JPH032583A - Method and instrument for optical length measurement - Google Patents

Method and instrument for optical length measurement

Info

Publication number
JPH032583A
JPH032583A JP1136994A JP13699489A JPH032583A JP H032583 A JPH032583 A JP H032583A JP 1136994 A JP1136994 A JP 1136994A JP 13699489 A JP13699489 A JP 13699489A JP H032583 A JPH032583 A JP H032583A
Authority
JP
Japan
Prior art keywords
light
optical path
wavelength
length
optical
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Granted
Application number
JP1136994A
Other languages
Japanese (ja)
Other versions
JPH0738024B2 (en
Inventor
Kazumi Ogawa
小川 一三
Sadahisa Warashina
禎久 藁科
Yoshihiko Mizushima
宜彦 水島
Koji Ichie
更治 市江
Morio Takechi
武市 盛生
Akira Takeshima
晃 竹島
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Hamamatsu Photonics KK
Original Assignee
Hamamatsu Photonics KK
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Hamamatsu Photonics KK filed Critical Hamamatsu Photonics KK
Priority to JP1136994A priority Critical patent/JPH0738024B2/en
Publication of JPH032583A publication Critical patent/JPH032583A/en
Publication of JPH0738024B2 publication Critical patent/JPH0738024B2/en
Anticipated expiration legal-status Critical
Expired - Fee Related legal-status Critical Current

Links

Landscapes

  • Optical Radar Systems And Details Thereof (AREA)

Abstract

PURPOSE:To measure the length of an optical path by measuring the required for the propagation of light with different wavelength and performing arithmetic operation according to a specific expression based upon meteorological observation data. CONSTITUTION:A YAG laser 5 emits basic light and a mode lock device 6 converts the output light of the laser 5 into a pulse train with a synchronizing signal generated by an original oscillation part 3 ad supplies the pulse train to an electrooptic switch 7 to generate a light pulse burst. Further, a light higher harmonic generation part 8 outputs the light pulse burst of the 2nd higher harmonic and an optical transmitting telescope 9 mixes and sends the two light pulse bursts to a reflection part 4 at a target point. Then a photodetecting arithmetic part 2 receives reflected light by a receiving telescope 10, and detects and modulates the pulse bursts of the basic light and higher harmonic light, and a phase comparing device 13 compares their phase differences from a synchronizing signal. An arithmetic unit 15 calculates the times t1 and t2 for the propagation of the basic light and higher harmonic light from a reference point to the target point, prescribes the refracting powers N1 and N2 of the wavelength light beams by equations I according to dry air density rhos and steam density rhow measured by a meteorological observation device 14 to calculate the length D of the optical path from an equation II.

Description

【発明の詳細な説明】 〔産業上の利用分野〕 本発明は光波を用いて基阜地点から目標地点までの光路
の長さをel定する光学的測長方法及び装置に関する。
DETAILED DESCRIPTION OF THE INVENTION [Field of Industrial Application] The present invention relates to an optical length measurement method and apparatus for determining the length of an optical path from a base point to a target point using light waves.

〔従来の技術〕[Conventional technology]

従来より光波の伝搬時間を計測して光路の長さを求める
方法及び装置が広く用いられている。
Conventionally, methods and devices for determining the length of an optical path by measuring the propagation time of a light wave have been widely used.

〔発明が解決しようとする課題〕[Problem to be solved by the invention]

従来より用いられている41す長方法および装置は、1
波長の光波を用いるものが大部分であった。すなわち、
光波の伝搬時間t、光路の温度T1気圧P、湿度RH等
を測定し、光路の屈折能N (T。
The conventionally used 41 length method and device are 1
Most of them used light waves of different wavelengths. That is,
The propagation time t of the light wave, the temperature T1 of the optical path, the atmospheric pressure P, the humidity RH, etc. are measured, and the refractive power N (T) of the optical path is measured.

P、RHl・・・)を推定し、光路の長さDをD= i
t/ (N+1)]  ・C より求めるものである。但し、Cは真空中の光速度とす
る。従って、正確なdIII長を行なうためには光路の
気象、即ち温度、気圧、湿度等を正確に知ることが不可
欠であった。環境条件が充分に制御された実験室や地下
トンネル等、また短い距離ならば、正確な気象測定が可
能であるから、従来の方法でも十分な測長確度が得られ
るので特に問題はなかった。
P, RHL...), and the length of the optical path D is calculated as D= i
t/(N+1)] ・C. However, C is the speed of light in vacuum. Therefore, in order to accurately measure the dIII length, it is essential to accurately know the weather of the optical path, ie, the temperature, pressure, humidity, etc. Accurate weather measurements can be made in a laboratory or underground tunnel where the environmental conditions are sufficiently controlled, or over short distances, so conventional methods can provide sufficient length measurement accuracy and pose no particular problem.

しかし、測量等でしばしば必要とされるように、大気中
で水平方向に数kmから数10kmを測長する場合には
、光路の平均屈折能が容易に推定できないため、大きな
問題か生じる。従って、当然に確度の高いalll長は
困難となる。光路に多くの気象観測器材を配置して測定
データを収集し、光路のより正確な平均屈折能を推定し
、この様な条件下で確度の高い測長を行なおうとの試み
もあるが、装置が大掛かりになる上、各気象観測器材の
校正方法等、新たな難問も生じるため十分な高精度は期
待てきなかった。
However, when measuring several kilometers to several tens of kilometers in the horizontal direction in the atmosphere, as is often required in surveying, a major problem arises because the average refractive power of the optical path cannot be easily estimated. Therefore, it is naturally difficult to obtain all lengths with high accuracy. Some attempts have been made to collect measurement data by placing many meteorological observation instruments in the optical path and estimate a more accurate average refractive power of the optical path, thereby performing highly accurate length measurements under such conditions. Not only would the equipment be large-scale, but new challenges would arise, such as how to calibrate each meteorological observation instrument, so high accuracy could not be expected.

一方、n種類の無極性物質で満たされた光路の屈折能N
は、1番目の116成物質の密度ρ1、波長に依存する
係数をR3とするなら、 なる関係が成立することを利用し、多波長の光波を用い
て光路の伝搬時間を測定することにより、気象観1fl
ll自体を不要にしてしまおうとする試みもある。
On the other hand, the refractive power N of an optical path filled with n types of nonpolar substances
If the density of the first 116 substance is ρ1 and the wavelength-dependent coefficient is R3, then by using the following relationship, and measuring the propagation time of the optical path using light waves of multiple wavelengths, Weather perspective 1fl
There are also attempts to make ll itself unnecessary.

波長の異なる2つの光波を用いる方法では、波長]、波
長2の光路が測定光路を伝搬するに要する時間1 .1
  を測定し、光路の乾燥空気密度をρ 、波長1と波
長2の屈折能をN とN2とした時に、 N1 =α1 °ρ3 N −α2 °ρ8 なる関係を規定し、光路の長さDを D= [t  →−a    (tl−tl)/(α 
   −α 2 )  コ  ・ C■ より求める。この方法では光路の水蒸気密度、すなわち
湿度をはじめから考慮していないので、到底高精度の1
lll長は望め得なかった。
In the method using two light waves with different wavelengths, the time required for the optical path of wavelength 2 to propagate through the measurement optical path is 1. 1
, and when the dry air density of the optical path is ρ, and the refractive powers of wavelength 1 and wavelength 2 are N and N2, we define the relationship N1 = α1 °ρ3 N − α2 °ρ8, and the length D of the optical path is D= [t →-a (tl-tl)/(α
−α 2) Calculated from C・C■. Since this method does not take into account the water vapor density, or humidity, in the optical path, it is extremely accurate.
I couldn't have expected it to be that long.

波長の異なる3つの光波を用いる方法では、波長1、波
長2、波長3の光波が測定光路を伝搬するに用する時間
t  、  t 2 、  t 3を測定し、光路の乾
燥空気密度をρ 、水蒸気密度をρ 、波長S    
                   W1、波長2
、波長3の屈折能をN  、N  、Nとした時に、 N −α  ・ρ +β  ・R7 11S  I N −α ・ρ 十β ・β1 2 2  s  2 N −α  ・ρ +β  ・ρい 3 3  S  3 なる関係を規定し、光路の長さDを、 D=[t    +((α   ・ β   −α  
 ・ β   )(t  −t  )l/+(α2−α
1)(β −β )−(α3−α1) (β −β )l  +  +(α ・β1−α1・β
 )  (t3−tl))/((α2α )  (β 
−β )−(α3−αl)(R2−β1))] ・C より求める。この方法は理論的にも優れているが、実現
する為には光源、送光制御装置、受光検出装置等、新技
術の開発が不可欠であり、現在、有効な装置を実現する
ことは困難である。
In the method using three light waves with different wavelengths, the times t, t2, and t3 used for the light waves of wavelengths 1, 2, and 3 to propagate through the measurement optical path are measured, and the dry air density in the optical path is expressed as ρ, The water vapor density is ρ, the wavelength S
W1, wavelength 2
, when the refractive powers at wavelength 3 are N, N, and N, N −α ・ρ + β ・R7 11S I N −α ・ρ 10β ・β1 2 2 s 2 N −α ・ρ + β ・ρ 3 3 S 3 , and the length D of the optical path is defined as D = [t + ((α ・ β − α
・β )(t −t )l/+(α2−α
1) (β - β ) - (α3 - α1) (β - β )l + + (α ・β1 - α1 ・β
) (t3-tl))/((α2α) (β
-β)-(α3-αl)(R2-β1))] - Determined from C. Although this method is excellent in theory, it requires the development of new technologies such as light sources, light transmission control devices, light reception detection devices, etc., and it is currently difficult to realize effective devices. be.

本発明は上記のような課題を解決することを目的として
いる。
The present invention aims to solve the above problems.

〔課題を解決するための手段および作用〕そこで本発明
では、光路の乾燥空気密度をρ 、水蒸気密度をρ 、
波長]と波長2の屈折能をN1とN2とした時に、 N =α ・ρ +β1 ・ρ1 1     1      s N =α ・ρ 十β2−ρ□ 2    2     s なる関係を規定すると、通常気象条件ではα 〉〉β 
 (ρ /ρ ) 1     1       w     sα 〉〉
β ・ (ρ /ρ ) 2     2       w     sなる関係
が成立することに着目し、 D−[t    +((α   十 β    ・ ρ
   / ρ   )1     ]、   1.  
 w   s(t 2  t l ) l / ((α
1+β1・ρ /ρ )−(α 十β ・ρ /v  
 s     2  2   vρ ))]  ・C なる、光路の長さ算出式を導出し、従来の方法および装
置に比べ緩やかな気象測定確度で、より高確度な測長を
容易に行なえるようにしたことを特徴にしている。
[Means and effects for solving the problem] Therefore, in the present invention, the dry air density in the optical path is ρ, the water vapor density is ρ,
When the refractive power at wavelength] and wavelength 2 are N1 and N2, we define the following relationship: N = α ・ρ + β1 ・ρ1 1 1 s α 〉〉β
(ρ /ρ ) 1 1 w sα 〉〉
Focusing on the relationship β ・ (ρ / ρ ) 2 2 w s , D−[t + ((α + β ・ ρ
/ρ)1], 1.
w s(t 2 t l ) l / ((α
1+β1・ρ/ρ )−(α 1β・ρ/v
s 2 2 vρ ))] ・C A formula for calculating the length of the optical path was derived, making it possible to easily perform more accurate length measurements with a lower meteorological measurement accuracy than conventional methods and devices. It is characterized by

〔実施例〕〔Example〕

以下、本発明の実施例を図面に基づいて説明する。 Embodiments of the present invention will be described below based on the drawings.

第1図は本発明に係わる光学的測長方法を用いて副長装
置を構成する場合の実施例のブロック図である。
FIG. 1 is a block diagram of an embodiment in which a sub-length device is constructed using the optical length measurement method according to the present invention.

第1図に示す測長装置は、光波を目標地点の反射部4に
向けて送信する送光部1と、反射部4からの反射光を受
信し、測長演算、処理、表示を行なう受光演算部2と、
送光部1と受光演算部2に同期信号を供給する原発振部
3と、送光部1から送られてきた光波を受光演算部2に
送り返す反射部4とを備えている。なお、送光部1と受
光部2と原発振部3は基準地点に、また反射部4は目標
地点に設置されているものとする。
The length measuring device shown in Fig. 1 includes a light transmitting section 1 that transmits light waves toward a reflecting section 4 at a target point, and a light receiving section that receives reflected light from the reflecting section 4 and performs length measurement calculation, processing, and display. Arithmetic unit 2;
It includes an original oscillation section 3 that supplies a synchronizing signal to the light transmitting section 1 and the light receiving computing section 2, and a reflecting section 4 that sends back the light waves sent from the light transmitting section 1 to the light receiving computing section 2. It is assumed that the light transmitting section 1, the light receiving section 2, and the original oscillating section 3 are installed at a reference point, and the reflecting section 4 is installed at a target point.

送光部1は基本光を発生するYAGレーザ5と、原発振
部3から出力される同期信号によりY、A Gレーザ5
の出力光をパルス列に変換するモードロック装置6と、
モードロック装置6の出力パルス列から光パルスバース
トを出力する電気光学スイッチ7と、電気光学スイッチ
の光パルスバーストを人力してその第2高調波すなわち
波長5B2nII1の光パルスバーストを出力する光高
調波発生部8と、電気光学スイッチ7と光高調波発生部
8の出力光パルスバーストを混合し目標地点の反射部4
に送信する送光望遠鏡9から構成されている。
The light transmitting unit 1 includes a YAG laser 5 that generates fundamental light, and a Y, AG laser 5 based on a synchronization signal output from the original oscillation unit 3.
a mode-locking device 6 that converts the output light of into a pulse train;
An electro-optical switch 7 that outputs an optical pulse burst from the output pulse train of the mode-locking device 6, and an optical harmonic generator that manually outputs the optical pulse burst of the electro-optical switch to output its second harmonic, that is, an optical pulse burst of wavelength 5B2nII1. The output light pulse burst of the electro-optical switch 7 and the optical harmonic generator 8 is mixed with the reflector 4 at the target point.
It consists of a transmitting telescope 9 that transmits light to.

受光演算部2は目標地点の反射部4て反射した光パルス
バーストを受信する受光望遠鏡10と、受光望遠鏡10
で受信された基本光のパルスバースト、光高調波のパル
スバーストをそれぞれ検波し復調電気信号に変換する括
本光検波部11、光高調波検波部12と、原発振部3の
同期信号と括本光検波部11、光高り1ソ波検波部12
の各復調電気信号の位相差を比較する位相比較装置13
と、光路の気象を測定する気象観測装置14と、位相比
較装置13の比較結果に基づき基本光と光高調波が基準
地点から目標地点までに伝搬するに要した時間を算出し
、気象観測装置14の測定結果に基づき、特許請求の範
囲に記載した式により測長結果を求める演算装置]5と
、演算結果を表示する表示装置16とを備えている。
The light receiving calculation section 2 includes a light receiving telescope 10 that receives the optical pulse burst reflected by the reflecting section 4 at the target point, and a light receiving telescope 10.
A main optical detection section 11, an optical harmonic detection section 12, which detect the fundamental light pulse burst and the optical harmonic pulse burst received at the Main optical detection section 11, optical height 1 solenoid detection section 12
a phase comparator 13 that compares the phase difference of each demodulated electrical signal;
Based on the comparison results between the meteorological observation device 14 that measures the weather on the optical path and the phase comparator 13, the time required for the fundamental light and optical harmonics to propagate from the reference point to the target point is calculated, and the meteorological observation device 14, and a display device 16 for displaying the calculation results.

原発振部3は水晶発振器17と送光部1、受光演算部2
に供給する同期信号を発生する同期信号発生部18から
なっている。
The original oscillation unit 3 includes a crystal oscillator 17, a light transmitting unit 1, and a light receiving calculation unit 2.
It consists of a synchronization signal generation section 18 that generates a synchronization signal to be supplied to the.

反射部4は複数のコーナーキューブ19より構成されて
いる。
The reflecting section 4 is composed of a plurality of corner cubes 19.

なお、送光望遠鏡つと受光望遠鏡10は同軸あるいは同
梁されている。
Note that the transmitting telescope and the receiving telescope 10 are coaxial or have the same beam.

本実施例、すなわち、 波長1=1064r+n+ 波長2 =  532 nm を用いて、光路の長さ1.00 kmを±0.5×10
6の確度で測定するには 光路の温度測定±  7℃ 気圧測定±400mb 湿度測定± 22% 伝搬時間i+tり定±  8ps の測定確度が必要である。
Using this example, that is, wavelength 1 = 1064r + n + wavelength 2 = 532 nm, the optical path length of 1.00 km is set to ±0.5 × 10
In order to measure with an accuracy of 6, the measurement accuracy of optical path temperature measurement ± 7°C, atmospheric pressure measurement ± 400 mb, humidity measurement ± 22%, and propagation time i + t constant ± 8 ps is required.

従来の方法、すなわち1波長を用いた測長法で同様な測
定を行なう場合に必要な測定確度、すなわち 光路の温度測定±0.5°C 気圧711り定±1.8mb 湿度測定± 55% 伝搬時間測定±1.66 ps と比べると、温度および気圧測定確度がより実現可能な
値となったことが判る。温度測定誤差は常に最も大きな
誤差要因となる為、温度測定の必要確度が緩和されたこ
とは特に意義深い。その一方、湿度および伝搬時間の測
定確度は厳しい値になったが現状技術でまだ充分対応で
きる値である。
The measurement accuracy required when performing similar measurements using the conventional method, i.e., the length measurement method using one wavelength, is as follows: optical path temperature measurement ± 0.5°C atmospheric pressure 711 ± 1.8 mb humidity measurement ± 55% When compared with the propagation time measurement of ±1.66 ps, it can be seen that the temperature and pressure measurement accuracy has become a more achievable value. Relaxing the required accuracy of temperature measurements is particularly significant because temperature measurement errors are always the largest source of error. On the other hand, although the measurement accuracy of humidity and propagation time has become a severe value, it is still a value that can be adequately handled with the current technology.

また、本発明は前述の実施例で示したYAGレーザの基
本波とその高調波を用いる方法および装置に限定される
ものではない。例えば、HeNeレーザとHo−Cdレ
ーザ、すなわち、波長1=633nm 波長2=442nm を用いても、同様に温度、気圧の測定確度が緩和される
効果が期待できる。
Furthermore, the present invention is not limited to the method and apparatus using the fundamental wave of the YAG laser and its harmonics as shown in the above embodiments. For example, even when using a HeNe laser and a Ho-Cd laser, that is, wavelength 1 = 633 nm and wavelength 2 = 442 nm, it can be expected that the measurement accuracy of temperature and atmospheric pressure will be similarly reduced.

因みに、この2波長を用いて前述と同様の測定を行なう
に必要測定確度は、 光路の温度測定±  7℃ 気圧測定±427mb 湿度i+tり定± 22% 伝搬時間4Iり定±  8ps である。
Incidentally, the measurement accuracy required to perform the same measurement as described above using these two wavelengths is as follows: optical path temperature measurement ±7°C atmospheric pressure measurement ±427 mb humidity i+t constant ±22% propagation time 4I constant ±8 ps.

なお、以上の評価は下記の論文を参考にして行なった。The above evaluation was made with reference to the following paper.

論  文 [JalIles C,Owens、 ”0ptica
l rel’ractive 1ndexof air
:Dependence on pressure、t
cvperature。
Paper [JalIles C, Owens, “0ptica
l rel'active 1ndexof air
:Dependence on pressure, t
cvperature.

and composition 、Applied 
0ptjcs、vol、6.no、l。
and composition, Applied
0ptjcs, vol, 6. No, l.

51−59.(1967)J 〔発明の効果〕 以上、説明した(、lに本発明によれば、従来の方法お
よび装置に比べ緩やかな気象測定確度で、より高確度な
測長を容易に行なえる光学的測長方法および装置を実現
できる。
51-59. (1967) J [Effects of the Invention] As explained above, according to the present invention, an optical system that can easily perform more accurate length measurement with a lower meteorological measurement accuracy than conventional methods and devices. A length measuring method and device can be realized.

【図面の簡単な説明】[Brief explanation of the drawing]

第1図は本発明の実施例の構成図である。 1・・送光部、2・・・受光演算部、3・・・原発振部
、4・・・反射部。
FIG. 1 is a block diagram of an embodiment of the present invention. 1...Light transmitting section, 2...Light receiving calculation section, 3...Original oscillation section, 4...Reflecting section.

Claims (1)

【特許請求の範囲】 1、波長1と波長2の異なる波長の光が基準地点から目
標地点まで伝搬するに要する時間t_1とt_2を測定
し、前記基準地点から目標地点までの光路の長さDを求
めるに際し、真空中の光速度をC、前記光路の乾燥空気
密度をρ_S、水蒸気密度をρ_W、波長1と波長2の
屈折能をN_1とN_2とした時に、 N_1=α_1・ρ_S+β_1・ρ_W N_2=α_2・ρ_S+β_2・ρ_W なる関係を規定し、 D=[t_1+{(α_1+β_1・ρ_W/ρ_S)
・(t_2−t_1)}/{(α_1+β_1・ρ_W
/ρ_S)−(α_2+β_2・ρ_W/ρ_S)}]
・C または、この近似展開式を用いることを特徴とする光学
的測長方法。 2、波長1と波長2の異なる波長の光が基準地点から目
標地点まで伝搬するに要する時間t_1とt_2を測定
し、前記基準地点から目標地点までの光路の長さDを求
めるに際し、真空中の光速度をC、前記光路の乾燥空気
密度をρ_S、水蒸気密度をρ_W、波長1と波長2の
屈折能をN_1とN_2とした時に、 N_1=α_1・ρ_S+β_1・ρ_W N_2=α_2・ρ_S+β_2・ρ_W なる関係を規定し、 D=[t_1+{(α_1+β_1・ρ_W/ρ_S)
・(t_2−t_1)}/{(α_1+β_1・ρ_W
/ρ_S)−(α_2+β_2・ρ_W/ρ_S)}]
・C または、この近似展開式を用いることを特徴とする光学
的測長装置。
[Claims] 1. Measure the time t_1 and t_2 required for light of different wavelengths, wavelength 1 and wavelength 2, to propagate from a reference point to a target point, and determine the length D of the optical path from the reference point to the target point. When calculating, when the speed of light in vacuum is C, the dry air density in the optical path is ρ_S, the water vapor density is ρ_W, and the refractive powers of wavelength 1 and wavelength 2 are N_1 and N_2, N_1=α_1・ρ_S+β_1・ρ_W N_2 =α_2・ρ_S+β_2・ρ_W, D=[t_1+{(α_1+β_1・ρ_W/ρ_S)
・(t_2-t_1)}/{(α_1+β_1・ρ_W
/ρ_S)−(α_2+β_2・ρ_W/ρ_S)}]
-C Or an optical length measurement method characterized by using this approximate expansion formula. 2. When measuring the time t_1 and t_2 required for light of different wavelengths (wavelength 1 and wavelength 2) to propagate from the reference point to the target point and finding the length D of the optical path from the reference point to the target point, When the speed of light in the optical path is C, the dry air density in the optical path is ρ_S, the water vapor density is ρ_W, and the refractive powers at wavelength 1 and wavelength 2 are N_1 and N_2, N_1=α_1・ρ_S+β_1・ρ_W N_2=α_2・ρ_S+β_2・ρ_W Define the relationship D=[t_1+{(α_1+β_1・ρ_W/ρ_S)
・(t_2-t_1)}/{(α_1+β_1・ρ_W
/ρ_S)−(α_2+β_2・ρ_W/ρ_S)}]
-C Or an optical length measuring device characterized by using this approximate expansion formula.
JP1136994A 1989-05-30 1989-05-30 Optical length measuring method and apparatus Expired - Fee Related JPH0738024B2 (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP1136994A JPH0738024B2 (en) 1989-05-30 1989-05-30 Optical length measuring method and apparatus

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP1136994A JPH0738024B2 (en) 1989-05-30 1989-05-30 Optical length measuring method and apparatus

Publications (2)

Publication Number Publication Date
JPH032583A true JPH032583A (en) 1991-01-08
JPH0738024B2 JPH0738024B2 (en) 1995-04-26

Family

ID=15188304

Family Applications (1)

Application Number Title Priority Date Filing Date
JP1136994A Expired - Fee Related JPH0738024B2 (en) 1989-05-30 1989-05-30 Optical length measuring method and apparatus

Country Status (1)

Country Link
JP (1) JPH0738024B2 (en)

Cited By (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2006300753A (en) * 2005-04-21 2006-11-02 National Institute Of Advanced Industrial & Technology Distance measuring equipment
JP2009236657A (en) * 2008-03-27 2009-10-15 Panasonic Electric Works Co Ltd Distance measuring apparatus

Cited By (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2006300753A (en) * 2005-04-21 2006-11-02 National Institute Of Advanced Industrial & Technology Distance measuring equipment
JP2009236657A (en) * 2008-03-27 2009-10-15 Panasonic Electric Works Co Ltd Distance measuring apparatus

Also Published As

Publication number Publication date
JPH0738024B2 (en) 1995-04-26

Similar Documents

Publication Publication Date Title
EP0194941A2 (en) Heterodyne interferometer system
US20110292371A1 (en) Method and Apparatus for a Pulsed Coherent Laser Range Finder
US10794733B2 (en) Optoelectronic device for distributed measurement by means of optical fibre
CN102278973B (en) Ultrashort pulse laser ranging system
Liu et al. Measurements of sound speed in the water by Brillouin scattering using pulsed Nd: YAG laser
JP5332103B2 (en) Lightwave radar device
CN108594257A (en) Tachogenerator and its scaling method based on Doppler effect and measurement method
JP7086335B2 (en) Polarization-maintained optical fiber spindle Difference time delay measuring device
CN108594258A (en) Amendment type tachogenerator and its calibration based on Doppler effect and measurement method
JPH032583A (en) Method and instrument for optical length measurement
CN108286943A (en) Displacement measurement optical system applied to lithography system workbench
CN108732580A (en) A kind of absolute distance measurement system and measurement method based on phase method Yu composite wave regular way
Zhao et al. Absolute angle-measurement with a dihedral mirror of the multi-longitudinal mode laser self-mixing sensor
US4397548A (en) Distance measuring system
Sokolov et al. Femtosecond laser-based absolute rangefinder with the possibility of traceability to the time and frequency standard
CN108037143B (en) Method and device for measuring refractive index of gas
Zhang et al. All-fiber mobile Doppler wind lidar for combined measurement of the wind field and precise distance to hard targets
JP2000171232A (en) Ultrasonic wave measuring instrument
US20220065993A1 (en) Data correction apparatus, measurement system, and correction method
Yamamoto et al. Basic study on real-time vibration displacement measurement using probe light modulated by phase-modulated RF signal
Guillory et al. A prototype of high accuracy telemeter for long-range application
JPH0367195A (en) Method and instrument for measuring temperature and humidity of atmospheric air by utilizing wave propagation
JPS6348025B2 (en)
JP2005062093A (en) Object sound detection method and its device
JPS6246227A (en) Method for measuring reflective point of optical part

Legal Events

Date Code Title Description
LAPS Cancellation because of no payment of annual fees