JPH03263633A - Device and method for recording/reproducing/erasing - Google Patents

Device and method for recording/reproducing/erasing

Info

Publication number
JPH03263633A
JPH03263633A JP20686490A JP20686490A JPH03263633A JP H03263633 A JPH03263633 A JP H03263633A JP 20686490 A JP20686490 A JP 20686490A JP 20686490 A JP20686490 A JP 20686490A JP H03263633 A JPH03263633 A JP H03263633A
Authority
JP
Japan
Prior art keywords
recording
thin film
probe
electrode
charge
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Granted
Application number
JP20686490A
Other languages
Japanese (ja)
Other versions
JP2859719B2 (en
Inventor
Kunihiro Sakai
酒井 邦裕
Toshimitsu Kawase
俊光 川瀬
Akihiko Yamano
明彦 山野
Akira Kuroda
亮 黒田
Hiroyasu Nose
博康 能瀬
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Canon Inc
Original Assignee
Canon Inc
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Canon Inc filed Critical Canon Inc
Priority to DE69127381T priority Critical patent/DE69127381T2/en
Priority to EP91300259A priority patent/EP0438256B1/en
Priority to CA002034296A priority patent/CA2034296C/en
Priority to US07/641,916 priority patent/US5162819A/en
Publication of JPH03263633A publication Critical patent/JPH03263633A/en
Application granted granted Critical
Publication of JP2859719B2 publication Critical patent/JP2859719B2/en
Anticipated expiration legal-status Critical
Expired - Fee Related legal-status Critical Current

Links

Landscapes

  • Optical Recording Or Reproduction (AREA)

Abstract

PURPOSE:To reduce time required for erasing and to facilitate high-speed response with respect to the erasing of a wide range by providing a recording medium having a substrate electrode, a photoconductive thin film and a recording area where charge can be accumulated and a probe electrode. CONSTITUTION:The recording medium 14 consisting of a photoconductive thin film layer 10 formed on the substrate electrode 9 and a recording layer 13 where the charge can be accumulated, a light irradiation mechanism 16 which irradiates the medium 14 and the probe electrode 5 are provided. That means, by using a photoconductive thin film structure 10 for the supporting body of the recording area 12 where the charge can be accumulated and irradiating it with light, the conductivity of the thin film 10 is temporarily enhanced., Besides, by discharging the accumulated charge 15 through the thin film 10 and executing the erasing, an erasing mechanism which can simultaneously execute access for many bits without using a probe 5 is obtained. Thus, many bits can be simultaneously erased and reproducibility with respect to the erasing of the large quantity of data is enhanced. Besides, the high-speed response of the erasing operation is realized.

Description

【発明の詳細な説明】 [産業上の利用分野] 本発明は、高密度の記録容量を有し、かつ消去機能も併
わせ持つ記録・再生装置および記録・再生・消去方法に
関するものである。
DETAILED DESCRIPTION OF THE INVENTION [Field of Industrial Application] The present invention relates to a recording/reproducing device having a high-density recording capacity and an erasing function, and a recording/reproducing/erasing method.

更に詳しくは、光導電性層上に電荷を蓄積することに因
って記録を行い、係る電荷量を探針電極を用いて電流値
或は電圧値として検出し記録された情報を再生、更に係
る光導電性層への光照射によって蓄積電荷を放電し消去
する、記録・再生装置および記録・再生・消去方法に関
する。
More specifically, recording is performed by accumulating charges on the photoconductive layer, the amount of charge is detected as a current value or voltage value using a probe electrode, and the recorded information is reproduced. The present invention relates to a recording/reproducing device and a recording/reproducing/erasing method in which accumulated charges are discharged and erased by irradiating the photoconductive layer with light.

[従来の技術] 近年においてメモリ素子及びメモリシステムの用途は、
コンピュータ及びその関連機器、ビデオディスク、ディ
ジタルオーディオディスク等、多岐に亘り、エレクトロ
ニクス産業の中核をなしている。メモリシステムに要求
される性能は一般的には 1)容量が大きく、容積が小さい 2 記録再生の応答速度が速い 3)エラーレートが低い 4)消費電力が少ない 5)生産性が高く、価格が安い 等が挙げられる。従来は磁気メモリ、半導体メモリが主
流であったが、近年レーザー技術の進展に伴い、安価で
高密度な記録媒体を用いた光メモリ素子などが登場して
きた。しかし、今後のホームユースでのコンピュータ利
用や画像を中軸とした情報産業化が進む上で、さらに容
量を大きく、かつ容積を小さくしたメモリ装置あるいは
方法の具現化が望まれている。
[Prior Art] In recent years, the uses of memory elements and memory systems are as follows:
It forms the core of the electronics industry, covering a wide range of products such as computers and related equipment, video discs, and digital audio discs. Generally speaking, the performance required of a memory system is 1) large capacity and small volume, 2) fast response speed for recording and playback, 3) low error rate, 4) low power consumption, and 5) high productivity and low price. Examples include cheap. Traditionally, magnetic memories and semiconductor memories have been the mainstream, but with the recent advances in laser technology, optical memory devices using inexpensive, high-density recording media have appeared. However, as the use of computers for home use and the information industry centering on images progress in the future, it is desired to realize memory devices or methods with even larger capacity and smaller volume.

一方、近年において、導体の表面原子の電子構造を直接
観測できる走査型トンネル顕微鏡(以後、STMと略す
)が開発され(G、 B1nn1g et al、。
On the other hand, in recent years, a scanning tunneling microscope (hereinafter abbreviated as STM) that can directly observe the electronic structure of surface atoms of a conductor has been developed (G, B1nn1g et al.).

Phys、 Rev、 Lett、 49(1982)
57)、単結晶、非晶質を問わず実空間像を著しく高い
分解能(ナノメートル以下)で測定ができるようになっ
た。STMは金属の探針と導電性物質の間に電圧を加え
て、l nm程度の距離まで近づけるとトンネル電流が
流れることを利用している。この電流は両者の距離変化
に非常に敏感であり、トンネル電流を一定に保つように
探針を走査することにより実空間の表面構造を描くこと
ができる。STMを用いた解析は導電性材料に限られる
が、導電性材料の表面に薄く形成された絶縁膜の構造解
析にも応用され始めている。更に、係る装置・手段は微
小電流を検知する方法を用いているため、媒体に損傷を
与えずに、かつ低電力で観測できる利点をも有する。ま
た、大気中での動作も可能である。
Phys, Rev. Lett, 49 (1982)
57), it has become possible to measure real space images of both single crystal and amorphous materials with extremely high resolution (nanometers or less). STM utilizes the fact that a tunnel current flows when a voltage is applied between a metal probe and a conductive substance and the probe is brought close to a distance of about 1 nm. This current is very sensitive to changes in the distance between the two, and by scanning the probe while keeping the tunneling current constant, it is possible to draw the surface structure in real space. Analysis using STM is limited to conductive materials, but it is also beginning to be applied to structural analysis of thin insulating films formed on the surfaces of conductive materials. Furthermore, since such devices and means use a method of detecting minute currents, they also have the advantage of being able to perform observations without damaging the medium and with low power. It is also possible to operate in the atmosphere.

このためSTMの広範囲な応用が期待されているが、特
に、試料中に書き込まれた情報を高分解能で読みだす再
生装置としての実用化が積極的に進められている。例え
ば、スタンフォード大学のクェートらは、STMの探針
を用いて電圧印加に因って絶縁体層界面に電荷を注入し
く「記録」)、係る電荷を該探針に流れるトンネル電流
によって検出する(「再生」)方法を提案している(C
For this reason, wide-ranging applications of STM are expected, and in particular, efforts are being made to put STM into practical use as a reproducing device that reads out information written in a sample with high resolution. For example, Kuwait et al. at Stanford University used an STM probe to inject charges into the interface of an insulator layer by applying a voltage ("recording"), and detecting such charges by a tunnel current flowing through the probe ( "Regeneration") method (C
.

F、クェート、米国特許明細書第4575822号)。F., Kuwait, U.S. Pat. No. 4,575,822).

係る方法を用いれば極めて高い密度を有するメモリ装置
を容易に実現することが可能である。
Using such a method, it is possible to easily realize a memory device with extremely high density.

具体的には以下の方法・手順で行う。例えば、不純物を
ドーピングした導電性を示すシリコン半導体基板上に形
成されたシリコン酸化膜層、および該シリコン酸化膜層
上に形成されたシリコン窒化膜層を含む記録媒体が係る
発明に適している。
Specifically, the following methods and procedures are used. For example, a recording medium including a silicon oxide film layer formed on a conductive silicon semiconductor substrate doped with impurities and a silicon nitride film layer formed on the silicon oxide film layer is suitable for the invention.

すなわち、探針電極を該シリコン窒化膜層に接触させ、
該探針と基板間に電圧を印加することに因って所望の電
圧を絶縁層に印加し、その結果、絶縁層を通して電子が
トンネルし、絶縁層中の界面に電荷が蓄積される(第6
図参照)。その後、探針は絶縁層表面から取り除かれ、
トンネルした電子が絶縁層界面にトラップされたまま残
る。トラップされた電子によって表わされる蓄積した情
報を読みだす場合は、探針をシリコン窒化膜層およびト
ラップされた電子に充分近づけ、トンネル電流が発生す
るように基板と探針間に電圧を印加すると同時に、探針
と絶縁体表面との距離を変化させる。
That is, a probe electrode is brought into contact with the silicon nitride film layer,
By applying a voltage between the probe and the substrate, a desired voltage is applied to the insulating layer, and as a result, electrons tunnel through the insulating layer and charges are accumulated at the interface in the insulating layer. 6
(see figure). After that, the probe is removed from the insulation layer surface,
The tunneled electrons remain trapped at the insulating layer interface. To read out the accumulated information represented by the trapped electrons, bring the probe close enough to the silicon nitride layer and the trapped electrons, and simultaneously apply a voltage between the substrate and the probe to create a tunneling current. , change the distance between the probe and the insulator surface.

通常、データ読みだし時の探針バイアスは、データ記録
時の探針バイアスと反対極性とする。
Normally, the tip bias when reading data is of opposite polarity to the tip bias when recording data.

測定されたトンネル電流は、絶縁体層界面の蓄積電荷の
有無を示す。この時、データ1 bitに対する蓄積領
域は、表面積において10−’gm2オーダまで小さく
なる。その結果として、例えば100Mバイトの大容量
メモリ装置の容積を1 cm’オーダまで小さくするこ
とができる。
The measured tunneling current indicates the presence or absence of accumulated charge at the insulator layer interface. At this time, the storage area for 1 bit of data becomes as small as 10-'gm2 in surface area. As a result, the volume of a large capacity memory device of, for example, 100 Mbytes can be reduced to the order of 1 cm'.

尚、クェートらは前記特許明細書のなかで、電荷蓄積に
限らず、物理的探針、或は焦光したレーザ光、電子ビー
ム、微粒子の付着等によって形成された記録媒体表面の
「乱れ(物理的凹凸や電子状態の変化など)」によって
記録された情報も、トンネル電流を用いて容易に読み出
すことが出きることを示しているが、実用上、記録密度
および記録の再現性、簡便さなどから、電荷蓄積による
記録への期待が大きい。
In the patent specification, Kuwait et al. state that "disturbances" on the surface of the recording medium formed by physical probes, focused laser beams, electron beams, adhesion of fine particles, etc. are not limited to charge accumulation. It has been shown that information recorded by "physical irregularities or changes in electronic state" can be easily read using tunneling current, but in practical terms, recording density, recording reproducibility, and simplicity are important. For these reasons, there are high expectations for recording using charge accumulation.

[発明が解決しようとする課題] しかしながら、上記記録・再生方法に関して、−度記録
した情報の消去が容易でないことが問題点として挙げら
れる。すなわち、消去の工程も記録工程と同様、探針を
接近させ1ビツトごとにアクセスする必要がある。この
為、消去に要する時間が消去量に比例して増大し、また
広範囲にわたる消去に対して高速応答が難しい。更に、
蓄積された電荷に対して逆極性のバイアス電圧を印加す
る必要がある。また、係る状況において電圧値や媒体・
探針間距離など、高い制御性が要求される。最適条件か
らのずれは、消去不十分、或いは新たに逆極性の電荷蓄
積を引き起こす。従って、探針を用いず、多数ビットを
同時にアクセス可能な消去機構、方式が望まれる。
[Problems to be Solved by the Invention] However, a problem with the above recording/reproducing method is that it is not easy to erase recorded information. That is, in the erasing process, as in the recording process, it is necessary to bring the probe closer and access each bit one by one. For this reason, the time required for erasure increases in proportion to the amount of erasure, and it is difficult to respond quickly to erasure over a wide range. Furthermore,
It is necessary to apply a bias voltage of opposite polarity to the accumulated charge. In addition, in such situations, voltage values, media,
High controllability is required, including the distance between the probes. Deviation from the optimum conditions causes insufficient erasing or new accumulation of charges of opposite polarity. Therefore, an erasing mechanism and method that can access multiple bits simultaneously without using a probe is desired.

そこで本発明の目的は、著しい記録密度を有する電荷蓄
積による記録・再生技術において、前述した従来技術の
欠点を克服し、消去が容易な記録・再生装置及び方法を
提供することにある。
SUMMARY OF THE INVENTION It is therefore an object of the present invention to provide a recording/reproducing apparatus and method that overcomes the above-mentioned drawbacks of the prior art and facilitates erasing in recording/reproducing technology using charge accumulation that has a remarkable recording density.

[課題を解決するための手段及び作用]上記の目的は、
以下の本発明によって達成される。
[Means and actions for solving the problem] The above purpose is to
This is achieved by the following invention.

即ち本発明は、少なくとも下地電極と光導電性薄膜を有
し、電荷蓄積可能な記録領域を有する記録媒体、並びに
該電荷蓄積を検出する探針電極を備えたことを特徴とす
る記録・再生装置である。
That is, the present invention provides a recording/reproducing apparatus comprising a recording medium having at least a base electrode and a photoconductive thin film and a recording area capable of accumulating charge, and a probe electrode for detecting the accumulation of charge. It is.

また本発明は少なくとも下地電極上に形成された光導電
性薄膜層と電荷蓄積可能な記録層から成る記録媒体、及
び係る記録媒体への光照射機構、並びに探針電極を備え
たことを特徴とする記録・消去装置である。
Further, the present invention is characterized by comprising a recording medium comprising at least a photoconductive thin film layer formed on a base electrode and a recording layer capable of accumulating charges, a light irradiation mechanism for the recording medium, and a probe electrode. This is a recording/erasing device.

また本発明は少なくとも下地電極上に形成された光導電
性薄膜層と電荷蓄積可能な記録層から成る記録媒体、及
び係る記録媒体への光照射機構、並びに探針電極を備え
たことを特徴とする記録・再生・消去装置である。
Further, the present invention is characterized by comprising a recording medium comprising at least a photoconductive thin film layer formed on a base electrode and a recording layer capable of accumulating charges, a light irradiation mechanism for the recording medium, and a probe electrode. This is a recording, playback, and erasing device.

また本発明は、少な(とも下地電極と光導電性薄膜を有
し、電荷蓄積可能な記録領域を有する記録媒体と探針電
極を用い、下地電極と探針電極との間に電圧を印加し、
所望の記録領域に電荷を注入することで記録を行なうこ
とを特徴とする記録方法である。
Furthermore, the present invention uses a probe electrode and a recording medium that has a base electrode and a photoconductive thin film and has a recording area capable of accumulating charges, and applies a voltage between the base electrode and the probe electrode. ,
This is a recording method characterized by recording by injecting charges into a desired recording area.

更に本発明は、前記記録媒体と探針電極を用い、下地電
極と探針電極との間に電圧を印加することにより電荷を
注入された記録領域に対して、探針電極を用いて前記記
録領域の電荷量を検出することにより記録の再生を行な
うことを特徴とする再生方法である。
Furthermore, the present invention uses the recording medium and the probe electrode to apply a voltage between the base electrode and the probe electrode to inject a charge into the recording area, and then performs the recording using the probe electrode. This reproducing method is characterized in that recording is reproduced by detecting the amount of charge in an area.

更に本発明は前記記録媒体と探針電極を用いて、下地電
極と探針電極との間に電圧を印加することにより電荷を
注入された記録領域に対して、光照射を行なうことによ
って光導電性薄膜の導電性を一時的に高め、該薄膜を通
して蓄積された電荷の放電を行ない記録を消去すること
を特徴とする消去方法である。
Furthermore, the present invention uses the recording medium and the probe electrode to perform photoconductive conduction by irradiating a recording area into which charges have been injected by applying a voltage between the base electrode and the probe electrode. This erasing method is characterized by temporarily increasing the conductivity of a magnetic thin film and discharging accumulated charges through the thin film to erase records.

本発明は、電荷蓄積可能な記録領域の支持体に光導電性
の薄膜構造体を用いたものであり、光を照射することに
より該薄膜の導電性を一時的に高め該薄膜を通して蓄積
電荷を放電し消去を行うことによって、探針を用いずに
、かつ多数ビットを同時にアクセス可能な消去機構、方
式を提供するものである。発明の詳細を以下に述べる。
The present invention uses a photoconductive thin film structure as a support for a recording area capable of accumulating charges, and by irradiating the thin film with light, the conductivity of the thin film is temporarily increased and accumulated charges are transferred through the thin film. The present invention provides an erasing mechanism and method that can access multiple bits simultaneously without using a probe by performing erasing by discharging. Details of the invention are described below.

その記録・再生の動作原理は、探針電極から電荷蓄積領
域へキャリア(電子若しくは正孔)を注入し該領域の電
子状態あるいは電荷状態に変化を生じさせることによっ
て記録を行い、係る変化を探針電極を用いて電流或は電
圧の変化として検出し記録された情報を再生するもので
ある。
The operating principle of recording and reproducing is to perform recording by injecting carriers (electrons or holes) from a probe electrode into a charge storage region to cause a change in the electronic state or charge state of the region, and to search for such change. It uses needle electrodes to detect changes in current or voltage and reproduce recorded information.

電荷蓄積領域を形成する材料としては、注入されるキャ
リアが占有できる充分な準位密度を有する材料であれば
よい。係る準位は連続分布している必要はなく、表面や
界面の準位や不純物準位など、トラップ性の準位でもよ
く、半導体や絶縁体の適用も可能である。また、無機材
料に限らず有機材料を用いることも出来る。但し、準位
密度が高い材料が本発明の適用において望まれる。具体
的にはAu、 Ag、 Aj!、 Cr、 Ptなとの
金属や合金など、一般的な導体が好適な材料として挙げ
られる。
The material for forming the charge storage region may be any material as long as it has a sufficient level density that can be occupied by injected carriers. Such levels do not need to be continuously distributed, and may be trapping levels such as surface or interface levels or impurity levels, and can also be applied to semiconductors and insulators. Moreover, not only inorganic materials but also organic materials can be used. However, materials with high level density are desired in the application of the present invention. Specifically, Au, Ag, Aj! Suitable materials include common conductors such as metals and alloys such as , Cr, and Pt.

尚、該電荷蓄積領域は物理的に区切られていることが望
ましい。その結果、記録乃至蓄積時の電荷の広がりが制
限され、従来電荷広がりサイズによって律速されていた
記録密度の向上が図られ、また、経時による電荷拡散が
引き起こす情報消失に対して著しい特性改善を行うこと
ができる。
Note that it is desirable that the charge storage regions are physically separated. As a result, the spread of charge during recording or storage is restricted, improving recording density, which was previously determined by the size of charge spread, and also significantly improving characteristics against information loss caused by charge diffusion over time. be able to.

光S電性薄膜構造体上に、互いに孤立した微小構造体か
ら成る電荷蓄積領域を作製するには、従来公知の技術を
適用することができる。例えば半導体技術で広く用いら
れているフォトリソグラフ技術によって、ナノメートル
以下の微小電極を容易に形成することができる。また、
材料を選択することによって、バターニングを必要とし
ない微小構造体の形成法を採用することが可能である。
Conventionally known techniques can be applied to fabricate a charge storage region consisting of mutually isolated microstructures on the photo-S conductive thin film structure. For example, microelectrodes of nanometer size or less can be easily formed using photolithography technology, which is widely used in semiconductor technology. Also,
By selecting materials, it is possible to employ a method for forming microstructures that does not require buttering.

例えばAuの蒸着膜(膜厚、10nm以下)等のように
基板上に成長させたときに島状構造を示す材料はパター
ニング工程を必要としないため、本発明の適用に大変好
適である。或いは、バクテリオロドプシン膜や無機の超
微粒子膜のように分子ないし分子集合体がコラム状或い
はクラスタ状に配列する材料は一般に、分子内ないし集
合体内での電気伝導性が高く、分子間ないしバンダリー
間の電気伝導性が低い特性を示す。従ってバターニング
処理を必要とせずに、互いに電気的に孤立した微小構造
体を容易に形成することができる。更に係る材料は、微
小構造体の大きさの制御性、再現性が高く、本発明に極
めて好適である。
For example, materials that exhibit an island-like structure when grown on a substrate, such as a deposited Au film (thickness: 10 nm or less), do not require a patterning process and are therefore very suitable for application of the present invention. Alternatively, materials in which molecules or molecular aggregates are arranged in columns or clusters, such as bacteriorhodopsin membranes or inorganic ultrafine particle membranes, generally have high electrical conductivity within molecules or within aggregates, and have high electrical conductivity between molecules or between boundaries. exhibits low electrical conductivity. Therefore, microstructures that are electrically isolated from each other can be easily formed without requiring a patterning process. Furthermore, such materials have high controllability and reproducibility of the size of microstructures, and are extremely suitable for the present invention.

上述した電荷蓄積領域と下地電極とに挾まれた光導電性
薄膜の形態はトンネル電流が流れる程度に充分に薄く、
かつ均一である必要がある。具体的には膜厚は、少なく
とも1100n以下であることが望まれる。更に好まし
くは30nm以下、0.3層m以上の膜厚であれば、電
極間を短絡することなく、かつ充分なトンネル電流を流
すことができる。なお、該薄膜を構成する材料ないしそ
の形成方法は本発明によってなんら制限されない。例え
ば、光導電材料として代表的なSi、或いはGa、As
、或いはCdSe、 CdS 、 ZnSなどの無機半
導体材料の他、種類が豊富で材料設計の自由度の高い光
導電性有機化合物などの適用が可能である。また、通常
の蒸着や分子線エピタキシー法、スパッタ法、塗布法な
どの従来公知の薄膜形成手段によって本発明の目的を達
成することができる。
The form of the photoconductive thin film sandwiched between the charge storage region and the base electrode described above is thin enough to allow tunneling current to flow.
It also needs to be uniform. Specifically, the film thickness is desired to be at least 1100 nm or less. More preferably, if the film thickness is 30 nm or less and 0.3 layer m or more, sufficient tunnel current can flow without shorting between the electrodes. Note that the material constituting the thin film and the method of forming the thin film are not limited in any way by the present invention. For example, Si, Ga, and As are typical photoconductive materials.
Alternatively, in addition to inorganic semiconductor materials such as CdSe, CdS, and ZnS, it is possible to apply photoconductive organic compounds, which have a wide variety of types and have a high degree of freedom in material design. Further, the object of the present invention can be achieved by conventionally known thin film forming means such as ordinary vapor deposition, molecular beam epitaxy, sputtering, and coating.

しかし、本発明の好適な態様においては、係る薄膜は親
水性部位と疎水性部位とを併有し、かつ光導電性を示す
有機分子からなる単分子膜または単分子累積膜によって
構成される。係る単分子膜または単分子累積膜は、高度
の秩序性を有し、均一で欠陥の無い超薄膜を簡易に形成
し得る点で本発明の適用に極めて好都合である。有機分
子として具体的には、親水性部位と疎水性部位を併有し
た従来公知の有機色素分子がある。好適な色素としては
、例えば、シアニン色素、メロシアニン色素、フタロシ
アニン色素、トリフェニルメタン色素、アズレン色素等
が挙げられる。また、クロロフィル、ローダミン、チト
クローム等の色素タンパク質等の生体材料の適用も可能
である。
However, in a preferred embodiment of the present invention, such a thin film is constituted by a monomolecular film or a monomolecular cumulative film comprising organic molecules that have both hydrophilic sites and hydrophobic sites and exhibit photoconductivity. Such a monomolecular film or a monomolecular cumulative film has a high degree of order, and is extremely advantageous for application of the present invention in that a uniform, defect-free ultra-thin film can be easily formed. Specifically, the organic molecules include conventionally known organic dye molecules having both a hydrophilic site and a hydrophobic site. Suitable dyes include, for example, cyanine dyes, merocyanine dyes, phthalocyanine dyes, triphenylmethane dyes, azulene dyes, and the like. Furthermore, biomaterials such as chromoproteins such as chlorophyll, rhodamine, and cytochromes can also be applied.

更に、係る有機膜層を形成する好適な方法としてラング
ミュア・プロジェット法(LB法、と略する)を挙げる
ことができる。LB法は垂直浸漬法または水平付着法の
いずれであってもよい。トンネル電流の収量を大きくす
るために時として膜厚が数nm以下で、かつ均一である
ことが要求される場合があるが、LB法であれば係る形
態を容易に実現し得る。
Furthermore, the Langmuir-Prodgett method (abbreviated as LB method) can be cited as a suitable method for forming such an organic film layer. The LB method may be either a vertical dipping method or a horizontal deposition method. In order to increase the yield of tunnel current, it is sometimes required that the film thickness be several nanometers or less and be uniform, but such a configuration can be easily realized using the LB method.

なお、本発明において下地電極は、導電性のバルク(例
えば金属板や不純物をドープした半導体基板など)、な
いし支持体としての基板上に形成された導電性薄膜(例
えば金属蒸着膜など)などいずれでもよく、従来公知の
技術によって容易に達成することができる。また、係る
基板は、金属、ガラス、セラミックス、プラスチック材
料等いずれの材料でもよく、更に、耐熱性の著しく低い
生体材料も使用できる。係る基板は、任意の形状をとる
ことができる。平板状であるのが好ましいが、平板に何
ら限定されない。すなわち前記LB法においては、基板
の表面がいかなる形状であってもその形状通りに膜を形
成し得る利点を有するからである。
In the present invention, the base electrode may be a conductive bulk (e.g., a metal plate or a semiconductor substrate doped with impurities), or a conductive thin film (e.g., a metal vapor deposited film) formed on a substrate as a support. This can be easily achieved using conventionally known techniques. Furthermore, such a substrate may be made of any material such as metal, glass, ceramics, or plastic material, and biomaterials with extremely low heat resistance may also be used. Such a substrate can have any shape. Although it is preferable to have a flat plate shape, it is not limited to a flat plate shape at all. That is, the LB method has the advantage that a film can be formed in accordance with any shape of the surface of the substrate.

[実施例] 以下実施例により本発明を具体的に説明する。[Example] The present invention will be specifically explained below using Examples.

見胤員ユ 第1図に基づいて本発明を説明する。Mitaninyu The present invention will be explained based on FIG.

洗浄後、ヘキサメチルジシラザンの飽和蒸気中に一昼夜
放置して疎水処理したガラス基板8(コーニング社製#
7059)を支持体として、係る基板上に下地電極9/
光導電性薄膜10/絶縁性薄膜11からなる積層構造の
記録媒体14を形成した。
After cleaning, the glass substrate 8 (manufactured by Corning Co., Ltd. #
7059) as a support, a base electrode 9/
A recording medium 14 having a laminated structure consisting of a photoconductive thin film 10 and an insulating thin film 11 was formed.

係る記録媒体において光導電性薄膜10と絶縁性薄膜1
1との境界12に存在する界面準位が電荷蓄積領域とし
て機能する。また、光導電性薄膜10および絶縁性薄膜
11には、いずれもLB法により作製した単分子累積膜
を用いた。記録媒体の形成方法の詳細は以下のとおりで
ある。
In such a recording medium, a photoconductive thin film 10 and an insulating thin film 1
The interface level existing at the boundary 12 with 1 functions as a charge accumulation region. Furthermore, for the photoconductive thin film 10 and the insulating thin film 11, monomolecular cumulative films produced by the LB method were used. Details of the method for forming the recording medium are as follows.

まず、上述したガラス基板8上に、抵抗加熱法を用いた
真空蒸着によって下引き層としてCrを5層m堆積した
後、Auを30nm堆積し下地電極9を作製した。
First, on the glass substrate 8 described above, 5 layers of Cr were deposited as an undercoat layer by vacuum evaporation using a resistance heating method, and then 30 nm of Au was deposited to form the base electrode 9.

次に、LB法を用いて色素単分子膜の累積を行い、光導
電層10の形成を行った。即ち、アズレン系色素誘導体
(詳しくは、スクアリリウム・ビス−6−オクチル・ア
ズレン)をベンゼン溶媒に1mg/mfの濃度で溶解し
た後、水温17℃の純水から成る水相上に展開し、水面
上に単分子膜を形成した。蒸発によってベンゼン溶媒が
除去されるのを待って表面圧を25mN/mまで高めた
後、表面圧を定に保ちながら、上述の下地電極が形成さ
れた基板を水面を横切る方向に速度5 mm/minで
静かに浸漬した。更に続いて、5 mm/minで静か
に引き上げて2層のY型単分子累積膜を作製した。係る
操作を適当口繰り返して2.4.6.8層のアズレン系
色素誘導体の単分子累積膜(INあたりの膜厚、1.5
 nm)を得た。
Next, a dye monomolecular film was accumulated using the LB method to form a photoconductive layer 10. That is, an azulene dye derivative (specifically, squarylium bis-6-octyl azulene) is dissolved in a benzene solvent at a concentration of 1 mg/mf, and then spread on an aqueous phase consisting of pure water at a water temperature of 17°C. A monomolecular film was formed on top. After waiting for the benzene solvent to be removed by evaporation and increasing the surface pressure to 25 mN/m, the substrate on which the base electrode was formed was moved across the water surface at a speed of 5 mm/m while keeping the surface pressure constant. Soak gently at min. Subsequently, the film was gently pulled up at 5 mm/min to produce a two-layer Y-type monomolecular cumulative film. This operation was repeated as appropriate to form a monomolecular cumulative film of 2.4.6.8 layers of azulene dye derivative (film thickness per IN, 1.5
nm) was obtained.

更に、アラキシン酸分子を用いて絶縁性の単分子累積膜
11を積層し、前記光導電層との界面に電荷蓄積領域1
2を形成した。アラキシン酸膜の累積は、上記のアズレ
ン系色素膜と同様LB法によるものであり、この時、水
温17℃、表面圧25mN/mであった。ただし、展開
溶媒にはクロロホルムを用い、累積速度は10mm/m
in、暦数は2層(膜厚、5.5層m )とした。
Furthermore, an insulating monomolecular cumulative film 11 is laminated using araxic acid molecules, and a charge storage region 1 is formed at the interface with the photoconductive layer.
2 was formed. The accumulation of the araxic acid film was performed by the LB method similarly to the azulene dye film described above, and at this time, the water temperature was 17° C. and the surface pressure was 25 mN/m. However, chloroform was used as the developing solvent, and the cumulative speed was 10 mm/m.
in, and the calendar number was 2 layers (film thickness, 5.5 layers m).

以上のようにして作製した記録媒体14に対し、STM
を用いて記録・再生を試みたところ、下記第1表の如き
結果を得た。すなわち記録操作として、STMの探針電
極5を該記録媒体に充分に接近させた状態で、更に探針
5と下地電極9間に5■、200nsのパルス電圧を印
加することで電荷注入を行なった。次に探針を一旦記録
部位より遠ざけたのち、再生操作として再度探針を該記
録媒体に近づけ、記録媒体表面と平行な方向に走査した
。その結果、下地電極と探針間に流れるトンネル電流が
先に電荷蓄積した部位15において増大することを確認
した。詳しくは、再生時のバイアス電圧を100mVと
した場合、記録操作(パルス電圧印加)を行った部位に
おいてトンネル電流が2倍から数10倍増加することが
明かとなった。該単分子累積膜が2層の記録媒体に関し
て、経時(例えば−昼夜放置)に対して記録情報の消失
の傾向が認められた。
For the recording medium 14 manufactured as described above, STM
When recording/reproducing was attempted using this, the results shown in Table 1 below were obtained. That is, as a recording operation, charge injection is carried out by applying a pulse voltage of 5 cm and 200 ns between the probe 5 and the base electrode 9 with the probe electrode 5 of the STM sufficiently close to the recording medium. Ta. Next, after the probe was once moved away from the recording site, the probe was brought close to the recording medium again as a reproduction operation and scanned in a direction parallel to the surface of the recording medium. As a result, it was confirmed that the tunnel current flowing between the base electrode and the probe increased in the region 15 where charge was accumulated first. Specifically, it has been revealed that when the bias voltage during reproduction is set to 100 mV, the tunnel current increases from twice to several tens of times in the region where the recording operation (pulse voltage application) is performed. Regarding the recording medium having two layers of monomolecular cumulative films, there was a tendency for recorded information to disappear over time (for example, by being left day and night).

次に、消去操作として、中心波長がおよそ650nmの
光16を上述した記録媒体に対し上方より照射した。係
る操作の後、再び探針を接近させ電荷蓄積を観察したと
ころ、光照射した範囲において、先に蓄積された電荷の
消失が生じていることが確認され、情報の消去が行われ
たことが明らかとなった。以上の結果も併せて第1表に
記す。
Next, as an erasing operation, the above-mentioned recording medium was irradiated with light 16 having a center wavelength of about 650 nm from above. After this operation, when we brought the probe close again and observed the charge accumulation, it was confirmed that the previously accumulated charge had disappeared in the area irradiated with light, indicating that information had been erased. It became clear. The above results are also shown in Table 1.

なお、上記の操作を繰り返し行なっても、記録層を破壊
することなく探針を記録面に接近させることができ、記
録・再生、及び消去を容易に行なうことができた。
Note that even if the above operation was repeated, the probe could be brought close to the recording surface without destroying the recording layer, and recording, reproduction, and erasing could be easily performed.

第1表 単分子累積膜層数 記録・再生特性 消去特性○   
     △ 0       0 0       0 ◎        ◎ 実施例1と同様にしてガラス基板8(コーニング社製#
7059)上に下地電極9/光導電性薄膜10/金属薄
膜17からなる積層構造の記録媒体を形成した。構造の
概略を第2図に示す。
Table 1 Cumulative number of monomolecular film layers Recording/reproducing characteristics Erasing characteristics○
△ 0 0 0 0 ◎ ◎ In the same manner as in Example 1, a glass substrate 8 (#
7059) A recording medium having a laminated structure consisting of base electrode 9/photoconductive thin film 10/metal thin film 17 was formed thereon. An outline of the structure is shown in Figure 2.

光導電性薄膜10にはフタロシアニン誘導体(詳しくは
、t−ブチル・銅フタロシアニン)単分子累積膜を用い
た。係る単分子累積膜の作製方法の詳細は以下のとおり
である。
As the photoconductive thin film 10, a monomolecular cumulative film of a phthalocyanine derivative (specifically, t-butyl/copper phthalocyanine) was used. Details of the method for producing such a monomolecular cumulative film are as follows.

粉末状のフタロシアニン誘導体を濃度0.2mg/mj
!でクロロホルム溶液に溶かし、水温20℃の水相上に
展開し水−面上に単分子膜を形成した。溶媒の蒸発除去
を待って係る単分子膜の表面圧を20mN/mまで高め
、次に表面圧を一定に保った状態下で下地電極が蒸着さ
れた基板を水面を横切る方向に速度1.0mm7分で静
かに浸漬し、続いて5 mm7分で静かに引き上げ2層
のY型単分子膜を係る基板上に累積した。累積操作を4
回繰り返すことによって該基板上に8層の単分子累積膜
を形成した。
Powdered phthalocyanine derivative at a concentration of 0.2 mg/mj
! It was dissolved in a chloroform solution and developed on an aqueous phase at a water temperature of 20°C to form a monomolecular film on the water surface. After waiting for the solvent to evaporate and remove, the surface pressure of the monomolecular film was increased to 20 mN/m, and then, while the surface pressure was kept constant, the substrate on which the base electrode was deposited was moved at a speed of 1.0 mm in the direction across the water surface. Two layers of Y-type monolayers were accumulated on such substrates by gently dipping for 5 mm and then gently pulling for 7 minutes. Accumulate operation 4
By repeating this process several times, an eight-layer monomolecular cumulative film was formed on the substrate.

一方、金属薄膜にはAuを用い、通常の抵抗加熱法によ
る真空蒸着(基板温度:室温、成長速度:0.2層m/
s )によって、前記光導電性薄膜10上への堆積を行
った。但しこの時、膜厚を5層mと薄(制御した結果、
金属薄膜として島状の金属微小構造体17が得られた。
On the other hand, Au was used for the metal thin film, which was vacuum evaporated using the usual resistance heating method (substrate temperature: room temperature, growth rate: 0.2 layer m/m).
Deposition on the photoconductive thin film 10 was carried out by s). However, at this time, the film thickness was as thin as 5 layers (as a result of control,
An island-shaped metal microstructure 17 was obtained as a metal thin film.

微小構造体間にはバンダリー18が存在し、電気的に互
いに孤立した該微小構造体が電荷蓄積領域として機能す
る。既述したように、電荷蓄積領域を物理的に区切るこ
とによって、記録時、乃至蓄積時の電荷の広がりが制限
され、従来、電荷酸がりサイズによって律速されていた
記録密度の向上が図られ、また、経時による電荷拡散が
引き起こす情報消失に対して著しい特性改善を行うこと
ができる。
A boundary 18 exists between the microstructures, and the microstructures that are electrically isolated from each other function as charge storage regions. As mentioned above, by physically dividing the charge storage area, the spread of the charge during recording or storage is restricted, and the recording density, which was conventionally limited by the charge oxidation size, can be improved. Further, it is possible to significantly improve characteristics against information loss caused by charge diffusion over time.

上記の方法によって作製した記録媒体に対し、実施例1
と同様にしてSTMを用いて記録・再生を試みた。その
結果、記録媒体あるいは記録領域を破壊することなく容
易に探針を記録面に接近させることができ、更に記録を
容易に行なうことができた。探針を一旦記録部位より遠
ざけ再度記録した部位の記録再生を行なったところ容易
に再生を行なうことができた。また、実施例1同様、光
照射によって蓄積電荷の消去を行えることも確認した。
Example 1
Recording and playback using STM was attempted in the same manner as above. As a result, the probe could be easily brought close to the recording surface without destroying the recording medium or the recording area, and recording could be performed more easily. When the probe was once moved away from the recorded area and the recorded area was recorded and reproduced again, it was possible to easily perform the reproduction. Furthermore, as in Example 1, it was confirmed that accumulated charges could be erased by light irradiation.

なお、走査型電子顕微鏡を用いて該記録媒体の観察を行
ったところ、各記録領域(Au島状電極)の大きさはい
ずれも直径約30nm以下で、最も小さい記録領域で直
径数nmであった。面積に換算しておよそ10−’pm
”であり、前述のクェートらによる記録・再生装置と比
較して、記録媒体形成法が容易であるにも関わらず記録
密度が一桁以上向上していることがわかる。
When the recording medium was observed using a scanning electron microscope, the size of each recording region (Au island electrode) was approximately 30 nm or less in diameter, and the smallest recording region was several nanometers in diameter. Ta. Approximately 10-'pm in terms of area
'', it can be seen that the recording density is improved by more than an order of magnitude compared to the recording/reproducing device by Kuwait et al., described above, despite the simpler method of forming the recording medium.

実11組旦 実施例1の記録媒体のうち、単分子累積膜暦数が4の記
録媒体に対し、第4図に示すブロック構成図のSTMを
用い記録・再生及び第3図に示す光による消去を行った
。その詳細は以下のとおりである。
Of the 11 recording media of Example 1, the recording medium with a monomolecular cumulative film history number of 4 was subjected to recording/reproduction using the STM shown in the block diagram shown in FIG. 4 and by the light shown in FIG. 3. I deleted it. The details are as follows.

上述した記録媒体14をXYステージ32上に固定した
。XYステージは粗動機構31によって、約0.1pm
の精度で最大2mmまで水平方向に移動することができ
る。記録媒体上の任意の領域を選択した後に、Z方向の
粗動機構28を用いて探針電極5を記録媒体14におお
よそ接近させた。更に、サーボ回路25を用いて探針な
記録媒体表面に1 nm以下の距離まで接近させ、係る
状態下で探針電極に5V、200nsのパルス電圧を印
加し、記録層13への電荷注入を行い記録操作とした。
The recording medium 14 described above was fixed on the XY stage 32. The XY stage is moved approximately 0.1 pm by the coarse movement mechanism 31.
It can move horizontally up to 2mm with an accuracy of . After selecting an arbitrary area on the recording medium, the probe electrode 5 was brought roughly close to the recording medium 14 using the coarse movement mechanism 28 in the Z direction. Furthermore, using the servo circuit 25, the probe is brought close to the surface of the recording medium to a distance of 1 nm or less, and under such conditions, a pulse voltage of 5 V and 200 ns is applied to the probe electrode to inject charge into the recording layer 13. This was a recording operation.

次に探針を一旦記録部位より遠ざけたのち、再生操作と
して再度探針を該記録媒体に近づけ記録媒体表面と平行
な方向に走査し、このときの探針に流れるトンネル電流
の値から記録したデータの読みだしを行った。その結果
、下地電極と探針間に流れるトンネル電流が先に電荷蓄
積した部位15(第3図)において増大することを確認
した。詳しくは、再生時のバイアス電圧を100mVと
した場合、記録部位(パルス電圧印加を行った位置)に
おいてトンネル電流が一桁程度増加することが確認され
た。
Next, after moving the probe away from the recording site, the probe was brought close to the recording medium again as a reproduction operation and scanned in a direction parallel to the surface of the recording medium, and the value of the tunneling current flowing through the probe at this time was recorded. I read out the data. As a result, it was confirmed that the tunnel current flowing between the base electrode and the probe increased in the region 15 (FIG. 3) where charge was accumulated first. Specifically, when the bias voltage during reproduction was set to 100 mV, it was confirmed that the tunnel current increased by about one order of magnitude at the recording site (the position where the pulse voltage was applied).

次に消去操作を行った。具体的には、STMのXYステ
ージ上に固定されたままの状態の記録媒体に、約4cr
n上方に設置した赤色LED 20からの光22を照射
した。このとき記録媒体全体が均一に照射されるようL
EDと記録媒体間に乳白色の散乱板(透過率70%)2
】を設けた。係る操作の後、光照射装置を取り除き、再
び探針5を接近させ記録媒体上の電荷蓄積を観察したと
ころ、先に蓄積された電荷の消失が生じていることが確
認された。即ち光照射によって既に記録した情報の消去
が行われることが明かとなった。
Next, an erasing operation was performed. Specifically, about 4 cr is placed on the recording medium that remains fixed on the STM's XY stage.
Light 22 from a red LED 20 installed above was irradiated. At this time, L is set so that the entire recording medium is uniformly irradiated.
A milky white scattering plate (70% transmittance) 2 between the ED and the recording medium
] has been established. After this operation, the light irradiation device was removed, the probe 5 was brought close again, and the charge accumulation on the recording medium was observed, and it was confirmed that the previously accumulated charge had disappeared. In other words, it has become clear that already recorded information is erased by light irradiation.

なお、上記の操作を繰り返し行なってち、記録層を破壊
することなく探針を記録面に接近させることができ、記
録・再生、及び消去を容易に行なうことができた。
By repeating the above operations, the probe could be brought close to the recording surface without destroying the recording layer, and recording, reproduction, and erasing could be easily performed.

実」l糺1 実施例2で作製した記録媒体に対し、実施例3と同様に
してデータの記録と消去を試みた。用いた装置のブロッ
ク構成図を第5図に示す。実施例3と異なる点は、光照
射36に、コリメータ35を通して約1pmまでビーム
径を絞った半導体レーザ34の出力光(中心波長〜65
0 nm、出力約4 mW)を用いたことにある。斜め
上方より照射することにより、探針等を取り除くことな
く光照射が行えた。記録操作に関しては、実施例1同様
、記録媒体あるいは記録領域を破壊することなく容易に
探針を記録面に接近させることができ、また、電圧印加
によって電荷蓄積を容易に行なうことができた(再生操
作によって確認)。更に、上述した装置によって光照射
を行ったところ、蓄積電荷の消失が生じ、係る装置にお
いても記録、消去が容易に行えることがわかった。
Example 1 Recording and erasing of data was attempted on the recording medium produced in Example 2 in the same manner as in Example 3. A block diagram of the apparatus used is shown in FIG. The difference from Embodiment 3 is that the light irradiation 36 uses the output light of a semiconductor laser 34 (center wavelength ~ 65 pm), which is passed through a collimator 35 and narrowed down to a beam diameter of about 1 pm.
0 nm, output approximately 4 mW). By irradiating from diagonally above, light irradiation could be performed without removing the probe or the like. As for the recording operation, as in Example 1, the probe could be easily brought close to the recording surface without destroying the recording medium or the recording area, and charge could be easily accumulated by applying a voltage ( (confirmed by playback operation). Furthermore, when light irradiation was performed using the above-mentioned apparatus, it was found that the accumulated charge disappeared, and recording and erasing could be performed easily even in such an apparatus.

尚、本実施例では照射領域はスポット形状、即ちビーム
径で制限される範囲であったが、光源を固定したまま、
記録媒体14を設置しているXYステージ32を水平方
向に動かすことによって光照射領域を走査させ、広範囲
にわたる光照射を行うことは容易である。具体的には、
STMの水平方向の粗動機構31を用いて係る目的を達
成することができる。即ち、STM粗動粗動上横て設け
られた駆動系は、本実施例で示したリニア・アクチュエ
ータに限らず一般に、0.1gmオーダ以下の分解能、
精度を有しており、記録媒体を相対的に動かし光ビーム
を走査させる機構として最適である。また、別途、走査
機構を設ける必要がないことから記録装置と消去装置を
併設する場合に、機構およびシステム全体が複雑化、大
型化する事なく、容易に実現することが可能である。
In this example, the irradiation area was limited by the spot shape, that is, the beam diameter, but with the light source fixed,
By moving the XY stage 32 on which the recording medium 14 is placed in the horizontal direction, it is easy to scan the light irradiation area and irradiate a wide range of light. in particular,
This purpose can be achieved using the STM horizontal coarse movement mechanism 31. In other words, the STM coarse motion and coarse motion drive systems installed horizontally are not limited to the linear actuator shown in this embodiment, but generally have a resolution on the order of 0.1 gm or less.
It has high precision and is ideal as a mechanism for moving the recording medium relatively and scanning the light beam. Further, since there is no need to separately provide a scanning mechanism, when a recording device and an erasing device are installed together, it is possible to easily realize the mechanism and the entire system without complicating or increasing the size.

但し、37M記録と光消去を同時に、かつ非同期で行う
必要がある場合などに於いては、STM用粗動機構とは
独立した光走査機構を設けること、具体的には従来公知
のミラーを用いた光ビーム走査系などを用いることで本
発明の目的を達成することができる。走査機構、方式は
本発明を何等制限するものではない。
However, in cases where it is necessary to perform 37M recording and optical erasing simultaneously and asynchronously, it is necessary to provide an optical scanning mechanism independent of the coarse movement mechanism for STM, and specifically, to use a conventionally known mirror. The object of the present invention can be achieved by using a light beam scanning system or the like. The scanning mechanism and method do not limit the present invention in any way.

[発明の効果] 本発明によれば、簡便な消去機構を有し、かつ高密度(
io−’〜10−6μm2 /ビット)な記録が可能な
記録・再生装置を提供することができる。また、多数ビ
ットの同時消去が可能で、多量のデータ消去に対する再
現性を高め、更に消去操作の高速応答を可能にした。
[Effects of the Invention] According to the present invention, it has a simple erasing mechanism and has a high density (
It is possible to provide a recording/reproducing device capable of recording data of io-' to 10-6 μm2/bit). In addition, it is possible to erase multiple bits simultaneously, improving reproducibility when erasing large amounts of data, and enabling high-speed response to erasing operations.

また、本発明の記録・再生・消去装置は、半導体メモリ
で通常用いられている様な複雑なパターンないしマトリ
ックス回路を必要としないため記録媒体に限らず装置全
体の小型化に適している。
Further, the recording/reproducing/erasing device of the present invention does not require complicated patterns or matrix circuits that are normally used in semiconductor memories, and is therefore suitable for downsizing not only the recording medium but the entire device.

更に、記録媒体に関し安価な有機材料を用いることが可
能で、かつ製造プロセスが簡単であることから経済的な
面での効果も著しい。
Furthermore, since it is possible to use inexpensive organic materials for the recording medium and the manufacturing process is simple, it has a significant economic effect.

【図面の簡単な説明】[Brief explanation of drawings]

第1図は絶縁性薄膜/光導電性薄膜界面を記録領域とし
、光消去機構を有した記録媒体を用いた本発明の記録・
再生・消去装置の概略図、第2図はグレイン状の上部微
細電極を記録領域とした本発明で用いる記録媒体の断面
の概略図、第3図はLEDからの光を照射して消去を行
う本発明の記録・再生・消去装置の概略図、第4図は記
録・再生装置として用いたSTMのブロック構成図、第
5図はレーザ光による消去装置を併せ有する記録・再生
装置のブロック構成図、第6図はへテロ構造の絶縁膜界
面に電荷を蓄積し、記録・再生を行なう従来の装置の概
略図である。 第4図 23フィクロコニピユータ 2!4氏示秩置 (
FIG. 1 shows the recording and recording method of the present invention using a recording medium having an insulating thin film/photoconductive thin film interface as a recording area and having a photo-erasing mechanism.
A schematic diagram of a reproducing/erasing device; FIG. 2 is a schematic cross-sectional diagram of a recording medium used in the present invention in which a grain-shaped upper fine electrode is used as a recording region; FIG. 3 is a diagram of erasing by irradiating light from an LED. A schematic diagram of the recording/reproducing/erasing device of the present invention, FIG. 4 is a block diagram of the STM used as the recording/reproducing device, and FIG. 5 is a block diagram of the recording/reproducing device including an erasing device using a laser beam. , FIG. 6 is a schematic diagram of a conventional device for recording and reproducing by accumulating charges at the interface of an insulating film of a heterostructure. Figure 4 23 Ficroconipiuta 2!

Claims (16)

【特許請求の範囲】[Claims] (1)少なくとも下地電極と光導電性薄膜を有し、電荷
蓄積可能な記録領域を有する記録媒体、及び探針電極を
備えたことを特徴とする記録・再生装置。
(1) A recording/reproducing device comprising a recording medium having at least a base electrode and a photoconductive thin film and a recording area capable of accumulating charge, and a probe electrode.
(2)前記電荷蓄積領域が互いに孤立した微細構造体か
ら成る請求項(1)に記載の記録・再生装置。
(2) The recording/reproducing device according to (1), wherein the charge storage regions are composed of mutually isolated fine structures.
(3)前記記録領域と探針との3次元的な相対距離を制
御する機構を有する請求項(1)に記載の記録・再生装
置。
(3) The recording/reproducing apparatus according to (1), further comprising a mechanism for controlling a three-dimensional relative distance between the recording area and the probe.
(4)前記下地電極と探針との間にバイアス電圧を印加
する機構を有する請求項(1)に記載の記録・再生装置
(4) The recording/reproducing apparatus according to claim 1, further comprising a mechanism for applying a bias voltage between the base electrode and the probe.
(5)バイアス電圧印加時に前記下地電極と探針間に流
れる電流の大小から、電極・探針間ないし記録領域・探
針間の距離を検出し、これを制御する機構を有する請求
項(3)又は(4)に記載の記録・再生装置。
(5) Claim (3) further comprising a mechanism for detecting and controlling the distance between the electrode and the probe or between the recording area and the probe from the magnitude of the current flowing between the base electrode and the probe when a bias voltage is applied. ) or the recording/playback device described in (4).
(6)前記光導電性薄膜が有機材料から成る請求項(1
)に記載の記録・再生装置。
(6) Claim (1) wherein the photoconductive thin film is made of an organic material.
) The recording/playback device described in .
(7)前記有機薄膜が、30nm以下の膜厚を有する請
求項(6)に記載の記録・再生装置。
(7) The recording/reproducing device according to (6), wherein the organic thin film has a thickness of 30 nm or less.
(8)前記有機薄膜が、少なくとも親水性部位と疎水性
部位とを併有する有機化合物の単分子膜または単分子累
積膜によって構成される請求項(6)又は(7)に記載
の記録・再生装置。
(8) The recording/reproduction according to claim (6) or (7), wherein the organic thin film is constituted by a monomolecular film or a monomolecular cumulative film of an organic compound having at least a hydrophilic site and a hydrophobic site. Device.
(9)前記記録領域が、島状構造体を示す蒸着金属薄膜
から成る請求項(2)に記載の記録・再生装置。
(9) The recording/reproducing device according to (2), wherein the recording area is made of a vapor-deposited metal thin film exhibiting an island-like structure.
(10)前記記録領域が、グレイン構造を有する多結晶
ないし微結晶性の媒体から成る請求項(2)に記載の記
録・再生装置。
(10) The recording/reproducing device according to (2), wherein the recording area is made of a polycrystalline or microcrystalline medium having a grain structure.
(11)少なくとも下地電極上に形成された光導電性薄
膜層と電荷蓄積可能な記録層から成る記録媒体、及び係
る記録媒体への光照射機構、並びに探針電極を備えたこ
とを特徴とする記録・消去装置。
(11) A recording medium comprising at least a photoconductive thin film layer formed on a base electrode and a recording layer capable of accumulating charge, a light irradiation mechanism for the recording medium, and a probe electrode. Recording/erasing device.
(12)少なくとも下地電極上に形成された光導電性薄
膜層と電荷蓄積可能な記録層から成る記録媒体、及び係
る記録媒体への光照射機構、並びに探針電極を備えたこ
とを特徴とする記録・再生・消去装置。
(12) A recording medium comprising at least a photoconductive thin film layer formed on a base electrode and a recording layer capable of accumulating charge, a light irradiation mechanism for the recording medium, and a probe electrode. Recording/playback/erasing device.
(13)少なくとも下地電極と光導電性薄膜を有し、電
荷蓄積可能な記録領域を有する記録媒体と探針電極を用
い、下地電極と探針電極との間に電圧を印加し、所望の
記録領域に電荷を注入することで記録を行なうことを特
徴とする記録方法。
(13) Using a probe electrode and a recording medium that has at least a base electrode and a photoconductive thin film and a recording area capable of accumulating charges, a voltage is applied between the base electrode and the probe electrode to perform desired recording. A recording method characterized by recording by injecting charge into an area.
(14)少なくとも下地電極と光導電性薄膜を有し、電
荷蓄積可能な記録領域を有する記録媒体と探針電極を用
い、下地電極と探針電極との間に電圧を印加することに
より電荷を注入された記録領域に対して、探針電極を用
いて前記記録領域の電荷量を検出することにより記録の
再生を行なうことを特徴とする再生方法。
(14) Using a probe electrode and a recording medium that has at least a base electrode and a photoconductive thin film and a recording area capable of accumulating charges, charge is generated by applying a voltage between the base electrode and the probe electrode. A reproducing method characterized in that recording is reproduced by detecting the amount of charge in the injected recording region using a probe electrode.
(15)少なくとも下地電極と光導電性薄膜を有し、電
荷蓄積可能な記録領域を有する記録媒体と探針電極を用
いて、下地電極と探針電極との間に電圧を印加すること
により電荷を注入された記録領域に対して、光照射を行
なうことによって光導電性薄膜の導電性を一時的に高め
、該薄膜を通して蓄積された電荷の放電を行ない記録を
消去することを特徴とする消去方法。
(15) Using a probe electrode and a recording medium that has at least a base electrode and a photoconductive thin film and has a recording area capable of accumulating charges, charges are generated by applying a voltage between the base electrode and the probe electrode. Erasing is characterized by temporarily increasing the conductivity of the photoconductive thin film by irradiating the recording area injected with light, and discharging the accumulated charge through the thin film to erase the record. Method.
(16)少なくとも下地電極と光導電性薄膜を有し、電
荷蓄積可能な記録領域を有する記録媒体と探針電極を用
い、下地電極と探針電極との間に電圧を印加し、所望の
記録領域に電荷を注入することで記録を行い、また、該
電荷量を探針を用いて検出することで再生を行い、更に
光照射によって、前記光導電性薄膜の導電性を一時的に
高め、係る薄膜を通して蓄積された電荷の放電を行なう
ことによって消去することを特徴とする記録・再生・消
去方法。
(16) Using a probe electrode and a recording medium that has at least a base electrode and a photoconductive thin film and a recording area capable of accumulating charges, a voltage is applied between the base electrode and the probe electrode to perform desired recording. Recording is performed by injecting a charge into the area, reproduction is performed by detecting the amount of charge using a probe, and the conductivity of the photoconductive thin film is temporarily increased by irradiation with light. A recording/reproducing/erasing method characterized by erasing by discharging accumulated charges through such a thin film.
JP2206864A 1990-01-19 1990-08-06 Recording / erasing method, recording / erasing device, recording / reproducing / erasing device Expired - Fee Related JP2859719B2 (en)

Priority Applications (4)

Application Number Priority Date Filing Date Title
DE69127381T DE69127381T2 (en) 1990-01-19 1991-01-15 Information processing system and information processing method
EP91300259A EP0438256B1 (en) 1990-01-19 1991-01-15 Information processing system and information processing method.
CA002034296A CA2034296C (en) 1990-01-19 1991-01-16 Information processing apparatus, information processing method, and recording medium employed therefor
US07/641,916 US5162819A (en) 1990-01-19 1991-01-16 Information processing apparatus, information processing method, and recording medium employed therefor

Applications Claiming Priority (2)

Application Number Priority Date Filing Date Title
JP1034190 1990-01-19
JP2-10341 1990-01-19

Publications (2)

Publication Number Publication Date
JPH03263633A true JPH03263633A (en) 1991-11-25
JP2859719B2 JP2859719B2 (en) 1999-02-24

Family

ID=11747490

Family Applications (1)

Application Number Title Priority Date Filing Date
JP2206864A Expired - Fee Related JP2859719B2 (en) 1990-01-19 1990-08-06 Recording / erasing method, recording / erasing device, recording / reproducing / erasing device

Country Status (1)

Country Link
JP (1) JP2859719B2 (en)

Cited By (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US5675532A (en) * 1994-07-28 1997-10-07 Kabushiki Kaisha Toshiba Recording medium and recording/reproduction method
US8553517B2 (en) 2002-10-14 2013-10-08 Samsung Electronics Co., Ltd. Magnetic medium using spin-polarized electrons and apparatus and method of recording data on the magnetic medium

Citations (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS6435744A (en) * 1987-07-31 1989-02-06 Canon Kk Reproducing device and reproducing method
JPS6435743A (en) * 1987-07-31 1989-02-06 Canon Kk Recorder and recording method

Patent Citations (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS6435744A (en) * 1987-07-31 1989-02-06 Canon Kk Reproducing device and reproducing method
JPS6435743A (en) * 1987-07-31 1989-02-06 Canon Kk Recorder and recording method

Cited By (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US5675532A (en) * 1994-07-28 1997-10-07 Kabushiki Kaisha Toshiba Recording medium and recording/reproduction method
US8553517B2 (en) 2002-10-14 2013-10-08 Samsung Electronics Co., Ltd. Magnetic medium using spin-polarized electrons and apparatus and method of recording data on the magnetic medium

Also Published As

Publication number Publication date
JP2859719B2 (en) 1999-02-24

Similar Documents

Publication Publication Date Title
US5389475A (en) Recording medium and information-erasing method
JP2859715B2 (en) Recording medium substrate and manufacturing method thereof, recording medium, recording method, recording / reproducing method, recording apparatus, recording / reproducing apparatus
EP0551966B1 (en) Recording device and reproducing device
JPS63161552A (en) Method and device for recording
JP2981804B2 (en) Information processing apparatus, electrode substrate used therein, and information recording medium
JPH05282717A (en) Manufacture of recording medium, and recording medium and information processor
JPS63161553A (en) Method and device for reproduction
US5162819A (en) Information processing apparatus, information processing method, and recording medium employed therefor
EP0553937B1 (en) Recording device and reproducing device
JP2859719B2 (en) Recording / erasing method, recording / erasing device, recording / reproducing / erasing device
JP2556520B2 (en) Recording device and recording method
JP2872662B2 (en) Recording medium and its erasing method
JP3044421B2 (en) Recording medium manufacturing method
JPS63204531A (en) Reproducing device
JP3054895B2 (en) recoding media
JP3220914B2 (en) Recording medium manufacturing method
JP2926522B2 (en) Recording medium, method of manufacturing the same, and information processing apparatus
JP2992908B2 (en) Method for manufacturing substrate electrode and method for manufacturing recording medium
JP3261539B2 (en) Manufacturing method of electrode substrate
JPH0528549A (en) Recording medium and information processor
JP2936290B2 (en) Method for manufacturing recording medium, recording medium, and information processing apparatus having the same
JP2866165B2 (en) Recording medium, method of manufacturing the same, information processing method, and information processing apparatus
JPH0395739A (en) Recording and reproducing device and recording and reproducing method
JPH04143942A (en) Formation of track
JPH03295044A (en) Production of recording medium

Legal Events

Date Code Title Description
LAPS Cancellation because of no payment of annual fees