JPH03260154A - Production of nonwoven fabric - Google Patents

Production of nonwoven fabric

Info

Publication number
JPH03260154A
JPH03260154A JP5244990A JP5244990A JPH03260154A JP H03260154 A JPH03260154 A JP H03260154A JP 5244990 A JP5244990 A JP 5244990A JP 5244990 A JP5244990 A JP 5244990A JP H03260154 A JPH03260154 A JP H03260154A
Authority
JP
Japan
Prior art keywords
nozzle
orifice
nonwoven fabric
japanese patent
diameter
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Granted
Application number
JP5244990A
Other languages
Japanese (ja)
Other versions
JP2952678B2 (en
Inventor
Hideo Isoda
英夫 磯田
Hideaki Ishihara
石原 英昭
Shigeki Tanaka
茂樹 田中
Takashi Arimoto
有本 尚
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Toyobo Co Ltd
Original Assignee
Toyobo Co Ltd
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Toyobo Co Ltd filed Critical Toyobo Co Ltd
Priority to JP5244990A priority Critical patent/JP2952678B2/en
Publication of JPH03260154A publication Critical patent/JPH03260154A/en
Application granted granted Critical
Publication of JP2952678B2 publication Critical patent/JP2952678B2/en
Anticipated expiration legal-status Critical
Expired - Fee Related legal-status Critical Current

Links

Landscapes

  • Nonwoven Fabrics (AREA)

Abstract

PURPOSE:To obtain the title bulky ultrathin nonwoven fabric having excellent uniformity in high productivity by using a nozzle having a cut out in which a flow channel of suction fluid is made in such a way that the fluid flows in opposing directions only around an orifice. CONSTITUTION:The objective nonwoven fabric is obtained by using a melt blow nozzle having a cut out in which a flow channel of suction fluid is made so that the suction fluid flows in opposing directions only around an orifice. spinning is preferably carried out at >=5,000sec<-1>, especially 8,000-30,000sec<-1> shear rate.

Description

【発明の詳細な説明】 (産業上の利用分野) 本発明は、均繊度の良い極細繊維から成るバルキーな不
織布の製造法に関する。
DETAILED DESCRIPTION OF THE INVENTION (Field of Industrial Application) The present invention relates to a method for producing bulky nonwoven fabrics made of ultrafine fibers with good uniformity.

(従来の技術) メルトブロー法の極細化の効率的製造法に関して多くの
提案が成された。
(Prior Art) Many proposals have been made regarding efficient manufacturing methods for ultrafine melt blowing.

特公昭41−7883号公報に記載された方法は牽引流
体をヘッダー内で均一化する方法で糸切れしない条件を
示すが、糸径は1デニールと太い。
The method described in Japanese Patent Publication No. 7883/1983 is a method in which the traction fluid is made uniform within the header and provides a condition in which yarn breakage does not occur, but the yarn diameter is as large as 1 denier.

特公昭61−1523号公報にはヘッダー内の圧力均一
化による牽引流体の斑低減化が示されているが、この方
法は生産性向上の点で問題がある。
Japanese Patent Publication No. 61-1523 discloses a technique for reducing unevenness in the traction fluid by equalizing the pressure within the header, but this method has problems in improving productivity.

特公昭43−30018号公報の方法はオリフィスをス
リット状にして高吐出化したものであるが、糸斑が大き
い。特公昭43−30017号公報、特公昭43−20
248号公報、特公昭49−6768号公報に示された
方法はダブル牽引法の例だが糸径が太いものの例である
The method disclosed in Japanese Patent Publication No. 43-30018 uses a slit-shaped orifice to achieve high discharge, but the thread unevenness is large. Special Publication No. 43-30017, Special Publication No. 43-20
The methods shown in Japanese Patent Publication No. 248 and Japanese Patent Publication No. 49-6768 are examples of the double traction method, but they are examples of yarns with a large diameter.

牽引流体の有効活用法に関しては特公昭43−2233
3号公報に示される方法は牽引流体を膨張圧縮させるも
ので糸径の太いものにを効である。
Regarding the effective use of traction fluid, see Japanese Patent Publication No. 43-2233.
The method disclosed in Publication No. 3 expands and compresses the traction fluid, and is effective for yarns with a large diameter.

オリフィス回りの構造を改良したものについては特公昭
44−13210号公報、特公昭44−22232号公
報、特公昭44−22525号公報、特公昭44−25
871号公報、特公昭44−25872号公報、特公昭
47−44446号公報等に方法が開示されているが、
これらの方法は何れも糸径が太い、糸斑が大きい等の問
題がある。
For improved structures around the orifice, see Japanese Patent Publications No. 13210/1970, Japanese Patent Publication No. 22232/1972, Japanese Patent Publication No. 22525/1973, and Japanese Patent Publication No. 22525/1973.
Methods are disclosed in Japanese Patent Publication No. 871, Japanese Patent Publication No. 44-25872, Japanese Patent Publication No. 47-44446, etc.
All of these methods have problems such as thick thread diameter and large thread unevenness.

製造条件の改良法としては特公昭44−12848号公
報には牽引流体条件が開示されているが糸径は太いもの
で糸斑も大きい。特公昭5B−33511号公報には低
粘度化によるものが示されているが孔径は太く糸斑も大
きいものである。
As a method for improving manufacturing conditions, Japanese Patent Publication No. 44-12848 discloses traction fluid conditions, but the yarn diameter is large and yarn unevenness is large. Japanese Patent Publication No. 5B-33511 discloses a method of lowering the viscosity, but the pore diameter is large and the thread unevenness is large.

特開平1−156561号公報に均繊度の改良法が開示
されている。この方法は、特公昭56−33511号公
報の条件に合わすため分子量を分解剤で下げる方法でオ
リフィス径は0.3mmと太く、吐出量も0.2g/分
孔と生産性が低いものであり、糸径は請求範囲には0.
1−5μmのものが示されているが実施例では1.4μ
mで変動率は0.15が最も良い結果である。すなわち
低粘度化しても孔径が太いと極細化は困難であることが
示されている。
JP-A-1-156561 discloses a method for improving the uniformity of fineness. This method uses a decomposing agent to lower the molecular weight in order to meet the conditions set forth in Japanese Patent Publication No. 56-33511, and the orifice diameter is as large as 0.3 mm, and the discharge rate is low at 0.2 g/min, resulting in low productivity. , the thread diameter is 0.
1-5 μm is shown, but in the example it is 1.4 μm.
The best result is a variation rate of 0.15 in m. In other words, it has been shown that even if the viscosity is lowered, it is difficult to make the pores extremely fine if the pore diameter is large.

特公昭50−10992号公報には混合紡糸し片成分を
溶出し極細化することが開示されているがこの方法は生
産性が劣る。
Japanese Patent Publication No. 50-10992 discloses mixing and spinning to elute the piece components and make the fibers extremely fine, but this method has poor productivity.

特公昭80−22100号公報には冷却促進のため液滴
を付与するこが示されているが、この方法は糸径を細く
すると糸斑が著しくなり好ましくない。
Japanese Patent Publication No. 80-22100 discloses applying droplets to promote cooling, but this method is not preferable because it causes noticeable unevenness when the thread diameter is reduced.

特公昭58−12930号公報にはリップ背面にバック
スペイサ−を入れる例が示されているが、牽引流体の均
一化と節約に若干効果はあるが生産性向上は少ない。従
来技術からみて均繊度良く極細化するには孔径を細くし
て高吐出化するのが好ましいが加工上管長を10倍以上
長く出来ない為、ノズルの耐圧が持たず高吐出化ができ
ない。この為孔径の太いノズルで高吐出量で製造しよう
とすると極細化出来なくなる。
Japanese Patent Publication No. 58-12930 discloses an example in which a back spacer is provided on the back surface of the lip, but this is somewhat effective in equalizing and saving the traction fluid, but does not improve productivity much. From the viewpoint of the prior art, it is preferable to make the hole diameter thinner and increase the discharge in order to obtain ultra-fine fineness with good uniformity, but because the pipe length cannot be increased by more than 10 times due to processing, the nozzle does not have the pressure resistance and high discharge cannot be achieved. For this reason, if you try to manufacture a high discharge amount using a nozzle with a large hole diameter, you will not be able to make it extremely fine.

(発明が解決しようとする課題) 上述のごとく糸径か細くかつ均繊度の良好なものを高生
産性では得られていない。この課題を解決するためには
オリフィスの孔径を細くしても高吐出量化出来るように
する必要がある。本発明は、この課題を解決し高生産性
で極細かつ均繊度の良好な繊維から成る不織布を提供し
ようとするものである。
(Problems to be Solved by the Invention) As mentioned above, yarns with a small diameter and good uniformity cannot be obtained with high productivity. In order to solve this problem, it is necessary to be able to increase the discharge amount even if the diameter of the orifice is made smaller. The present invention aims to solve this problem and provide a highly productive nonwoven fabric made of ultrafine fibers with good uniformity.

(課題を解決するための手段) 本発明は、前記課題を解決するために、次の手段を採用
するものである。すなわち、本発明は、不織布を製造す
る際に、牽引流体の流路がオリフィスの回りのみ牽引流
体が対向する方向から流れる切り欠きを持つノズルを用
いることを特徴とする不織布の製造法である。
(Means for Solving the Problems) The present invention adopts the following means in order to solve the above problems. That is, the present invention is a method for manufacturing a nonwoven fabric characterized by using a nozzle having a notch in which the flow path of the traction fluid flows only around an orifice from the direction opposite to the traction fluid.

(作用) 本発明における牽引流体の流路はオリフィス回りのみに
対向する方向から流れるような切り欠きをもつ。
(Function) The flow path of the traction fluid in the present invention has a notch that allows the flow to flow from the opposite direction only around the orifice.

切り欠き以外の部分は流路の厚みを加えられ導入孔とス
リット状の牽引流体流路との厚みより厚くなり耐圧が高
くなる。更に切り欠き部以外の部分はリップで外部から
支えられ補強された構造となり、この部分はより耐圧が
向上している。すなわち牽引流体流路のみがノズル耐圧
に係わる弱い部分となり、従来のスリット状の牽引流体
流路全体が弱い部分となる構造より著しく耐圧が向上す
る。具体的には例えば導入孔がスリット状で幅5冒■オ
リフィスとの接続部の開き角45度で流体流路が矩形で
深さと幅が0.3s■、孔間ピッチ1關の場合のノズル
を仮定するとこのような構造のノズルは例えば5US6
30マルテンサイトE処理品で作成されノズルの開き角
75度の場合では耐力85kg/■■とするとオリフィ
ス径0.15.、、孔長1,5璽■では安全率4倍で5
00 kg / cJ以上の耐圧となり従来公知型のス
リット状流体流路の耐圧50 kg / c+1より1
0倍以上の耐圧向上になる。
The thickness of the flow path is added to the portion other than the notch, which is thicker than the thickness of the introduction hole and the slit-shaped traction fluid flow path, and has a higher pressure resistance. Furthermore, the parts other than the notch are supported and reinforced from the outside by the lip, and this part has improved pressure resistance. In other words, only the traction fluid flow path is the weak part related to the nozzle pressure resistance, and the pressure resistance is significantly improved compared to the conventional structure in which the entire slit-shaped traction fluid flow path is the weak part. Specifically, for example, a nozzle in which the introduction hole is slit-shaped, the opening angle of the connection part with the orifice is 45 degrees, the fluid flow path is rectangular, the depth and width are 0.3 seconds, and the pitch between the holes is 1 degree. Assuming that, a nozzle with such a structure is, for example, 5US6
If it is made of 30 martensite E-treated product and the nozzle opening angle is 75 degrees, the yield strength is 85 kg/■■, and the orifice diameter is 0.15. ,,for a hole length of 1.5 mm, the safety factor is 4 times 5.
It has a pressure resistance of 00 kg/cJ or more, which is 1 compared to the pressure resistance of the conventionally known slit-shaped fluid flow path of 50 kg/c+1.
The withstand voltage is improved by more than 0 times.

更にこの構造は牽引流体の流路がスリット状流路より0
.3倍の断面積のため同じ牽引力なら牽弓流体の流量も
0.4倍以下とできる。
Furthermore, in this structure, the flow path of the traction fluid is 0.
.. Since the cross-sectional area is three times larger, the flow rate of the drag fluid can be reduced by 0.4 times or less with the same traction force.

このノズルの牽引流体の流路である切り欠き部は高速の
流体が流れるので、このとき境界層の形成により流速が
低下しない形状かつ断面積とする必要がある。流速が境
界層の発達により減速されると牽引力の低下により繊維
の極細化が困難となり好ましくない。好ましい切り欠き
の幅および深さは少なくとも0.251以上より好まし
くは0.3mm以上である。切り欠きを大きくし過ぎる
と耐圧が低下するので幅は0.5−n以内、深さは0.
411以内が好ましい。
Since high-speed fluid flows through the notch, which is the flow path for the pulling fluid of this nozzle, it is necessary to have a shape and cross-sectional area that will not reduce the flow velocity due to the formation of a boundary layer. If the flow velocity is reduced due to the development of a boundary layer, the traction force will be reduced, making it difficult to make the fibers extremely fine, which is not preferable. The width and depth of the notch are preferably at least 0.251 mm, more preferably 0.3 mm or more. If the notch is made too large, the withstand pressure will decrease, so the width should be within 0.5-n and the depth should be 0.5-n.
It is preferably within 411.

切り欠き形状は矩形、半円形、半楕円形等が採用できる
。また牽引流体の導入部の対向する角度は好ましくは6
0度以上より好ましくは75度から90度である。この
ような本発明の方法に用いられるノズルの先端部分の1
例の概念図を第1図に示す。図中のオリフィス形状は丸
断面、切り欠き流路断面は矩形である。1は溶融ポリマ
ー通路、2は高温、高速噴流体通路を示す。
The cutout shape can be rectangular, semicircular, semielliptical, etc. Further, the facing angle of the introduction part of the traction fluid is preferably 6
The angle is more preferably 75 degrees to 90 degrees. 1 of the tip part of the nozzle used in such a method of the present invention
A conceptual diagram of an example is shown in FIG. The orifice in the figure has a round cross section, and the cutout flow path has a rectangular cross section. 1 indicates the molten polymer passage, and 2 indicates the high temperature, high velocity jet passage.

本発明の方法ではオリフィス径は細いほうがポリマーの
吐出線速度が速くなりドラフト比を低くできるので好ま
しい。オリフィス径が太過ぎると実質ドラフト比が大き
くなりミクロには吐出ポリマーの変形速度が大きくなっ
て切断することがあり好ましくない。好ましいオリフィ
ス径と吐出量の関係は剪断速度で5000秒1以上であ
る。より好ましくは8000秒1以上30000秒伺以
下である。このときの好ましいポリマーの粘度は500
ボイズ以上2000ポイズ以下、より好ましくは700
ポイズ以上1500ポイズ以下である。粘度は低く過ぎ
ると繊維の均繊度が悪くなり糸切れしやすい。高過ぎる
と細い繊維とならないので好ましくない。牽引流体の速
度はオリフィス出口で音速前後となる構造にするのが好
ましい。
In the method of the present invention, it is preferable that the orifice diameter be smaller because the polymer discharge linear velocity can be increased and the draft ratio can be lowered. If the orifice diameter is too large, the effective draft ratio becomes large, and the deformation speed of the discharged polymer increases at a micro level, which may lead to breakage, which is not preferable. A preferable relationship between the orifice diameter and the discharge amount is a shear rate of 5000 seconds or more. More preferably, it is 8,000 seconds or more and 30,000 seconds or less. The preferred viscosity of the polymer at this time is 500
Boise or more and 2000 poise or less, more preferably 700 poise
It is not less than poise and not more than 1500 poise. If the viscosity is too low, the uniformity of the fibers will be poor and yarn breakage will occur easily. If it is too high, it is not preferable because the fibers will not be thin. It is preferable that the velocity of the traction fluid be around the sonic velocity at the orifice exit.

理由はよく判らないがそうすると高吐出時でも最も効率
良く細くできる。これは構造上容易な形状でかつ高吐出
量のときオリフィス出口までは音速を越えた流体の牽引
流体を供給し、オリフィス出口で音速としリップ出口ま
での間でに供給した牽引流体は膨張加速され効率良く吐
出ポリマーを細化させることが出来るためと推定される
I don't really understand the reason, but if you do this, you can achieve the most efficient thinning even during high discharge. This has a simple shape in terms of structure, and when the discharge amount is high, the traction fluid is supplied at a speed exceeding the sonic speed to the orifice exit, and the traction fluid that is supplied to the lip exit is expanded and accelerated. It is presumed that this is because the discharged polymer can be made thinner efficiently.

本発明の方法では吐出ポリマーの紡糸温度はポリマーの
融点プラス10℃以上80℃以下が好ましい。紡糸温度
が低いと溶融粘度が高くなり好ましくなく高過ぎると熱
分解によるトラブルが発生するので好ましくない。ただ
し非常に低温の融点を持ち耐熱性の良好なものはこの限
りではない。
In the method of the present invention, the spinning temperature of the discharged polymer is preferably 10°C or more and 80°C or less above the melting point of the polymer. If the spinning temperature is too low, the melt viscosity will increase, which is undesirable, and if it is too high, troubles due to thermal decomposition will occur, which is not preferred. However, this does not apply to those that have a very low melting point and good heat resistance.

牽引流体の温度は少なくともポリマーの融点以上融点プ
ラス200℃以下好ましくは融点プラス20℃以上融点
プラス100℃以下である。
The temperature of the traction fluid is at least above the melting point of the polymer and below the melting point plus 200°C, preferably above the melting point plus 20°C and below the melting point plus 100°C.

理由は明らかではないが現象から推定すると温度が低く
すぎるとオリフィス先端を冷却するためか糸切れが多発
し高すぎると毛管破断を生じるのか再び糸切れが多発す
る。牽引流体の温度は本発明の要件である切り欠き型流
路をもつノズルを使う限り適温が存在する。
The reason is not clear, but it can be inferred from the phenomenon that if the temperature is too low, thread breakage occurs frequently, probably because the orifice tip is cooled, and if the temperature is too high, thread breakage occurs frequently again, probably due to capillary breakage. As long as a nozzle having a notched flow path, which is a requirement of the present invention, is used, the temperature of the traction fluid will be at an appropriate temperature.

本発明の方法は溶融紡糸が可能な全てのポリマーに適用
できる。
The method of the present invention is applicable to all polymers that can be melt spun.

かくして紡出された繊維はサク/iiン機能を有する引
取りネットで引取られ不織布の形態に形成される。所望
に応じ融着させたいときはノズル−ネット間を短くし融
着させないときはノズル−ネット間を長くする。あまり
長くするとロープ状物が増加するので少なくともノズル
−ネット間は1m以内とするのが好ましい。特記すべき
は本発明の方法は従来法より牽引流体量が少ないため同
伴流も少なく流下風速が低速となりしたがってノズル−
ネット間距離は従来法より短くできる。このことは、ま
た不織布を著しくソフトかつバルキーなものとすること
を可能とした。不織布は必要に応じ以降熱処理、スパン
レースやニードルパンチ等の絡合処理、熱プレスやエン
ボスや超音波ウェルダー加工等の成形加工、樹脂加工等
の種々の加工を施すことができる。
The thus spun fibers are taken up by a take-up net having a pick-up function and formed into a nonwoven fabric. When fusion bonding is desired, the distance between the nozzle and the net is shortened, and when fusion bonding is not desired, the distance between the nozzle and the net is lengthened. If the length is too long, rope-like objects will increase, so it is preferable that the distance between the nozzle and the net is at least 1 m or less. It should be noted that in the method of the present invention, the amount of traction fluid is smaller than in the conventional method, so there is less entrained flow and the downstream wind speed is low, so the nozzle
The distance between nets can be made shorter than in the conventional method. This also allowed the nonwoven to be extremely soft and bulky. If necessary, the nonwoven fabric can be subjected to various treatments such as heat treatment, entanglement treatment such as spunlace or needle punching, molding treatment such as heat pressing, embossing, and ultrasonic welding, and resin treatment.

(実施例) 実施例 1 第1図に示す切り欠き形状、切り欠き輻および切り欠き
深さが0.3.、、孔間ピッチl am、オリフィス径
0.15■璽、対向角度75度のノズルを用い牽引流体
は290℃の空気を用いリップ背面圧力4 kg / 
cJで極限粘度0.65のポリエチレンテレフタレート
(PETと略す)を285℃にて吐出量を0.15g/
分孔から1.0g/分孔まで変更して押し出し極細繊維
化ノズル下40c、にて引取り目付40g//の不織布
をえた。結果を第1表に示す。
(Example) Example 1 The notch shape, notch radius, and notch depth shown in FIG. 1 are 0.3. ,, hole pitch lam, orifice diameter 0.15 mm, using nozzles with a facing angle of 75 degrees, using air at 290°C as the traction fluid, and using lip back pressure 4 kg/
Polyethylene terephthalate (abbreviated as PET) with an intrinsic viscosity of 0.65 in cJ is discharged at a rate of 0.15 g/
The pore size was changed to 1.0 g/pore, and a nonwoven fabric with a fabric weight of 40 g// was obtained by extrusion at the bottom 40c of the ultrafine fiber forming nozzle. The results are shown in Table 1.

比較の為通常のスリット型流体流路ノズルで同等糸径(
1μm)になる吐出量の条件を第1表に併記する。なお
このノズルは吐出量0.2g/分孔で破裂した。
For comparison, the same thread diameter (
Table 1 also lists the conditions for the ejection amount to give a discharge amount of 1 μm). Note that this nozzle burst at a discharge rate of 0.2 g/min.

第 表 第2表に示す。比較のため通常のスリット型流体流路の
ノズルで孔径0.2.■を用いた吐出量0゜2g/分孔
の例及び孔径0.11■、吐出量0.02g/分孔の例
を併記する。
It is shown in Table 2. For comparison, a normal slit-type fluid flow path nozzle with a hole diameter of 0.2. An example of a discharge rate of 0°2 g/minute hole using a hole diameter of 0.11 cm and a discharge rate of 0.02 g/minute hole are also shown.

孔径0.1■■のノズルは吐出量0.08g/分孔にて
破裂した。
A nozzle with a hole diameter of 0.1■■ burst at a discharge rate of 0.08 g/min.

第    2    表 実施例 2 実施例1と同じノズルを用い牽引流体として300℃の
空気を3 kg / C4の圧力で供給しメルトインデ
・lラス50のポリプロピレンを270℃にて吐出量を
変更して押し出し、ノズル下50c、にて引取り不織布
化した。得られた不織布の特性を(発明の効果) 本発明の方法によれば高生産性で均繊度の良好な極細繊
維からなる不織布が得られる。
Table 2 Example 2 Using the same nozzle as in Example 1, 300°C air was supplied as the traction fluid at a pressure of 3 kg/C4, and polypropylene with a melt index of 50 was extruded at 270°C by changing the discharge amount. It was taken up at 50c below the nozzle and made into a non-woven fabric. Characteristics of the Obtained Nonwoven Fabric (Effects of the Invention) According to the method of the present invention, a nonwoven fabric made of ultrafine fibers with high productivity and good uniformity can be obtained.

【図面の簡単な説明】[Brief explanation of drawings]

第1図は本発明の方法に用いるノズルの概念図の1例で
ある。 1・・・溶融ポリマー通路 2・・・高温、高速噴流体通路。 牙丁
FIG. 1 is an example of a conceptual diagram of a nozzle used in the method of the present invention. 1... Molten polymer passage 2... High temperature, high speed jet fluid passage. Fang Ding

Claims (2)

【特許請求の範囲】[Claims] (1)不織布を製造する際に、牽引流体の流路がオリフ
ィスの回りのみ牽引流体が対向する方向から流れる切り
欠きを持つメルトブローノズルを用いることを特徴とす
る不織布の製造法。
(1) A method for producing a nonwoven fabric, which uses a melt blow nozzle having a cutout in which the traction fluid flows only around an orifice from the opposite direction.
(2)剪断速度が5000秒^−1以上で紡糸する請求
項1に記載の不織布の製造法。
(2) The method for producing a nonwoven fabric according to claim 1, wherein the spinning is performed at a shear rate of 5000 seconds^-1 or more.
JP5244990A 1990-03-02 1990-03-02 Non-woven fabric manufacturing method Expired - Fee Related JP2952678B2 (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP5244990A JP2952678B2 (en) 1990-03-02 1990-03-02 Non-woven fabric manufacturing method

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP5244990A JP2952678B2 (en) 1990-03-02 1990-03-02 Non-woven fabric manufacturing method

Publications (2)

Publication Number Publication Date
JPH03260154A true JPH03260154A (en) 1991-11-20
JP2952678B2 JP2952678B2 (en) 1999-09-27

Family

ID=12915034

Family Applications (1)

Application Number Title Priority Date Filing Date
JP5244990A Expired - Fee Related JP2952678B2 (en) 1990-03-02 1990-03-02 Non-woven fabric manufacturing method

Country Status (1)

Country Link
JP (1) JP2952678B2 (en)

Also Published As

Publication number Publication date
JP2952678B2 (en) 1999-09-27

Similar Documents

Publication Publication Date Title
KR100560589B1 (en) Cold Air Meltblown Apparatus and Process
US7666343B2 (en) Process and apparatus for producing sub-micron fibers, and nonwovens and articles containing same
US6114017A (en) Micro-denier nonwoven materials made using modular die units
US3959421A (en) Method for rapid quenching of melt blown fibers
KR100644346B1 (en) Method of and Apparatus for Manufacturing Longitudinally Aligned Nonwoven Fabric
JP3037420B2 (en) Method and apparatus for treating meltblown filaments
US3528129A (en) Apparatus for producing nonwoven fleeces
US4496508A (en) Method for manufacturing polypropylene spun-bonded fabrics with low draping coefficient
WO2006071346A1 (en) Low turbulence die assembly for meltblowing apparatus
JPH0660448B2 (en) Extrusion method and extrusion die apparatus with central air jet
KR100713760B1 (en) Meltblown Web
JP2911963B2 (en) Equipment for producing fibers
JPH03260154A (en) Production of nonwoven fabric
JP2586125B2 (en) Long-fiber nonwoven fabric and its manufacturing method
JP3758063B2 (en) Spinneret for melt blow and method for producing nonwoven fabric
JPH04174753A (en) Nonwoven filament cloth
JPH1121753A (en) Production of slit-spun melt-blow nonwoven fabric
JPH05132811A (en) Spinneret for nonwoven fabric production apparatus
JPH04163359A (en) Melt-blowing nozzle

Legal Events

Date Code Title Description
S111 Request for change of ownership or part of ownership

Free format text: JAPANESE INTERMEDIATE CODE: R313113

R350 Written notification of registration of transfer

Free format text: JAPANESE INTERMEDIATE CODE: R350

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20080716

Year of fee payment: 9

LAPS Cancellation because of no payment of annual fees