JPH03264810A - Position measuring method of underwater operating machine - Google Patents

Position measuring method of underwater operating machine

Info

Publication number
JPH03264810A
JPH03264810A JP6495790A JP6495790A JPH03264810A JP H03264810 A JPH03264810 A JP H03264810A JP 6495790 A JP6495790 A JP 6495790A JP 6495790 A JP6495790 A JP 6495790A JP H03264810 A JPH03264810 A JP H03264810A
Authority
JP
Japan
Prior art keywords
height
measured
sensor
underwater
master station
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Pending
Application number
JP6495790A
Other languages
Japanese (ja)
Inventor
Masafumi Takae
高江 眞文
Masashi Takahashi
正志 高橋
Toshinobu Abe
阿部 俊暢
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Penta Ocean Construction Co Ltd
Original Assignee
Penta Ocean Construction Co Ltd
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Penta Ocean Construction Co Ltd filed Critical Penta Ocean Construction Co Ltd
Priority to JP6495790A priority Critical patent/JPH03264810A/en
Publication of JPH03264810A publication Critical patent/JPH03264810A/en
Pending legal-status Critical Current

Links

Abstract

PURPOSE:To measure the position accurately even under rough-sea weather conditions by using an underwater position measuring device utilizing a transponder and two hydraulic pressure sensors at the fixed side and the moving side, and measuring the position of the horizontal surface and the height of an underwater operating machine. CONSTITUTION:Slave stations 16a-16c are fixed at three points of the sea bottom surrounding an operating machine 11. The three-dimenssional positions of the stations are measured. Interrogating signals comprising sound waves are transmitted from a master station 15 mounted on the operating machine 11. The times until the response signals from the slave stations 16a-16c reach the master station 15 are counted, and the distances between both stations are measured. Thus the position of the master station 15 at the horizontal surface is measured. Then, the hydraulic pressures are measured at the same time with a hydrulic pressure sensor 17 on the moving side provided at the specified height position of the operating machine 11 and a hydraulic pressure sensor 17b on the fixed side which is fixed at a position whose height is known beforehand under the water surface. The height of the sensor 17a with respect to the sensor 17b is computer based on the difference between both measured values. The provided height of the sensor 17b is added or subtracted to or from the height of the sensor 17a, and the absolute height of the sensor 17a is obtained. The measured signals and the measured signal from an attitude measuring device 12 are processed in a supporting stage ship 18, and the measured value is instantly displayed.

Description

【発明の詳細な説明】 (産業上の利用分野) 本発明は例えば、水底に捨石マウンドを造成する際に使
用する捨石ならし機等の水中作業機の水平面及び高さ方
向の位置を測定する測位方法に関する。
[Detailed Description of the Invention] (Industrial Application Field) The present invention measures, for example, the horizontal and height positions of an underwater working machine such as a rubble leveler used when creating a rubble mound on the underwater bed. Regarding positioning methods.

(従来の技術) 一般に11g波堤用のケーソン等を設置するための捨石
フウンドは、その頂面か水平でしかも、高さを均一なも
のとする必要かある。このため、捨石ならし機の高さ及
び水平面位置を測定しつつなら上作業を進めることによ
り、マウンド頂面を一定の平面度、水平度及び高さに造
成するようにしている。
(Prior Art) Generally, a rubble foundation for installing a caisson or the like for a 11g breakwater needs to have a horizontal top surface and a uniform height. For this reason, the top surface of the mound is created to have a constant flatness, levelness, and height by measuring the height and horizontal position of the rubble leveling machine and proceeding with the top-up work.

このような捨石ならし機の如き水中作業機の測位方法は
、従来、第3図に示すように作業機本体1に上端が海面
上に突き出る2本のスタッフ22を立設し、この各スタ
ッフ2の上端部に取り付けた反射プリズム及びスケール
目盛を陸上から光波位置測定器3及びレベル4を使用し
て規準し、距離及び角度を測定して水平面位置及び高さ
を計測している。
Conventionally, in the positioning method of an underwater working machine such as a rubble leveler, as shown in FIG. The reflective prism and scale scale attached to the upper end of 2 are referenced from land using a light wave position measuring device 3 and a level 4, distances and angles are measured, and horizontal plane positions and heights are measured.

(発明が解決しようとする課題) 上述のように作業機本体にスタッフを立設して測定する
従来の方法では、スタッフが海象条件の影響を受は易く
、このなめ、荒海象条件下では安全純工上問題かあった
。また、傾斜した水底面に作業機かある場合にはスタッ
フか傾斜し、正確な高さか測定しつらいという問題かあ
った。さらに作業機か水底面上を移動している場合に、
その移動中に連続して測定することかできす、しかも、
複数の測定作業員を常時待機させておかなければならな
い等の問題があった。
(Problems to be Solved by the Invention) As mentioned above, in the conventional method of measuring by installing a staff on the main body of the work machine, the staff is easily affected by sea conditions, and it is difficult to maintain safety under rough sea conditions. There was a technical problem. Additionally, if there was a working machine on the sloping bottom of the water, the staff would be tilted, making it difficult to accurately measure the height. Furthermore, when the work equipment is moving on the water bottom,
It is possible to measure continuously during the movement, and
There were problems such as having to keep multiple measurement workers on standby at all times.

本発明はこのような従来の問題にかんがみ海象条件の影
響が少なく、しかも少ない人数でリアルタイムに正確な
測位が可能な水中作業機の測位方法の提供を目的とした
ものである。
In view of these conventional problems, it is an object of the present invention to provide a positioning method for an underwater working machine that is less affected by sea conditions and that allows accurate positioning in real time with a small number of people.

(課題を遠戚するための手段) 上述の如き従来の問題を解決し、所期の目的を遠戚する
ための本発明の水中作業機の測位方法の特徴は、1つの
親局と2つ以上の子局をもつトランスホンダを利用した
水中位置測定装置の前記親局を水中作業機に搭載すると
ともに、前記各子局を水底の所定位置に設置し、前記親
局と子局間にて音波を送受信して親局の水平面位置を測
定し、かつ、水中の所定高さ位置に固定側水圧センサを
設置するとともに、前記水中作業機に移動側水圧センサ
を取り付け、前記両水圧センサの測定値の差によ1て水
中作業機の絶対高さを測定することにある。
(Means for distantly resolving the problem) The feature of the positioning method for an underwater working machine of the present invention for solving the above-mentioned conventional problems and achieving the intended purpose is that there is one master station and two The master station of the underwater position measuring device using TransHonda having the above slave stations is mounted on an underwater working machine, and each of the slave stations is installed at a predetermined position on the bottom of the water, and between the master station and the slave stations. The horizontal position of the master station is measured by transmitting and receiving sound waves, and a fixed water pressure sensor is installed at a predetermined height underwater, and a movable water pressure sensor is attached to the underwater working machine, and both water pressure sensors are measured. The purpose of this method is to measure the absolute height of an underwater working machine based on the difference in values.

(作用) 本発明の水中作業機の測位方法では、トランスホンダを
利用した音波による水中位置測定装置により、作業機の
水平面位置(X、Y座標位置)及び高さ位置(Z座標位
置)が測定され、固定側及び移動間の両水圧センサによ
ってそれぞれ水面下の深度が測定され、両センサ間の測
定値の差によって固定側センサの予め設定された固定高
さからの作業機の深さが計測され、潮位の変動にかかわ
らす正確な絶対高さ位置が計測される。
(Function) In the positioning method for an underwater working machine of the present invention, the horizontal plane position (X, Y coordinate position) and height position (Z coordinate position) of the working machine are measured by an underwater position measuring device using sound waves using a transhonda. The depth below the water surface is measured by both the fixed-side and moving water pressure sensors, and the depth of the work equipment from the preset fixed height of the fixed-side sensor is measured by the difference between the measured values between the two sensors. The accurate absolute height position is measured regardless of changes in the tidal level.

(実施例) 次ぎに本発明の実施の一例を第1図、第2図について説
明する。
(Example) Next, an example of implementation of the present invention will be described with reference to FIGS. 1 and 2.

この実施例は水中捨石ならし機(以下作業機と記す)の
測位方法を示しており、図において10はならそうとす
る捨石マウンド、11は作業機である。この捨石マウン
ド10は防波堤等となるケーソン(図示せず)を設置す
るためのものであり、その頂面を水平に、しかも均一な
高さに仕上ける必要かある。このため、作業機11の高
さ番まより正確に測定する必要かある。
This embodiment shows a positioning method for an underwater rubble leveling machine (hereinafter referred to as a working machine), and in the figure, 10 is a rubble mound to be leveled, and 11 is a working machine. This rubble mound 10 is for installing a caisson (not shown) serving as a breakwater or the like, and it is necessary to finish the top surface horizontally and to a uniform height. For this reason, it is necessary to measure the height of the working machine 11 more accurately.

作業機11は、走行しながら捨石マウンド10の頂面を
ならすものであり、作業機本体11aには水平度を検出
する傾斜計や向きを検出するジャイロコンパス等の姿勢
計測器12が設けられ、この姿勢計測器12からの出力
を見ながら脚13の伸縮にて姿勢を制御する。
The work machine 11 smoothes the top surface of the rubble mound 10 while running, and the work machine main body 11a is provided with an attitude measuring device 12 such as an inclinometer for detecting levelness and a gyro compass for detecting direction. The posture is controlled by extending and contracting the legs 13 while observing the output from the posture measuring device 12.

捨石マウンド10の頂面は作業機本体11aの水平度に
対応して水平にならされるようになっており、その頂面
の高さはその際のならし用転圧ローラ(図示せず)の下
面高さと同じ高さになるようになっている。
The top surface of the rubble mound 10 is leveled in accordance with the levelness of the work machine main body 11a, and the height of the top surface is determined by a rolling pressure roller (not shown) for leveling at that time. It is designed to be at the same height as the bottom surface of.

作業8111にはトランスホンダを利用した水中位置測
定装置の親局15が搭載されている。この水中位置測定
装置は、トランスポンダの1つの親局15と3つの子局
16a、16b、16cとを有しており、子局16a、
、16b、16cを作業機11を囲む配置に予め水底の
3点に固定し、その三次元位置(X、Y、Z座標位置)
を測定しておく、親局15より音波からなる質問信号を
発信各千局16a、16b、16cか、その信号を受け
た後応答信号を送り返し、その応答信号が親局15に到
達するまでの時間をカウントすることにより親局15か
ら各子局までのそれぞれの距離測定する。
Work 8111 is equipped with a master station 15 of an underwater position measuring device using Trans Honda. This underwater position measuring device has one main transponder station 15 and three slave stations 16a, 16b, and 16c.
, 16b, and 16c are fixed in advance at three points on the water bottom in a position surrounding the working machine 11, and their three-dimensional positions (X, Y, Z coordinate positions) are determined.
The master station 15 sends an interrogation signal consisting of sound waves to each of the stations 16a, 16b, 16c, and after receiving the signal, sends back a response signal, and the time it takes for the response signal to reach the master station 15 is measured. By counting the time, the distances from the master station 15 to each slave station are measured.

これによって親局15の水平面位置(X、Y座標位置)
が計測される。
As a result, the horizontal plane position (X, Y coordinate position) of the master station 15
is measured.

さらに、作業機11の高さ位置(Z座標位置)を測定す
るため、移動測水圧センサ−17aと固定水圧センサー
17bからなる一対の水圧センサーを使用する。移動側
水圧センサー17aは作業Flllに対して所定の高さ
位置に設置し、固定的水圧センサー17bを水面下の予
め高さが判明した位置に固定する。この両センサー17
a、17bによって同時に水圧を測定し、両者の測定値
の差から固定側センサー17bに対する移動側セ。
Furthermore, in order to measure the height position (Z coordinate position) of the work implement 11, a pair of water pressure sensors consisting of a mobile water pressure sensor 17a and a fixed water pressure sensor 17b are used. The movable side water pressure sensor 17a is installed at a predetermined height position with respect to the work Full, and the stationary water pressure sensor 17b is fixed at a position below the water surface whose height is known in advance. Both sensors 17
The water pressure is measured simultaneously by sensors a and 17b, and based on the difference between the two measured values, the moving side sensor 17b is compared to the fixed side sensor 17b.

サー17aの高さを算出し、これに予め判明している固
定側センサーの高さを加X(もしくはeix>ヒで移動
間センサー17aの絶対高さを算出する。
The absolute height of the moving sensor 17a is calculated by adding the height of the fixed side sensor known in advance to the height of the sensor 17a (or eix>hi).

作業fillの機械絶対高さhの算出式の一例を第3図
を参照して示せば次き°のとおりである。
An example of the formula for calculating the machine absolute height h of the work fill is shown below with reference to FIG.

h= (h+  ho )+h、 +hk式中h:作業
機11の機械絶対高さ り、二作業機の移動側水平センサー測定値ho:固定側
水圧センサー測定値 り、:固定曲水圧センサー設置高さ hk:作業機上の水圧センサーと転圧ローラ下端間の距
離 このように作業8111に取り付けた移動側水圧センサ
ー17aと、予め絶対高さが判明している固定側水圧セ
ンサー17bを使用することにより、潮位、大気圧の変
化に係わりなく絶対高さか測定できる。
h= (h+ho)+h, +hk where h: Absolute machine height of work equipment 11, horizontal sensor measurement value on the movable side of the second work equipment ho: measurement value of the fixed side water pressure sensor,: installation height of the fixed curved water pressure sensor hk: Distance between the water pressure sensor on the work machine and the lower end of the compaction roller By using the moving side water pressure sensor 17a attached to the work 8111 in this way and the fixed side water pressure sensor 17b whose absolute height is known in advance Absolute height can be measured regardless of changes in tide level or atmospheric pressure.

なお、前述した姿勢計測器12、トランスポンダの親局
15、及び子局16a、16b、16c、水圧センサー
17a、17bによる測定信号は、有線もしくは無線に
より支援台船18に送られ、コ7ヒューダーによって処
理されて計測値がリアルタイl、に表示されるようにし
ている。
The measurement signals from the above-mentioned attitude measuring device 12, transponder master station 15, slave stations 16a, 16b, 16c, and water pressure sensors 17a, 17b are sent to the support barge 18 by wire or wirelessly, and are sent to the support barge 18 by the co-7 Huder. The processed measured values are displayed on the real screen.

そお、上述の実j@例は水中位置測定装置に3つの子局
を使用し、水平面位置を計測しているか、高精度を要し
ない場合には子局を2つにして計測するようにしてもよ
い。
Well, in the actual example above, three slave stations are used in the underwater position measuring device to measure the horizontal position, or if high accuracy is not required, two slave stations are used to measure the position. Good too.

(発明の効果) 上述したように本発明における水中作業機の測位方法は
、トランスポンダを使用した水中位置測定装置と固定側
、移動側の二つの水圧センサーとを使用して水平面位置
及び高さ位置を測定するようにしたことにより、従来の
測位方法に使用していたスタッフが不要となり、従来方
法では安全施工ができなかった荒海象条件下においても
施工が可能になったものである。更に、無線にてリアル
タイムにデータを得ることができることとなり、測位の
ための作業員か不要となったものである。
(Effects of the Invention) As described above, the positioning method of an underwater working machine according to the present invention uses an underwater position measuring device using a transponder and two water pressure sensors on the fixed side and the movable side to determine the horizontal position and height position. This method eliminates the need for the staff used in conventional positioning methods, and enables construction even under rough sea conditions, where conventional methods could not be used safely. Furthermore, data can be obtained wirelessly in real time, eliminating the need for workers for positioning.

【図面の簡単な説明】[Brief explanation of drawings]

第1図は本発明の測位方法の一例の実施状態を示す斜視
図、第2図は二つの水圧センサーによる高さ測定原理を
示ず助面図、第3図は従来の測位方法の実施状態を示す
斜視図である。 10・・・・・・捨石マウンド、11・・・・・・作業
機、11a・・・・・・作業機本体、12・・・・・・
姿勢計測器、13・・・・・・脚、15・・・・・・親
局、16a、16b、  16cm ・−子局、17a
、17b・・・・・・水圧センサー18・・・・・・支
援台船。 第2図
Fig. 1 is a perspective view showing an implementation state of an example of the positioning method of the present invention, Fig. 2 is a side view showing the principle of height measurement using two water pressure sensors, and Fig. 3 is an implementation state of the conventional positioning method. FIG. 10... Rubble mound, 11... Work machine, 11a... Work machine body, 12...
Posture measuring device, 13... Legs, 15... Master station, 16a, 16b, 16cm - Slave station, 17a
, 17b...Water pressure sensor 18...Support barge. Figure 2

Claims (1)

【特許請求の範囲】[Claims] 1つの親局と2つ以上の子局をもつトランスポンダを利
用した水中位置測定装置の前記親局を水中作業機に搭載
するとともに、前記各子局を水底の所定位置に設置し、
前記親局と子局間にて音波を送受信して親局の水平面位
置を測定し、かつ、水中の所定高さ位置に固定側水圧セ
ンサを設置するとともに、前記水中作業機に移動側水圧
センサを取り付け、前記両水圧センサの測定値の差によ
って水中作業機の絶対高さを測定することを特徴として
なる水中作業機の測位方法。
The master station of an underwater position measuring device using a transponder having one master station and two or more slave stations is mounted on an underwater work machine, and each of the slave stations is installed at a predetermined position on the bottom of the water,
A sound wave is transmitted and received between the master station and the slave station to measure the horizontal position of the master station, and a fixed side water pressure sensor is installed at a predetermined height underwater, and a movable side water pressure sensor is installed on the underwater work machine. A positioning method for an underwater working machine, characterized in that the absolute height of the underwater working machine is measured by the difference between the measured values of both the water pressure sensors.
JP6495790A 1990-03-15 1990-03-15 Position measuring method of underwater operating machine Pending JPH03264810A (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP6495790A JPH03264810A (en) 1990-03-15 1990-03-15 Position measuring method of underwater operating machine

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP6495790A JPH03264810A (en) 1990-03-15 1990-03-15 Position measuring method of underwater operating machine

Publications (1)

Publication Number Publication Date
JPH03264810A true JPH03264810A (en) 1991-11-26

Family

ID=13273037

Family Applications (1)

Application Number Title Priority Date Filing Date
JP6495790A Pending JPH03264810A (en) 1990-03-15 1990-03-15 Position measuring method of underwater operating machine

Country Status (1)

Country Link
JP (1) JPH03264810A (en)

Cited By (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
KR100365062B1 (en) * 1997-10-22 2002-12-16 요코하마 고무 가부시키가이샤 Fender and a management system therefor
CN104391275A (en) * 2014-11-21 2015-03-04 西北工业大学 Underwater acoustic network node mutual distance measurement method based on gamma distribution model
CN105460184A (en) * 2015-12-23 2016-04-06 武汉中航传感技术有限责任公司 Oil bag structure used for underwater pressure inspection and marine equipment comprising same
CN110836664A (en) * 2019-09-29 2020-02-25 渤海造船厂集团有限公司 Building method and device for uniform benchmark of slipway

Cited By (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
KR100365062B1 (en) * 1997-10-22 2002-12-16 요코하마 고무 가부시키가이샤 Fender and a management system therefor
CN104391275A (en) * 2014-11-21 2015-03-04 西北工业大学 Underwater acoustic network node mutual distance measurement method based on gamma distribution model
CN105460184A (en) * 2015-12-23 2016-04-06 武汉中航传感技术有限责任公司 Oil bag structure used for underwater pressure inspection and marine equipment comprising same
CN110836664A (en) * 2019-09-29 2020-02-25 渤海造船厂集团有限公司 Building method and device for uniform benchmark of slipway
CN110836664B (en) * 2019-09-29 2021-06-08 渤海造船厂集团有限公司 Building method and device for uniform benchmark of slipway

Similar Documents

Publication Publication Date Title
US7173880B2 (en) Arrangement with an acoustic array with a sound velocity meter
CN109490927B (en) Positioning system and positioning method for underwater leveling frame
JP3803177B2 (en) Tsunami detection system
CN103213657A (en) Ship draft amount detection system and detection method thereof
JP6246168B2 (en) Underwater rubble leveling method
KR20220067201A (en) Coastal Underwater Survey Unit
JPH03264810A (en) Position measuring method of underwater operating machine
JP3358077B2 (en) Method and apparatus for installing and submerging underwater structures
Fazilova et al. Deformation analysis based on GNSS measurements in Tashkent region
CN107255473A (en) A kind of measuring method for setting up dynamic benchmark plane
CN111678490B (en) Base self-elevating underwater leveling frame monitoring and adjusting system
JPH0835836A (en) Method and apparatus for measuring displacement of subsoil of sea bottom
CN209400703U (en) A kind of underwater leveling frame positioning system
CN114964350A (en) Ultra-large type open caisson foundation construction monitoring system
JP3210955B2 (en) Box towing control method
JPH0953936A (en) Gps staff
CN113649534A (en) Slab continuous casting sector section space positioning measurement method
JP3507378B2 (en) High precision tide gauge by GPS
CN212110118U (en) Base self-elevating underwater leveling frame monitoring system
CN111190205A (en) Beidou/GNSS high-precision rapid positioning equipment and method for construction process
JPH02206715A (en) Method and instrument for depth sounding by submarine reference point
JPH0868847A (en) Roadbed level measuring apparatus
JPH10332825A (en) Method and system for surveying topography of seabed
RU2694702C1 (en) System for determination of bottom and water surface marks at monitoring of water objects
JPH04282412A (en) Water-depth measuring method