and the alignment between the device and the eye E to be examined is displayed on the television monitor 27. Adjust while looking at the anterior segment image. Next, when the measurement infrared light source 21 emits light, the pattern of the projection chart 19 is projected on the eye E to be examined, and the reflected light flux of infrared light from the fundus of the eye E to be examined forms a plurality of point images on the image sensor 15. From these relative positions, the calculation control circuit 9 calculates each parameter of the eye refractive power. In this way, the first measurement is performed at the position of the D diopter, for example, where the fixation target 3 is initially set, and the first refractive power is obtained. Therefore, the arithmetic control circuit 9
gives a control output to the drive circuit 8 to move the fixation target 3 to a position corresponding to the obtained refractive power, and when the fixation target 3 is moved, the next measurement is started and the next refractive power is obtained. .

ここで、更に固視標3を僅かに遠方となる方向に移動さ
せ、再度測定を行うという雲霧法を繰り返して、被検眼
Eの調整力を取り除きながら測定を続け、演算制御回路
9が各測定値の変化量から調整が除去できたと判断する
と、この際の値を最終測定結果としてテキスト表示メモ
リ25に与え、テレビモニタ27上には第2図に示すよ
うに測定結果の各パラメータ、及び例えばデイオプタ量
等で与えられたこのときの固視標3の位置が、被検眼E
の前眼部像と合成されて表示される。この固視標3の位
置により、検者は被検眼Eが正しく雲霧状態に導かれた
のか否か、つまり最終測定結果の値が信頼するに足るも
のか否かを確認でき、場合によっては再測定するなどし
て信頼性の高い測定値を得ることができる。なお、本実
施例において、被検眼Eの調整を取り除く過程での各測
定の度に、測定値の各パラメータや固視標3の位置を示
すデイオプタ量を表示するようにしてもよいことは勿論
である。
Here, the fixation target 3 is further moved in a slightly distant direction and the measurement is performed again.The fogging method is repeated, and the measurement is continued while removing the adjustment force of the eye E, and the arithmetic control circuit 9 When it is determined that the adjustment has been removed from the amount of change in the value, the value at this time is given to the text display memory 25 as the final measurement result, and each parameter of the measurement result is displayed on the TV monitor 27 as shown in FIG. The position of the fixation target 3 at this time, given by the amount of diopters, etc., is the eye to be examined E.
The image is combined with the anterior segment image of the image and displayed. Based on the position of this fixation target 3, the examiner can confirm whether or not the eye E to be examined has been correctly guided to the cloudy state, that is, whether or not the final measurement result value is reliable, and in some cases, the examiner may repeat the It is possible to obtain highly reliable measured values by, for example, performing measurements. In this embodiment, each parameter of the measured value and the diopter amount indicating the position of the fixation target 3 may of course be displayed each time the measurement is performed in the process of removing the adjustment of the eye E. It is.

また、固視標3の位置の表示は合成回路26によって合
成してテレビモニタ27で表示する代りに、第3図に示
すようにテレビモニタ27とは別に筐体28の一部に第
4図に示す数値表示手段29を設け、この数値表示手段
29に表示させるように構成してもよい。或いは、記録
用紙等に印字するプリンタ装置を用いて、印字による出
力を行ってもよいことは勿論である。更に、固視標3を
移動させる代りに、投影レンズ1.2を移動させて被検
眼Eと固視標3との見掛けの光学的な距離を変化させる
場合にも同様に適用できる。
Furthermore, instead of displaying the position of the fixation target 3 by combining it by the combining circuit 26 and displaying it on the television monitor 27, as shown in FIG. It is also possible to provide a numerical display means 29 shown in FIG. Alternatively, it is of course possible to output by printing using a printer device that prints on recording paper or the like. Furthermore, the present invention can be similarly applied to a case where the apparent optical distance between the eye E and the fixation target 3 is changed by moving the projection lens 1.2 instead of moving the fixation target 3.

[発明の効果] 以上説明したように本発明に係る眼屈折計では、固視標
の光学的距離が表示されるので、被検眼が正しく雲霧状
態に導かれたか否か、つまり測定値が信頼するに足るも
のか否かを確認でき、正確な測定を行うことができる。
[Effects of the Invention] As explained above, in the ocular refractometer according to the present invention, the optical distance of the fixation target is displayed, so it is possible to determine whether or not the subject's eye has been correctly guided into the foggy state, that is, the measured values are reliable. It is possible to confirm whether the measurement is sufficient or not, and to perform accurate measurements.

【図面の簡単な説明】[Brief explanation of drawings]

図面第1図〜第4図は本発明に係る眼屈折計の実施例を
示し、第1図は構成図、第2図はテレビモニタの説明図
、第3図は筐体の斜視図、第4図は数値表示手段の正面
図であり、第5図は従来例の固視標光学系の構成図であ
る。 符号1.2は投影レンズ、3は固視標、4は投影光源、
5はカム筒、6はギア、7はステッピングモータ、8は
駆動回路、9は演算制御回路、10は零検出機構、11
は光路分割ミラー、12はダイクロイックミラー 14
はハーフミラ−15は撮像素子、18は孔あきミラー 
19は投影チャート、21は測定用赤外光線、22は受
光 0 用絞り、 24は楔プリズム板、 25はテキスト表 示メモリ、 6は合成回路、 7はテレビモニ タ、 8は筐体、 29は数値表示手段である。
Drawings 1 to 4 show an embodiment of the ocular refractometer according to the present invention, in which Fig. 1 is a configuration diagram, Fig. 2 is an explanatory diagram of a television monitor, and Fig. 3 is a perspective view of the housing. FIG. 4 is a front view of the numerical display means, and FIG. 5 is a configuration diagram of a conventional fixation target optical system. 1.2 is a projection lens, 3 is a fixation target, 4 is a projection light source,
5 is a cam cylinder, 6 is a gear, 7 is a stepping motor, 8 is a drive circuit, 9 is an arithmetic control circuit, 10 is a zero detection mechanism, 11
is an optical path splitting mirror, 12 is a dichroic mirror 14
is a half mirror, 15 is an image sensor, and 18 is a perforated mirror.
19 is a projection chart, 21 is an infrared beam for measurement, 22 is a light receiving aperture, 24 is a wedge prism plate, 25 is a text display memory, 6 is a synthesis circuit, 7 is a TV monitor, 8 is a housing, 29 is a numerical value It is a display means.

Claims (1)

【特許請求の範囲】[Claims] 1、被検眼に光学的距離が可変な固視標を提示する提示
光学系と、被検眼の眼屈折力を測定する測定光学系とを
備え、少なくとも被検眼の2経線以上の遠点屈折力を測
定する眼屈折計において、前記固視標の光学的距離を表
示する表示手段を設けたことを特徴とする眼屈折計。
1. Equipped with a presentation optical system that presents a fixation target with a variable optical distance to the eye to be examined, and a measurement optical system that measures the eye refractive power of the eye to be examined, the far point refractive power of at least the second meridian of the eye to be examined. What is claimed is: 1. An eye refractometer for measuring the distance from the fixation target, characterized in that the eye refractometer is provided with a display means for displaying the optical distance of the fixation target.
JP2065932A 1990-03-16 1990-03-16 Eye refractometer Pending JPH03267039A (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP2065932A JPH03267039A (en) 1990-03-16 1990-03-16 Eye refractometer

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP2065932A JPH03267039A (en) 1990-03-16 1990-03-16 Eye refractometer

Publications (1)

Publication Number Publication Date
JPH03267039A true JPH03267039A (en) 1991-11-27

Family

ID=13301231

Family Applications (1)

Application Number Title Priority Date Filing Date
JP2065932A Pending JPH03267039A (en) 1990-03-16 1990-03-16 Eye refractometer

Country Status (1)

Country Link
JP (1) JPH03267039A (en)

Cited By (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2006187482A (en) * 2005-01-07 2006-07-20 Nidek Co Ltd Eye refracting power measuring device
JP2006280614A (en) * 2005-03-31 2006-10-19 Nidek Co Ltd Refraction measuring apparatus
CN110786822A (en) * 2018-08-03 2020-02-14 尼德克株式会社 Subjective refraction device and subjective refraction program
DE102019214784A1 (en) * 2019-09-26 2021-04-01 Carl Zeiss Meditec Ag Method for determining physiologically correct, biometric data of an eye

Cited By (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2006187482A (en) * 2005-01-07 2006-07-20 Nidek Co Ltd Eye refracting power measuring device
JP4666461B2 (en) * 2005-01-07 2011-04-06 株式会社ニデック Eye refractive power measuring device
JP2006280614A (en) * 2005-03-31 2006-10-19 Nidek Co Ltd Refraction measuring apparatus
CN110786822A (en) * 2018-08-03 2020-02-14 尼德克株式会社 Subjective refraction device and subjective refraction program
DE102019214784A1 (en) * 2019-09-26 2021-04-01 Carl Zeiss Meditec Ag Method for determining physiologically correct, biometric data of an eye

Similar Documents

Publication Publication Date Title
US3524702A (en) Apparatus for objectively and automatically refracting the eye
JP3709335B2 (en) Ophthalmic equipment
US5889576A (en) Ophthalmic apparatus
JPH0646999A (en) Alignment detector
JP2005185523A (en) Eye refractive power measuring instrument
JPH04200436A (en) Ophthamologic apparatus
JP4739795B2 (en) Eye refractive power measuring device
EP1138252B1 (en) Ophthalmic apparatus for measuring and analysing refractive power distribution
JPH0554771B2 (en)
JP4551283B2 (en) Ophthalmic equipment
JPH03267039A (en) Eye refractometer
JPH035810B2 (en)
JP2911452B2 (en) Ophthalmic equipment
JP3315517B2 (en) Corneal shape measuring device
JP2759413B2 (en) Eye position detection device
JPH11235316A (en) Optometrical device
JP3107236B2 (en) Corneal diameter measuring device
JP4436914B2 (en) Eye refractive power measuring device
JP3068626B2 (en) Objective eye refractometer
JPH06304140A (en) Eye examination device
JPH0554334B2 (en)
JPH0554326B2 (en)
JPS61168329A (en) Eye refractive force measuring apparatus
JP2916105B2 (en) Ophthalmic equipment
JPH0588130B2 (en)