JPH03261804A - Three-dimensional measuring instrument - Google Patents

Three-dimensional measuring instrument

Info

Publication number
JPH03261804A
JPH03261804A JP2059863A JP5986390A JPH03261804A JP H03261804 A JPH03261804 A JP H03261804A JP 2059863 A JP2059863 A JP 2059863A JP 5986390 A JP5986390 A JP 5986390A JP H03261804 A JPH03261804 A JP H03261804A
Authority
JP
Japan
Prior art keywords
edge
image
formulae
measured
processing area
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Pending
Application number
JP2059863A
Other languages
Japanese (ja)
Inventor
Mitsuhiro Ishihara
満宏 石原
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Takaoka Toko Co Ltd
Original Assignee
Takaoka Electric Mfg Co Ltd
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Takaoka Electric Mfg Co Ltd filed Critical Takaoka Electric Mfg Co Ltd
Priority to JP2059863A priority Critical patent/JPH03261804A/en
Publication of JPH03261804A publication Critical patent/JPH03261804A/en
Pending legal-status Critical Current

Links

Landscapes

  • Length Measuring Devices By Optical Means (AREA)
  • Image Processing (AREA)
  • Image Analysis (AREA)

Abstract

PURPOSE:To easily measure three-dimensional coordinates by performing operations to a local area including an edge part of an object to be measured within an image, and determining the position of the edge with not larger than the resolving power of pixels. CONSTITUTION:An image of an edge of an object to be measured is adjusted to be within a local area. While a lens barrel is moved in a direction of the Z axis, the variance of the luminance of the image is detected. In other words, when the luminance of the image is expressed by f(x,y), formulae I-III hold. In the formulae, N is the total number of pixels within the local processing area. A point where N is a maxi mum is regarded as the focusing position, so that the position of the local processing area in the Z direction is obtained from the moved distance. Thereafter, the focused positions m1, m2 and m3 (formula IV) are obtained. If one regards that the ideal edge for which the obtained first, second and third order moments become equal is the desired edge, it is given by formula V, in which P1+P2=1 and P1 and P2 are the ratios of occupation of h1 and h2 repectively, in the entirety. When equation V is solved, formulae VI, VII and VIII are obtained, and the position of the edge is deter mined from P1. Accordingly, three-dimensional coordinates can be measured in a simple manner without considering a threshold value or the change of the illumination.

Description

【発明の詳細な説明】 「産業上の利用分野」 本発明は立体形状寸法測定において使用される計測装置
の構造に関するものである。
DETAILED DESCRIPTION OF THE INVENTION "Field of Industrial Application" The present invention relates to the structure of a measuring device used in three-dimensional shape measurement.

「従来の技術」 これまで、画像処理技術を応用した寸法測定装置は、画
像の輝度を白黒2値に圧縮しく以下2値画像と呼ぶ)そ
の画像上で、白と黒の境界位置を決定することにより、
計測を行なっていた。
``Prior art'' Up until now, dimension measuring devices that apply image processing technology have compressed the brightness of an image into a black and white binary image (hereinafter referred to as a binary image), and determined the boundary position between white and black on that image. By this,
I was taking measurements.

しかし、2値画像での計測は、次のような欠点を有して
いる。
However, measurement using binary images has the following drawbacks.

(1)白と黒にわける輝度のレベル(以下しきい値と呼
ぶ〉を決定する必要がある。この値は精度に密接にかか
わっている重要な値であり、照明条件などによって、細
かく調整する必要があり、わずられしいものである。
(1) It is necessary to determine the brightness level that separates white and black (hereinafter referred to as the threshold). This value is an important value that is closely related to accuracy, and must be finely adjusted depending on lighting conditions, etc. It is necessary and a burden.

(2)2値画像の計測分解能は、画素数によって制限さ
れており、現在の工業用ビデオカメラにより、高精度の
測定を行おうとすると、視野が著じるしく小さくなる。
(2) The measurement resolution of binary images is limited by the number of pixels, and when attempting to perform highly accurate measurements with current industrial video cameras, the field of view becomes significantly smaller.

これらの欠点がもたらすことは、装置の取扱いづらさで
ある。そのため、現在は専門家が、最初に各種パラメー
ター設定を行ない、その後はほとんど、される必要のな
いようにした、自動化装置としての使用にかぎられてい
た。
These drawbacks result in difficulty in handling the device. Therefore, at present, it has been limited to use as an automated device in which an expert first sets various parameters, and then there is little need to do so.

「課題を解決するための手段」 そこで本発明では、画像を2値化することなく、濃淡情
報を考慮して計測を行なうことにより、(1)しきい値
設定のわずられしさをなくし、(2)画素分解能以下の
計測分解能を得て、広い視野で計測可能であるようにし
た。
"Means for Solving the Problems" Accordingly, in the present invention, by performing measurement in consideration of gradation information without binarizing the image, (1) eliminating the troublesomeness of threshold setting; (2) A measurement resolution lower than the pixel resolution was obtained to enable measurement over a wide field of view.

そして、その広い視野内でいろいろな場所を簡単に計測
できるように、ポインティングデバイスにより簡単に計
測領域を指定可能である構造とすることにした。
In order to easily measure various locations within that wide field of view, we decided to create a structure that allows the measurement area to be easily specified using a pointing device.

「作用」 このようにすることにより、 (1)取り扱いに習熟する、つまり専門家である必要な
く簡単に誰でも使用でき、 (2〉自動化装置としてのみならず、対話的な計測器と
しての使用も耐えるようになった。
"Function" By doing this, (1) Anyone can easily use it without having to be proficient in handling it, that is, be an expert, and (2) It can be used not only as an automation device but also as an interactive measuring instrument. I have also become able to tolerate it.

「実施例」 以下、本発明の一実施例を第1図以下の図を用いて説明
する。モニター2には、顕微鏡6に取りつけられたビデ
オカメラ5の映像が、本発明の本体の装置を通して表示
されている。モニター2上には、局所処理領域1が同時
に表示されており、この局所処理領域は、トラックボー
ル3により、画像上の任意の位置に移動可能である。顕
微鏡6の焦点合わせ方向の軸(以下Z軸と呼ぶ)には、
モーターが取りつけられており、本体からの信号により
、コントローラ7で制御される。また、顕微鏡6上のX
Yテーブル、およびZ軸には、エンコーダが取りつけら
れており、デコーダー8を介して、XYテーブルとZ軸
上の移動量が、本体に正確に伝えられる。
``Example'' An example of the present invention will be described below with reference to FIG. 1 and the following figures. On the monitor 2, an image from a video camera 5 attached to a microscope 6 is displayed through the device of the main body of the present invention. A local processing area 1 is simultaneously displayed on the monitor 2, and this local processing area can be moved to any position on the image using a trackball 3. The axis in the focusing direction of the microscope 6 (hereinafter referred to as the Z axis) is
A motor is attached and is controlled by a controller 7 based on signals from the main body. Also, the X on the microscope 6
Encoders are attached to the Y table and the Z axis, and the amount of movement on the XY table and the Z axis is accurately transmitted to the main body via the decoder 8.

まず、局所処理領域をその内部に被験物のエツジの像が
くる位置に移動する。ボタン押下で計測を開始する。ま
ず、Z軸方向に鏡筒を移動させながら局所処理領域内の
画像の輝度分散を求める。
First, the local processing area is moved to a position where the image of the edge of the test object is located inside the local processing area. Start measurement by pressing the button. First, while moving the lens barrel in the Z-axis direction, the brightness dispersion of the image within the local processing area is determined.

つまり、画像の輝度をf (x、y)で表わすとすれば
ここに、Nは局所処理領域内すべての画素の個数である
That is, if the brightness of the image is expressed by f (x, y), then N is the number of all pixels within the local processing area.

一般に分散が大きいほど、合焦状態が良いことを表わし
ているので、この値の最大の点を検出して、合焦位置と
する。移動距離から局所処理領域部の2方向の位置を求
めることができる。次に、合焦位置でm□、m2及び  1 m、(3次モーメント〉−Σf’<x、y+を求める。
Generally, the larger the dispersion, the better the in-focus state, so the point with the maximum value is detected and set as the in-focus position. The position of the local processing area in two directions can be determined from the movement distance. Next, m□, m2 and 1 m, (3rd moment>-Σf'<x, y+ are determined at the in-focus position.

理想エツジは、第2図に示すように2つの輝度で表わさ
れると考えられる。求めた1次、2次、3次のモーメン
トが、等しくなるような理想エツジを求めるエツジとす
ると Σ P)h′j==mt  (i=1.2.3)J=1 ここに、P、 十P2=1 (Pi 、P2はhlとh
lそれぞれの全体中で占める割合を示している)この方
程式を解くと、 σ2 =7712−ml このように求まり、このP□からエツジ位置を決定でき
る。この値は、実数値つまり画素分解能以下の精度でで
てくる。
The ideal edge is considered to be represented by two luminances as shown in FIG. If we want to find an ideal edge where the obtained first, second, and third moments are equal, then Σ P)h'j==mt (i=1.2.3)J=1 Here, P , 10P2=1 (Pi, P2 are hl and h
By solving this equation, σ2 =7712-ml is obtained, and the edge position can be determined from this P□. This value is obtained as a real value, that is, with an accuracy less than the pixel resolution.

焦点合せのアルゴリズムは、このエツジ検出のアルゴリ
ズムの途中経過値であるため、同一のハードウェアとす
ることが可能であり、高速化にも都合が良いことがわか
る。
Since the focusing algorithm is an intermediate value of the edge detection algorithm, it is possible to use the same hardware, which is advantageous for speeding up.

「発明の効果」 本発明により、しきい値や照明変動を気にせずに簡単に
三次元座標が計測できる。また、要求精度に対して従来
の42〜102倍の視野を持つことができ、その視野内
の任意位置をたやすく計測できるため作業効率の向上が
大きく期待できる。
"Effects of the Invention" According to the present invention, three-dimensional coordinates can be easily measured without worrying about threshold values or illumination fluctuations. In addition, it can have a field of view 42 to 102 times larger than the conventional one for the required accuracy, and can easily measure any position within the field of view, so it is expected to greatly improve work efficiency.

【図面の簡単な説明】[Brief explanation of drawings]

第1図は、本発明の一実施例を説明するための図、第2
図は理想エツジを示す図である。 1:局所処理領域   2:モニター 3ニドラツクボール  4:装置本体 5;ビデオカメラ   6;顕微鏡 7;コントローラ   8:デコーダ
FIG. 1 is a diagram for explaining one embodiment of the present invention, and FIG.
The figure shows an ideal edge. 1: Local processing area 2: Monitor 3 Nidrak ball 4: Device body 5; Video camera 6; Microscope 7; Controller 8: Decoder

Claims (1)

【特許請求の範囲】[Claims] 被験物の外形形状をビデオカメラにより、撮像し、得ら
れた画像からデジタル画像処理により、該被験物の外形
寸法を非接触で計測する装置において、画像内の該被験
物のエッジ部分を含む局所領域に対して、演算を施し、
画素分解能以下でエッジ位置を決定し、また、該局所領
域内のヒストグラムの分散を光学レンズ、該被験物間の
距離を変化させながら、計算することにより合焦点の位
置を決定し、該被験物上の1点の三次元座標を決定する
機能を有し、該局所領域は、ポインティングデバイスに
より、画像内の任意の位置へ移動可能であることを特徴
とした三次元計測装置。
In a device that images the external shape of a test object with a video camera and measures the external dimensions of the test object in a non-contact manner by digital image processing from the obtained image, Perform calculations on the area,
Determine the edge position below the pixel resolution, and determine the position of the focal point by calculating the dispersion of the histogram within the local area while changing the distance between the optical lens and the test object. A three-dimensional measuring device having a function of determining three-dimensional coordinates of one point above, and the local area can be moved to an arbitrary position within an image using a pointing device.
JP2059863A 1990-03-13 1990-03-13 Three-dimensional measuring instrument Pending JPH03261804A (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP2059863A JPH03261804A (en) 1990-03-13 1990-03-13 Three-dimensional measuring instrument

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP2059863A JPH03261804A (en) 1990-03-13 1990-03-13 Three-dimensional measuring instrument

Publications (1)

Publication Number Publication Date
JPH03261804A true JPH03261804A (en) 1991-11-21

Family

ID=13125439

Family Applications (1)

Application Number Title Priority Date Filing Date
JP2059863A Pending JPH03261804A (en) 1990-03-13 1990-03-13 Three-dimensional measuring instrument

Country Status (1)

Country Link
JP (1) JPH03261804A (en)

Cited By (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US5404163A (en) * 1992-07-14 1995-04-04 Mitutoyo Corporation In-focus detection method and method and apparatus using the same for non contact displacement measurement

Cited By (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US5404163A (en) * 1992-07-14 1995-04-04 Mitutoyo Corporation In-focus detection method and method and apparatus using the same for non contact displacement measurement

Similar Documents

Publication Publication Date Title
CN100442141C (en) Image projection method and device
CA2078556C (en) Computer assisted video surveying and method therefor
US10578426B2 (en) Object measurement apparatus and object measurement method
JP5997989B2 (en) Image measuring apparatus, control method thereof, and program for image measuring apparatus
CN101013028A (en) Image processing method and image processor
CN102313525B (en) Laser beam parallelism regulating system and regulating method thereof
JP3825383B2 (en) 3D shape measuring method and 3D shape measuring apparatus
KR100508994B1 (en) Critical dimension measurement method and apparatus capable of measurement below the resolution of an optical microscope
US10613308B2 (en) Method and microscope for measuring and calculating heights on curved surface of microscope slide
JPH03261804A (en) Three-dimensional measuring instrument
JP4228430B2 (en) Focus position determination method and apparatus
CN114166187A (en) Mobile terminal-based quadratic element image measuring method and device
CN210862528U (en) High-precision rapid navigation light source
JPH07110216A (en) Method and instrument for measuring vertical and lateral movement of speckle pattern utilizing laser light
JP3146255B2 (en) Micro Dimension Measurement Method
JP3042773B2 (en) 3D motion analyzer
JP2005069795A (en) Predetermined part registration method of dimension measuring apparatus
JP7262800B2 (en) 3D image generation system, 3D image generation method, 3D image generation program, and recording medium
JPH03110404A (en) Fine size measuring instrument
JPH07139909A (en) Method for measuring/controlling position of viewpoint
Amari et al. Analysis of dynamic motion distance measurements detection in 3-axis for binocular vision
US20180210186A1 (en) Image processing apparatus, image processing system, microscope system, image processing method and computer-readable recording medium
CN113640980A (en) Image measurement system, image measurement method, image measurement program, and image measurement storage medium
JP2001264031A (en) Shape-measuring method and device
JPH01242905A (en) Method for measuring actual size of visual device