JPH0323835B2 - - Google Patents

Info

Publication number
JPH0323835B2
JPH0323835B2 JP16374482A JP16374482A JPH0323835B2 JP H0323835 B2 JPH0323835 B2 JP H0323835B2 JP 16374482 A JP16374482 A JP 16374482A JP 16374482 A JP16374482 A JP 16374482A JP H0323835 B2 JPH0323835 B2 JP H0323835B2
Authority
JP
Japan
Prior art keywords
manipulated
variable
variables
furnace
output
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Expired
Application number
JP16374482A
Other languages
Japanese (ja)
Other versions
JPS5956084A (en
Inventor
Yoshinori Nakamura
Kazuo Kagawa
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
SWCC Corp
Original Assignee
Showa Electric Wire and Cable Co
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Showa Electric Wire and Cable Co filed Critical Showa Electric Wire and Cable Co
Priority to JP16374482A priority Critical patent/JPS5956084A/en
Publication of JPS5956084A publication Critical patent/JPS5956084A/en
Publication of JPH0323835B2 publication Critical patent/JPH0323835B2/ja
Granted legal-status Critical Current

Links

Landscapes

  • Control Of Heat Treatment Processes (AREA)
  • Waste-Gas Treatment And Other Accessory Devices For Furnaces (AREA)
  • Feedback Control In General (AREA)
  • Control Of Temperature (AREA)

Description

【発明の詳細な説明】 本発明は複数炉の制御方式に関し、特に炉温の
ような制御量が多変数である複数炉の制御方式に
係わる。
DETAILED DESCRIPTION OF THE INVENTION The present invention relates to a control method for a plurality of furnaces, and particularly to a control method for a plurality of furnaces in which controlled variables such as furnace temperature are multivariable.

従来から、例えば1つのガス燃焼装置あるいは
電熱装置から複数個の炉(あるいは複数のゾーン
に仕切られた1つの炉)に熱風を供給して各炉
(あるいは各ゾーン)を所望の温度に制御するこ
とは極めてむずかしくほとんど実施されていな
い。従来行なわれている一般的な一実施例を第1
図a,bに示す。ダンパー1を介してダクト2に
より連通する燃焼炉3と、複数炉4a〜4c(あ
るいは複数のゾーン4a′〜4c′に仕切られた1つ
の炉4)に熱風を矢印方向に供給するブロア5
と、各炉4a〜4c(あるいは各ゾーン4a′〜4
c′)とそれぞれ直列に連結された各ダンパー6a
〜6cおよび冷却装置(図示せず)が付設された
例えば三方弁からなる各非干渉装置7a〜7c
と、ダクト2の温度、各炉4a〜4c(あるいは
各ゾーン4a′〜4c′)の温度をそれぞれ検出する
各熱電対8,9a〜9cとから構成されている。
Conventionally, for example, hot air is supplied from one gas combustion device or electric heating device to multiple furnaces (or one furnace partitioned into multiple zones) to control each furnace (or each zone) to a desired temperature. This is extremely difficult and is rarely practiced. The first example is a common example that has been carried out conventionally.
Shown in Figures a and b. A blower 5 that supplies hot air in the direction of the arrow to a combustion furnace 3 that communicates with a duct 2 via a damper 1, and a plurality of furnaces 4a to 4c (or one furnace 4 partitioned into a plurality of zones 4a' to 4c').
and each furnace 4a to 4c (or each zone 4a' to 4
c') and each damper 6a connected in series.
~6c and each non-interference device 7a~7c consisting of, for example, a three-way valve equipped with a cooling device (not shown).
and thermocouples 8, 9a to 9c that respectively detect the temperature of the duct 2 and the temperature of each furnace 4a to 4c (or each zone 4a' to 4c').

まず、ダンパー1を所定の開度にして熱風をブ
ロア5により各ダンパ6a〜6cを介して各炉4
a〜4c(あるいは各ゾーン4a′〜4c′)へ供給
する。そして熱電対9a〜9cにより温度T2
T4を検出し、ダンパー6a〜6cの開度を調整
して、各炉(あるいは各ゾーン4a′〜4c′)の温
度を所望の値に制御するため、各冷却装置によつ
て温度T2〜T4をコントロールし、各ダンパー6
a〜6cの1つのダンパー開閉による各炉温(あ
るいは他のゾーンの温度)への影響を非干渉装置
7a〜7cにより防止して、各炉温(あるいは各
ゾーンの温度)が所望の設定値になるよう、PID
制御することによつて温度制御を行なつていた。
First, the damper 1 is set to a predetermined opening degree, and hot air is passed through the dampers 6a to 6c to each furnace 4 by the blower 5.
a to 4c (or each zone 4a' to 4c'). Then, the temperature T 2 ~ is determined by thermocouples 9a to 9c.
In order to control the temperature of each furnace (or each zone 4a' to 4c') to a desired value by detecting T 4 and adjusting the opening degree of the dampers 6a to 6c, each cooling device controls the temperature T 2 ~Control T 4 , each damper 6
The non-interference devices 7a to 7c prevent the opening and closing of one of the dampers a to 6c from affecting each furnace temperature (or the temperature of other zones), so that each furnace temperature (or the temperature of each zone) is maintained at the desired set value. so that PID
The temperature was controlled by controlling the temperature.

しかしながら上述のように、冷却装置が付設さ
れた非干渉装置を介して経験的に手動により制御
することはできても、操作が煩雑で効率的に操作
することはきわめてむずかしい。しかも余計な熱
量を消費して省エネルギーにも反し、冷却装置が
付設された高価な非干渉装置を必要とするためコ
スト高となる要因となつていた。また、ダンパー
1の開度によつては非干渉装置を介しても制御で
きない場合も生じていた。
However, as mentioned above, even if it is possible to manually control the system using a non-interference device equipped with a cooling device, the operation is complicated and it is extremely difficult to operate it efficiently. Moreover, it consumes unnecessary heat, which is contrary to energy conservation, and requires an expensive non-interference device with a cooling device, which is a factor in increasing costs. Further, depending on the opening degree of the damper 1, there have been cases where control cannot be performed even through a non-interference device.

従つて、非干渉装置を介在せずに、多数の制御
量(本実施例の場合、各熱電対8,9a〜9cに
よる温度T1〜T4)を含む多数の測定量(本実施
例の場合、各熱電対9a〜9cによる温度T2
T4)が、多数の操作量(本実施例の場合、ダン
パー1,6a〜6cの開度)の何れか1つを操作
した時、それぞれ変動する場合の制御(多変数制
御)において、測定量の測定により、各制御量が
所望の値になるようにそれぞれの操作量を同時
に、かつ自動的に制御することは従来技術では不
可能であつた。また、このような多変数の制御量
と操作量の相関関係で、このような各対の制御量
−操作量に依る制御方式では制御量の安定性が悪
く、かつ応答性に劣るという難点があつた。
Therefore, it is possible to measure a large number of measured quantities (in this embodiment, including a large number of controlled variables (in the case of this embodiment, temperatures T 1 to T 4 by each thermocouple 8, 9a to 9c) without intervening a non-interfering device. In the case, the temperature T 2 ~ by each thermocouple 9a ~ 9c
In control (multivariable control) where T 4 ) varies when any one of a large number of manipulated variables (in the case of this example, the opening degrees of dampers 1, 6a to 6c) is manipulated, the measurement In the prior art, it has been impossible to simultaneously and automatically control each manipulated variable so that each controlled variable reaches a desired value by measuring the amount. Furthermore, due to the correlation between the controlled variable and the manipulated variable of multiple variables, a control method that relies on each pair of controlled variable and manipulated variable has the disadvantage that the stability of the controlled variable is poor and the responsiveness is poor. It was hot.

本発明の目的は非干渉装置を介在せずに複数炉
の多変数制御を行なうにあたり、炉温の制御量を
含む測定量の検出要素により、各制御量がそれぞ
れ所望の値(設定目標値)になるようにダンパー
の開度の操作量を同時に、かつ自動的に制御し
て、熱効率のよい省エネルギーとなる複数炉の制
御方式(系)および、安定性と応答性の一段と向
上した制御手段を提供することを目的とする。
The purpose of the present invention is to perform multivariable control of multiple furnaces without intervening a non-interfering device, so that each controlled variable can be set to a desired value (set target value) using a detection element for measured variables including the controlled variable of furnace temperature. We have developed a control method (system) for multiple furnaces that simultaneously and automatically controls the manipulated variable of the damper opening to achieve thermal efficiency and energy savings, and control means with further improved stability and responsiveness. The purpose is to provide.

以下、本発明による複数炉の制御方式を、複数
炉の温度制御に適用した実施例につき図面に基づ
き詳述する。
DESCRIPTION OF THE PREFERRED EMBODIMENTS Hereinafter, an embodiment in which the multiple furnace control method according to the present invention is applied to temperature control of multiple furnaces will be described in detail based on the drawings.

先ず、本実施例を第2図a,bに示す。ダンパ
ー10を介してダクト11により連通する1つの
燃焼装置12と、複数炉13a〜13c(あるい
は複数のゾーンに仕切られた1つの炉13)に熱
風を矢印方向に供給するブロア14と、各炉13
a〜13c(あるいは各ゾーン13a′〜13c′)
内を所望の温度に調節するダンパー15a〜15
cと、これらのダンパー15a〜15cの開度を
調節するステツピングモーターM1〜M3と、ダク
ト11および各炉13a〜13c(あるいは各ゾ
ーン13a′〜13c′)に配設された熱電対16,
17a〜17cとからなつている。各ステツピン
グモータM1〜M4は入力信号(実線で示す)が印
加され、かつ出力信号(点線で示す)が発生され
る。また、各熱電対16,17a〜17cからは
出力信号が生起される。これらの信号はI/O
(A/D)コントローラ18でA/D変換されて
CPU19(ヒユーレツトパツカード社製
HP1000Mシリーズ)へ供給され、そこで演算、
制御された信号が、再びコントローラ18でD/
A変換されて各ダンパー10,15a〜15cの
ステツピングモータM1〜M4へ印加される。
First, this embodiment is shown in FIGS. 2a and 2b. One combustion device 12 that communicates with a duct 11 via a damper 10, a blower 14 that supplies hot air in the direction of the arrow to multiple furnaces 13a to 13c (or one furnace 13 partitioned into multiple zones), and each furnace. 13
a to 13c (or each zone 13a' to 13c')
Dampers 15a to 15 that adjust the internal temperature to a desired temperature
c, stepping motors M1 to M3 that adjust the opening degrees of these dampers 15a to 15c, and thermocouples arranged in the duct 11 and each furnace 13a to 13c (or each zone 13a' to 13c'). 16,
It consists of 17a to 17c. Each of the stepping motors M 1 -M 4 receives an input signal (indicated by a solid line) and generates an output signal (indicated by a dotted line). Further, an output signal is generated from each thermocouple 16, 17a to 17c. These signals are I/O
(A/D) A/D converted by controller 18
CPU19 (manufactured by Heuretsu Patscard Co., Ltd.)
HP1000M series), where it is calculated and
The controlled signal is sent back to D/D by the controller 18.
The signal is converted into A and applied to the stepping motors M1 to M4 of each damper 10, 15a to 15c.

次に、かかる制御方式について第3図に基づき
詳述する。
Next, such a control system will be explained in detail based on FIG. 3.

同方式において、制御対象である複数炉20
の、温度の複数の制御量(点17a,17b,1
7cにおける温度) Y=Y1 Y2 Y3 を含む複数の測定量(点16,17a,17b,
17cにおける温度 Y1 Y2 Y3 Y4 がダンパーの開度の複数の操作量(ダンパー1
0,15a,15b,15cの開度) U=U1 U2 U3 U4 の何れによつても変動する場合に、該制御量がそ
の目標値 YR=YR1 YR2 YR3 に調節されるように操作量を制御せんとするもの
である。
In this method, multiple furnaces 20 to be controlled
, a plurality of temperature control variables (points 17a, 17b, 1
temperature at 7c) Y=Y 1 Y 2 Y 3 (points 16, 17a, 17b,
The temperature at 17c Y 1 Y 2 Y 3 Y 4 is the multiple manipulated variable of the damper opening (damper 1
0, 15a, 15b, 15c) When U=U 1 U 2 U 3 U 4 changes, the controlled variable is adjusted to its target value YR=YR 1 YR 2 YR 3. The aim is to control the amount of operation so that the

制御量Y1〜Y3は、引出し点21から引出され
て目標値YR1〜YR3の差引き点22へそれぞれ接
続され、制御量と目標値の差 Y1−YR1 〓 〓 Y3−YR3=ε1 〓 ε3 を得ている。
The controlled quantities Y 1 to Y 3 are drawn out from the extraction point 21 and connected to the subtraction points 22 of the target values Y R1 to Y R3 , respectively, and the difference between the controlled quantities and the target values Y 1 − YR 1 〓 〓 Y 3 − We have obtained YR 3 = ε 1 〓 ε 3 .

これらの差ε1…ε3は、演算要素Cに印加され
る。要素Cは C11…C13 〓 〓 C41…C43 と記述される行列で、 C11…C13 〓 〓 C41…C43ε1 〓 ε3=U′c1 〓 U′c3 の操作変数U′c1…U′c3を線形処理により与えるも
のである。これらの操作変数はそれぞれ積分器I1
〜I4に印加され、積分動作が遂行されて量Uc1
Uc4として各操作量U1〜U4に印加される。
These differences ε 1 ...ε 3 are applied to the calculation element C. Element C is a matrix written as C 11 ...C 13 〓 〓 C 41 ...C 43 , where C 11 ...C 13 〓 〓 C 41 ...C 43 ε 1 〓 ε 3 = U′c 1 〓 U′c 3 The manipulated variables U'c 1 ... U'c 3 are given by linear processing. These manipulated variables are each integrator I 1
~ I 4 is applied, an integral action is performed and the quantity Uc 1 ~
It is applied as Uc 4 to each manipulated variable U 1 to U 4 .

この量Ucは、積分機能が遂行される結果、次
のように表わされる。
This quantity Uc is expressed as follows as a result of performing an integral function.

Uc(t)=Uc(t−1)+C11…C13 〓 〓 C41…C43ε1 〓 ε3 この積分動作とは、積分器による線形の積分機
能のみならず、積分機能を含む、あるいはこれと
類似する動作を包含するものである。
Uc (t) = Uc (t-1) + C 11 ...C 13 〓 〓 C 41 ...C 43 ε 1 〓 ε 3This integral operation includes not only the linear integral function by the integrator, but also the integral function. Or it includes operations similar to this.

また、積分動作には、動的補償を含ませるよう
にしてもよい。
Further, the integral operation may include dynamic compensation.

なお、演算要素Cの、 C11…C13 〓 〓 C41…C43 の各要素は、制御対象としての複数炉20を自動
制御する前に、予じめその制御対象をモデルとし
て最適制御理論と、目標値YR1〜YR3を与えると
きの、操作変数U′c1〜U′c3、操作量U1〜U3、制
御量Y1〜Y3の挙動のシユミレーシヨンとにより
求め、最も適切に定められるものである。
(Control System Design for Furnace by
Using)(CAD“by K.Furuta et al at the
IFAC Symposium on the Theory and
Application of Digital Control、Delhi、
Session 20、1982参照)。
In addition, each element of calculation element C, C 11 ...C 13 〓 〓 〓 C 41 ...C 43 , is calculated based on the optimal control theory using the control object as a model before automatically controlling the multiple furnaces 20 as the control object. and a simulation of the behavior of the manipulated variables U′c 1 to U′c 3 , the manipulated variables U 1 to U 3 , and the controlled variables Y 1 to Y 3 when giving the target values Y R1 to Y R3 , and the most It shall be determined appropriately.
(Control System Design for Furnace by
Using) (CAD“by K.Furuta et al at the
IFAC Symposium on the Theory and
Application of Digital Control, Delhi;
See Session 20, 1982).

また、引出し点21は、フイードバツク要素F
を介して差引き点23に接続されている。これに
より、制御量Y1〜Y3を含む測定量Y1〜Y4にフイ
ードバツク動作が線形処理により遂行され、操作
量U1〜U4へ減算的に印加される。このフイード
バツク動作には、動的補償を含ませるようにして
もよい。フイードバツクの出力UFは、 UF=UF1 〓 UF4=F11…F13 〓 〓 F41…F43Y1 〓 Y3 である。
Further, the extraction point 21 is the feedback element F
It is connected to the subtraction point 23 via. As a result, a feedback operation is performed on the measured quantities Y 1 -Y 4 including the controlled quantities Y 1 -Y 3 by linear processing, and is subtractively applied to the manipulated quantities U 1 -U 4 . This feedback operation may include dynamic compensation. The feedback output UF is UF=UF 1 〓 UF 4 = F 11 ...F 13 〓 〓 F 41 ...F 43 Y 1 〓 Y 3 .

なお、 F11…F13 〓 〓 F41…F43 の各要素も、前述の最適制御理論と、シユミレー
シヨンとにより予じめ求められるものである。
It should be noted that each element of F 11 ...F 13 〓 〓 〓 F 41 ...F 43 is also determined in advance by the aforementioned optimal control theory and simulation.

更に、引出し点24は、フイードフオワード要
素Nを介して加合せ点23へ接続されている。こ
れにより、目標値YR1〜YR3にフイードフオワー
ド動作即ち比例動作が線形処理により遂行されて
操作量U1〜U4へ加算的に印加される。このフイ
ードフオワード動作には、動的補償を含ませるよ
うにしてもよい。フイードフオワードの出力UN
は、 UN=UN1 〓 UN4=N11…N13 〓 〓 N41…N43YR1 〓 YR3 である。
Furthermore, the extraction point 24 is connected to the summing point 23 via a feed forward element N. As a result, a feedforward operation, that is, a proportional operation is performed on the target values Y R1 to Y R3 by linear processing, and is applied additively to the manipulated variables U 1 to U 4 . This feed forward operation may include dynamic compensation. Feedforward output U N
is UN=UN 1 〓 UN 4 = N 11 …N 13 〓 〓 N 41 …N 43 YR 1 〓 YR 3 .

この場合、 N11…N13 〓 〓 N41…N43 の各要素も、前述と同様に最適制御理論と、シユ
ミレーシヨンとによつて予じめ求められるもので
ある。
In this case, each element of N 11 ...N 13 〓 〓 N 41 ...N 43 is also determined in advance by the optimal control theory and simulation as described above.

このように、操作量Uには、3種類の操作入力
が供給される結果、最終的には操作量Uは次のよ
うになる。
In this way, as a result of three types of operation inputs being supplied to the manipulated variable U, the manipulated variable U finally becomes as follows.

U=Uc−UF+UN 操作量へ供給されるこれらの和出力 Uc−UF+UN が所定の範囲を越えるときに、前記積分動作を停
止させるリミツタLが各操作ラインに介在されて
いる(第3図)。
U = Uc - U F + U N A limiter L is interposed in each operating line to stop the integral operation when the sum output Uc - U F + U N supplied to the manipulated variable exceeds a predetermined range. (Figure 3).

第3図において、点線で囲む部分はCPUを表
わし、目標値YR1〜YR3の入力インターフエース
にはA/D変換のための入出力装置I/O−1、
操作量U1〜U4の出力インターフエースにはD/
A変換のための入出力装置I/O−2、制御量
Y1〜Y3を含む測定量Y1〜Y4の後向き径路への入
力インターフエースにはA/D変換のための入力
装置I/O−3が介在されている(第3図)。
In FIG. 3, the part surrounded by a dotted line represents the CPU, and the input interface for target values Y R1 to Y R3 includes an input/output device I/O-1 for A/D conversion,
The output interface for the manipulated variables U 1 to U 4 has D/
Input/output device I/O-2 for A conversion, control amount
An input device I/O-3 for A/D conversion is interposed at the input interface to the backward path of the measured quantities Y 1 to Y 4 including Y 1 to Y 3 (FIG. 3).

このように構成されて成る多変数自動制御系は
次のように動作する。
The multivariable automatic control system configured as described above operates as follows.

先ず複数炉20を働らかせて、制御量Y1〜Y3
を含む測定量Y1〜Y4に応じて積分動作の初期値
を設定する(第4図)。次いで、CPUは目標値
YR1〜YR3、制御量Y1〜Y3を含む測定量Y1〜Y4
データを読み取る。CPUの演算要素C、フイー
ドバツク要素F、フイードフオワード要素Nはそ
れぞれ前述の行列式で表わされる値に従つてその
演算を遂行し、 U′c=U′c1 〓 U′c4=C11…C13 〓 〓 C41…C43ε1 〓 ε3 UF=UF1 〓 UF4=F11…F13 〓 〓 F41…F43Y1 〓 Y3 UN=UN1 〓 UN4=N11…N13 〓 〓 N41…N43YR1 〓 YR3 を計算する。
First, the multiple furnaces 20 are operated to control the control amount Y 1 to Y 3
The initial value of the integral operation is set according to the measured quantities Y 1 to Y 4 including (FIG. 4). Next, the CPU is set to the target value
Read data of measured quantities Y1 to Y4 including YR1 to YR3 and control quantities Y1 to Y3 . The calculation element C, the feedback element F, and the feedback element N of the CPU each perform their calculations according to the values expressed by the determinant described above, and U′c=U′c 1 〓 U′c 4 =C 11 …C 13 〓 〓 C 41 …C 43 ε 1 〓 ε 3 UF=UF 1 〓 UF 4 =F 11 …F 13 〓 〓 F 41 …F 43 Y 1 〓 Y 3 UN=UN 1 〓 UN 4 =N 11 …N 13 〓 〓 N 41 …N 43 YR 1 〓 Calculate YR 3 .

この操作量出力は、所定の範囲内に維持されて
制御される必要がある。このため、各操作量出力
値は、その範囲にあるか否かが判断され、若しも
その範囲内にあるときは、積分動作を遂行し、範
囲を越えるときは、リミツタLを介して出力せし
める(第4図)。
This manipulated variable output needs to be controlled and maintained within a predetermined range. Therefore, it is determined whether each manipulated variable output value is within the range, and if it is within the range, an integral operation is performed, and if it exceeds the range, it is output via limiter L. (Figure 4).

このようにして、各操作変数U′c1…はそれぞれ
積分器I1…I4が働らき、積分動作が遂行されて Uc(t)=Uc(t−1)+U′c1 〓 U′c4 の積分出力を生じる。
In this way, each manipulated variable U′c 1 ... is operated by an integrator I 1 ...I 4 , and the integration operation is performed so that Uc(t)=Uc(t-1)+U′c 1 〓 U′ produces an integral output of c 4 .

このような機能を導入すれば、本実施例のよう
に操作量としてのダンパーの開度が0〜100%で
あるにもかかわらず、動作開始時から積分動作を
遂行すれば、当初は操作量と目標値との差ε1…ε3
が大きいので、ダンパーの開度が事実上200ある
いは300%という不都合な操作量信号を発生する
ということが回避される。
If such a function is introduced, even though the damper opening degree as the manipulated variable is 0 to 100% as in this embodiment, if the integral operation is performed from the start of the operation, the manipulated variable will initially be and the target value ε 1 …ε 3
Since this is large, it is avoided that the damper opening degree effectively generates an undesirable manipulated variable signal of 200 or 300%.

こうして、積分器は目標値と制御量の差 ε=YR1 〓 YR3−Y1 〓 Y3 が零になるまで積分動作を繰返し、制御量が目標
値に可及的に接近するように制御ループを形成す
るものである。
In this way, the integrator repeats the integration operation until the difference between the target value and the controlled variable ε=YR 1 〓 YR 3 −Y 1 〓 Y 3 becomes zero, and controls the controlled variable so that it approaches the target value as much as possible. It forms a loop.

而して、操作量U U=Uc−UF+UN が計算され、制御対象20へ出力される。 Thus, the manipulated variable U U = Uc - U F + UN is calculated and output to the controlled object 20 .

この場合、フイードバツク要素Fのフイードバ
ツク出力UFは、制御系の固有の特性を安定化さ
せる機能をもつものである。
In this case, the feedback output UF of the feedback element F has the function of stabilizing the inherent characteristics of the control system.

一方、フイードフオワード要素Nの出力UFは、
目標値YRに制御量Yが迅速に接近するようにそ
の立上りを早めるもので、特に炉の動作開始時に
大きな効果を有する。この要素Nにより制御系の
応答性(レスポンス)は一段と向上する。
On the other hand, the output U F of the feed forward element N is
It accelerates the rise of the controlled variable Y so that it quickly approaches the target value YR , and has a particularly great effect at the start of furnace operation. This element N further improves the responsiveness of the control system.

こうして、操作量Uが制御対象20へ出力され
ると、次のサンプリングまで所定時間遅延させ、
再び次の動作が繰返される。
In this way, when the manipulated variable U is output to the controlled object 20, it is delayed for a predetermined time until the next sampling,
The following operation is repeated again.

上記実施例において、制御量、目標値は3個、
操作変数、操作量は4個、測定量に4個の場合に
ついて説明したが、それぞれl個、n個、m個
(l、n、mは正の整数で、n、m≧l)の場合
にも、本発明は等しく適用できるものである。
In the above embodiment, there are three controlled variables and target values,
We have explained the case where there are four manipulated variables and four manipulated quantities, and four measured quantities, but in the case where there are l, n, and m pieces, respectively (l, n, and m are positive integers, and n, m≧l). The present invention is equally applicable thereto.

以上の実施例からも明らかなように、本発明に
よれば、非干渉装置を介在せずに、制御対象とし
ての複数炉の温度の複数の制御量を含む測定量
が、ダンパーの開度の複数の操作量の何れによつ
ても変動する場合に、制御量をその目標値に調整
されるように操作量を制御するにあたり、制御量
と目標値の差から得られる操作変数のそれぞれに
積分動作を遂行して各操作量に印加するようにし
たから、各操作量が相互にかつ独立して機能を遂
行し制御量が目標値に接近するように多変数制御
される。また、この制御系にフイードフオワード
動作および(または)フイードバツク動作を遂行
させることによりレスポンスが向上し安定性が増
大し、しかも最も効率よく最小の熱量で各炉の炉
温を設定することができる。
As is clear from the above embodiments, according to the present invention, a measured quantity including a plurality of controlled variables of the temperature of a plurality of furnaces to be controlled can be measured without intervening a non-interference device. When controlling the manipulated variable so that the controlled variable is adjusted to its target value when it fluctuates due to any of multiple manipulated variables, it is necessary to integrate each of the manipulated variables obtained from the difference between the controlled variable and the target value. Since the operation is performed and applied to each manipulated variable, multivariable control is performed such that each manipulated variable performs its function mutually and independently, and the controlled variable approaches the target value. Additionally, by having this control system perform feedback and/or feedback operations, response is improved and stability is increased, and the furnace temperature of each furnace can be set most efficiently and with the least amount of heat. can.

付言するに、上述の複数炉とは、第2図aに示
すような複数個の炉のみならず、同図bに示す単
一の炉を複数ゾーンに仕切つて実質的に複数炉を
形成する場合をも含むものである。
In addition, the above-mentioned multiple furnaces include not only multiple furnaces as shown in FIG. 2a, but also a single furnace shown in FIG. It also includes cases.

【図面の簡単な説明】[Brief explanation of drawings]

第1図a,bは複数炉(あるいは複数のゾーン
に仕切られた1つの炉)の従来の実施例を示す説
明図、第2図a,bは制御対象としての複数炉
(あるいは複数のゾーンに仕切られた1つの炉)
の説明図、第3図は該制御対象へ本発明を適用し
た自動制御方式のブロツクダイヤグラム、第4図
は該方式の動作フローチヤートを示す。 20……複数炉、Y1〜Y3……制御量、Y1〜Y4
……測定量、U1〜U4……操作量、YR1〜YR3……
目標値、ε1〜ε3……制御量と目標値の差、U′c1
U′c4……操作変数。
Figures 1a and b are explanatory diagrams showing conventional embodiments of multiple furnaces (or one furnace partitioned into multiple zones), and Figures 2a and b are illustrations of multiple furnaces (or one furnace partitioned into multiple zones) as control targets. one furnace partitioned into
FIG. 3 is a block diagram of an automatic control system in which the present invention is applied to the object to be controlled, and FIG. 4 is an operational flowchart of the system. 20...Multiple furnaces, Y1 to Y3 ...Controlled amount, Y1 to Y4
...Measurement quantity, U 1 to U 4 ... Manipulated quantity, Y R1 to Y R3 ...
Target value, ε 1 ~ ε 3 ...Difference between controlled variable and target value, U′c 1 ~
U′c 4 ... manipulated variable.

Claims (1)

【特許請求の範囲】 1 加熱装置において加熱された熱風をそれぞれ
ダンパーを介して接続された複数炉に直接供給し
て各炉内をそれぞれ所望の温度に調節する複数炉
の温度制御方式において、複数炉の温度の複数の
制御量 Y=Y1 〓 Yl を含む複数の測定量 Y1 〓 Ym が、ダンパーの開度の複数の操作量 U=U1 〓 Un (但し、l、n、mは2以上の正の整数でn、m
≧l) の何れによつても変動する場合に、前記制御量が
その目標値 YR=YR1 〓 YRl に調節されるように前記操作量を制御するにあた
り、前記制御量と前記目標値の差 YR−Y=YR1−Y1 〓 〓 YRl−Yl=ε1 〓 εl を、前記目標値を与えるときの前記操作量および
前記制御量の挙動のシユミレーシヨン評価して予
じめ決定された演算要素 C11…C1l 〓 〓 Cn1…Cnl に乗じて算出させる操作変数 U′c=U′c1 〓 U′cn のそれぞれに積分動作を遂行した出力 Uc=Uc1 〓 Ucn を各操作量とし、 前記制御量を含む複数個の測定量 Y1 〓 Ym にフイードバツク動作を遂行した出力 UF=UF1 〓 UFn を前記各操作量へそれぞれ印加すると共に、前記
各操作量へそれぞれ供給される前記出力Uc−前
記出力UFの和出力が所定の範囲を越えるときに、
前記積分動作をそれぞれ停止させることを特徴と
した複数炉の温度制御方式。
[Scope of Claims] 1. A multiple furnace temperature control method in which hot air heated in a heating device is directly supplied to multiple furnaces connected via dampers to adjust the inside of each furnace to a desired temperature, respectively. Multiple control variables for the furnace temperature Y=Y 1 〓 Multiple measured variables including Yl Y 1 〓 Ym are multiple control variables for the damper opening U=U 1 〓 Un (However, l, n, and m are Positive integer greater than or equal to n, m
≧l) When controlling the manipulated variable so that the controlled variable is adjusted to its target value YR = YR 1 〓 YRl, the control variable and the target value are adjusted. The difference YR−Y=YR 1 −Y 1 〓 〓 YRl−Yl=ε 1 〓 εl is calculated in advance by a simulation evaluation of the behavior of the manipulated variable and the controlled variable when the target value is given. Element C 11 …C 1 l 〓 〓 Cn 1 …Cnl is multiplied to calculate the manipulated variable U′c=U′c 1 〓 Output obtained by performing integral operation on each of U′cn Uc=Uc 1 〓 Ucn is used for each operation outputs UF = UF 1 〓 UFn obtained by performing a feedback operation on a plurality of measured quantities Y 1 〓 Ym including the controlled variable are applied to each of the manipulated variables, and are supplied to each of the manipulated variables, respectively. When the sum output of the output Uc - the output U F exceeds a predetermined range,
A temperature control method for multiple furnaces, characterized in that each of the integral operations is stopped.
JP16374482A 1982-09-20 1982-09-20 Control system of temperature of plurality of furnace Granted JPS5956084A (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP16374482A JPS5956084A (en) 1982-09-20 1982-09-20 Control system of temperature of plurality of furnace

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP16374482A JPS5956084A (en) 1982-09-20 1982-09-20 Control system of temperature of plurality of furnace

Publications (2)

Publication Number Publication Date
JPS5956084A JPS5956084A (en) 1984-03-31
JPH0323835B2 true JPH0323835B2 (en) 1991-03-29

Family

ID=15779852

Family Applications (1)

Application Number Title Priority Date Filing Date
JP16374482A Granted JPS5956084A (en) 1982-09-20 1982-09-20 Control system of temperature of plurality of furnace

Country Status (1)

Country Link
JP (1) JPS5956084A (en)

Families Citing this family (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP4551515B2 (en) * 1998-10-07 2010-09-29 株式会社日立国際電気 Semiconductor manufacturing apparatus and temperature control method thereof
JP3915370B2 (en) * 2000-04-18 2007-05-16 オムロン株式会社 Control device, temperature controller and heat treatment device
JP2002108408A (en) * 2000-09-29 2002-04-10 Hitachi Kokusai Electric Inc Method for controlling temperature of semiconductor manufacturing device

Also Published As

Publication number Publication date
JPS5956084A (en) 1984-03-31

Similar Documents

Publication Publication Date Title
JPH0786783B2 (en) Furnace temperature controller by adjusting input
US4730101A (en) Apparatus and method for controlling the temperature of a furnace
JPH0323835B2 (en)
CN109765950B (en) Control method for first-order pure time delay furnace temperature system
JPH0555881B2 (en)
JP2000056805A (en) Predictive control unit
Pedersen et al. On the reheat furnace control problem
US5102331A (en) Radiant wall oven with temperature control
JPH0565883B2 (en)
JP3291467B2 (en) Process prediction control method and apparatus
JPH0332606B2 (en)
JPH05332532A (en) Combustion controller
JP2001273002A (en) Control system
KR100250760B1 (en) Controlling method for steel heat treatment in continuous furnace
US5743464A (en) System for controlling work temperature by a programmed controller
SU1577081A2 (en) Device for controlling thermal conditions of methodic induction unit
JP2577358B2 (en) Heating control method
JP2910136B2 (en) Temperature control system for tundish molten steel plasma heating system
JPS5813809B2 (en) Combustion control method using low excess air
SU1677064A1 (en) Device for control of heat conditions of blast furnace hearth
JPS6117445Y2 (en)
SU1470792A1 (en) Method of controlling metal-heating
JPS6161675A (en) Control system for varnish device
JPH09114502A (en) Controller
JPH0997119A (en) Hot water temperature controller for hot water supplier