JPH03238346A - Method for quantifying pitch in manufacturing process of pulp or paper - Google Patents

Method for quantifying pitch in manufacturing process of pulp or paper

Info

Publication number
JPH03238346A
JPH03238346A JP2033808A JP3380890A JPH03238346A JP H03238346 A JPH03238346 A JP H03238346A JP 2033808 A JP2033808 A JP 2033808A JP 3380890 A JP3380890 A JP 3380890A JP H03238346 A JPH03238346 A JP H03238346A
Authority
JP
Japan
Prior art keywords
pitch
absorption
spectrums
amount
light
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Pending
Application number
JP2033808A
Other languages
Japanese (ja)
Inventor
Yasuto Otani
大谷 慶人
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
NIPPON KAMIPARUPU KENKYUSHO KK
Original Assignee
NIPPON KAMIPARUPU KENKYUSHO KK
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by NIPPON KAMIPARUPU KENKYUSHO KK filed Critical NIPPON KAMIPARUPU KENKYUSHO KK
Priority to JP2033808A priority Critical patent/JPH03238346A/en
Publication of JPH03238346A publication Critical patent/JPH03238346A/en
Pending legal-status Critical Current

Links

Abstract

PURPOSE:To measure the quantity of pitch in a raw material and a process by performing colorimetry for the pitch in the manufacturing process by using one or more specified wavelengths within a specified range. CONSTITUTION:Light in the region of near infrared rays in the range of wavelengths 0.8 - 2.6 mu gives absorption spectrums peculiar to compounds. The light can be used for the identification and determination of a compound. The spectrums have overlapped absorption bands. Differentiated spectrums are used for processing the bands. Thus, gentle change due to the difference in surface properties, the difference in colors and the like can be erased from the complicated spectrums. The absorption peculiar to the component of pitch can be extracted. Each peak is proportional to the quantity of the component, and the quantity can be determined accurately. The absorption peculiar to the component of the pitch among the near infrared rays is indicated. The light having the wavelength whose quantity can be determined is selected. The correlation with respect to the absorbances of the spectrums and the peak intensities of the differentiated spectrums and the quantity of the pitch is obtained for one or more lights. This expression of the correlation is used, and the quantity of the pitch is determined based on the intensity of the peak.

Description

【発明の詳細な説明】 〔産業上の利用分野〕 本発明は、パルプまたは紙の製造工程において生じるピ
ッチ(樹脂)障害、いわゆるピッチトラブルを簡便に予
知し、それに基づいてピッチトラブルを予防するための
ピッチの定量法に間するものである。
[Detailed Description of the Invention] [Industrial Application Field] The present invention provides a method for easily predicting pitch (resin) failures, so-called pitch troubles, that occur in pulp or paper manufacturing processes, and preventing pitch troubles based on the prediction. This is an intermediate method for quantifying pitch.

〔従来の技術および課題〕[Conventional technology and issues]

パルプまたは紙の製造工程においては、木材細胞から遊
離した天然樹脂またはガム状物質またはその他の添加剤
に由来する有機物を主体とする小球状の粘着性凝集物で
、通常ピッチと呼ばれるものが発生する。このようなピ
ッチは、上記製造工程におけるチエスト、ビータ−、ワ
イヤー等の製紙機械設備の各所に凝集付着して、作業能
率を低下させたり、あるいは製品中に混入して、バルブ
シートまたは紙の汚点または孔の原因となるなど、種々
のトラブル(ピッチトラブル)をもたらす。
During the pulp or paper manufacturing process, small spherical sticky aggregates of organic material derived from natural resins or gum-like substances or other additives liberated from wood cells, usually called pitch, are generated. . This kind of pitch aggregates and adheres to various parts of the papermaking machinery equipment such as cheeseboards, beaters, and wires in the above manufacturing process, reducing work efficiency, or gets mixed into the product, causing stains on valve seats or paper. Otherwise, it causes various troubles (pitch troubles), such as causing holes.

従来、このようなピッチトラブルを防止するための対策
として、種々の方法が採用されている。
Conventionally, various methods have been adopted as measures to prevent such pitch troubles.

最も有効かつ一般的な方法として、例えば微細なタルク
やカオリン等の吸着剤または硫酸バンド、ポリリン酸塩
、種々の界面活性剤、乳化剤等を添加する方法がある。
The most effective and common method is to add, for example, an adsorbent such as fine talc or kaolin, or sulfuric acid, polyphosphate, various surfactants, emulsifiers, etc.

これらは、パルプならびに紙の製造工程の適所の工程水
に添加することによって、ピッチが液中に析出しである
大きさの粒子に凝集して機械設備に付着し、またそれが
離脱して紙に被着するのを抑制する効果を挙げることが
できる。しかしながら、この方法は製造工程の操業の間
に発生する障害現象に遭遇してはじめて抑制剤を添加す
るか、過去の操業における経験に基づき、抑制剤の添加
の必要性を把握して、使用するものであり、予めその工
程水の特性からピッチトラブルを予知して予防するもの
ではない。
When these are added to process water at appropriate locations in the pulp and paper manufacturing process, pitch precipitates in the liquid, aggregates into particles of a certain size, and adheres to machinery and equipment, and then separates from the paper. This can have the effect of suppressing adhesion to the skin. However, in this method, the inhibitor is only added after encountering a disturbance phenomenon that occurs during the operation of the manufacturing process, or the necessity of adding the inhibitor is understood and used based on the experience of past operations. However, it does not prevent pitch troubles by predicting them in advance based on the characteristics of the process water.

一般にピッチトラブルの発生は、製造原料の種類の相違
にその大きな原因があるといわれているが、また製造設
備、プロセスまたは製造条件が異なることによってもピ
ッチトラブルの発生に微妙な影響を与える。さらに多工
程かつ長時間にわたるパルプならびに紙の製造工程にお
いて、例えばピッチが析出し設備や製品に沈着する場所
および量は一定していない等、この障害発生の現象は極
めて多様である。そのために前記のような方法はそれ自
体、有効な手段ではあるが、適切な抑制措置を講するこ
とは、困難な場合が多く、また抑制剤の添加も常に推定
によるものであるため、ときに不必要に多量消費してい
る場合があっても、それを見過ごしているのが現状であ
った。
It is generally said that the major cause of pitch trouble is differences in the types of manufacturing raw materials, but differences in manufacturing equipment, processes, or manufacturing conditions also have a subtle effect on the occurrence of pitch trouble. Furthermore, in the multi-step and long-term pulp and paper manufacturing process, the phenomenon of occurrence of this disorder is extremely diverse, for example, the location and amount of pitch deposited on equipment and products are not constant. For this reason, although the methods described above are effective in themselves, it is often difficult to take appropriate suppression measures, and the addition of inhibitors is always based on estimation, so sometimes Even if there were cases where people were consuming a large amount of food unnecessarily, the current situation was that they overlooked it.

また、上記の他、従来のピッチトラブルの防止対策とし
て、木材のシーズニングによる樹脂量の低減、蒸解また
は漂白工程の後あるいは抄紙工程において、清水あるい
は苛性水溶液をもって工程を洗浄する方法が行われてい
る。この際、期間、回数および/または水量を増加する
とか、さらに汚濁工程水のブローを多くすることも有効
な防止手段と考えられ、一部実施されている。このよう
な方法は障害に遭遇した時の措置として有効であるが、
過剰の原料在庫の必要性、清水および苛性ソーダの節約
、設備投資および作業の繁雑化の点でピッチ抑制剤添加
の方法に比し劣るばかりでなく、障害を予知し予め対処
するものでないため実用的に不利があるのはいなめない
In addition to the above, conventional pitch trouble prevention measures include reducing the amount of resin by seasoning the wood, and cleaning the process with fresh water or a caustic aqueous solution after the cooking or bleaching process or during the papermaking process. . At this time, increasing the period, frequency, and/or amount of water, or increasing the amount of blowing of contaminated process water is considered to be an effective preventive measure, and has been partially implemented. Although this method is effective as a measure when encountering obstacles,
Not only is it inferior to the method of adding a pitch suppressant in terms of the need for excess raw material inventory, savings in fresh water and caustic soda, equipment investment, and complexity of work, but it is also impractical because it does not predict failures and deal with them in advance. I can't blame you for being at a disadvantage.

そこで、ピッチトラブルの発生を予め知ることができれ
ば、有効かつ適切な防止処置を採り得る可能性があるこ
とは明らかであるため、従来、数多くの研究者あるいは
操業従事者によりピッチトラブル発生の予知方法が提案
された。その内でも、よく行われる方法は、ソックスレ
ー抽出による原料もしくは工程水中の抽出物量の測定、
工程付着量の定量、銅もしくはステンレス鋼製のプロペ
ラ、シャフトへのピッチ付着量の測定、抄紙用フェルト
へのピッチ付着量の測定、工程水中のコロイド状ピッチ
数の測定などである。しかし、試験装置規模では付着ピ
ッチの絶対量が極めて少なく、精度に難がある。そのた
めに、種々の改良が試みられたが充分な成果を挙げてい
るとはいえない。
Therefore, it is clear that if pitch troubles can be known in advance, it is possible to take effective and appropriate preventive measures. was proposed. Among these, the most commonly used methods include measuring the amount of extracts in raw materials or process water by Soxhlet extraction;
These include quantifying the amount of pitch deposited in the process, measuring the amount of pitch deposited on copper or stainless steel propellers and shafts, measuring the amount of pitch deposited on papermaking felt, and measuring the number of colloidal pitches in process water. However, the absolute amount of adhesion pitch is extremely small on a test equipment scale, and accuracy is difficult. For this purpose, various improvements have been attempted, but it cannot be said that sufficient results have been achieved.

光学的比色定量法は迅速、高精度でかつ簡便であり、既
に工程水中のピッチの紫外、可視光による定量法が試み
られている。しかし、ピッチに特有な吸収光でないため
、選択的な定量は不可能である。このために、他の光学
的なピッチ定量法が永年、望まれてきた。
Optical colorimetric determination is rapid, highly accurate, and simple, and attempts have already been made to quantify pitch in process water using ultraviolet and visible light. However, selective quantification is not possible because the absorption light is not unique to pitch. For this reason, other optical methods of determining pitch have long been desired.

しかして本発明者らは、ピッチを選択的にかつ容易に定
量できる試験方法を開発することによって上記の問題を
解決することが可能と考えた。そして多年、各種、各別
のパルプ、紙製造工程における工程水や、そこに発生し
たピッチを採取し、これを用いて検討を重ねた結果、ピ
ッチ量を連続的に精度よく測定できる方法としてピッチ
が選択的な吸収を有し、その他の成分による吸収の影響
の少ない波長光、すなわち0.8μから2.6μの間(
一般に近赤外領域という)の1つ以上の波長光を用いて
比色定量することにより、原料もしくは工程中のピッチ
の定量が可能であることを見いだし、本発明に到った。
However, the present inventors thought that it would be possible to solve the above problem by developing a test method that can selectively and easily quantify pitch. For many years, we collected process water from various pulp and paper manufacturing processes, as well as the pitch generated therein, and as a result of repeated studies using these samples, we developed a method that can continuously and accurately measure the amount of pitch. has selective absorption and is less affected by absorption by other components, i.e. between 0.8μ and 2.6μ (
The inventors have discovered that it is possible to quantify pitch in raw materials or processes by performing colorimetric determination using light of one or more wavelengths in the near-infrared region (generally referred to as near-infrared region), leading to the present invention.

〔課題を解決するための手段〕[Means to solve the problem]

すなわち本発明は、その−面において、パルプまたは紙
の製造工程におけるピッチを、0.8〜2.6μの間の
1つ以上の特定波長光を用いて比色定量することを特徴
とする、パルプまたは紙製造工程におけるピッチの定量
法を提供するものである。
That is, in its aspect, the present invention is characterized in that the pitch in the pulp or paper manufacturing process is determined colorimetrically using light of one or more specific wavelengths between 0.8 and 2.6μ. It provides a method for quantifying pitch in pulp or paper manufacturing processes.

さらにまた本発明は、他の一面において、あらかじめピ
ッチ濃度の知られているパルプまたは紙の試料について
、0.8〜2.6μの間の1つ以上の特定波長光を用い
て吸収スペクトルをとり、この微分スペクトルのピーク
強度を用いて重回帰分析法により相関係数を求めること
を特徴とする。
Furthermore, in another aspect of the present invention, an absorption spectrum of a pulp or paper sample whose pitch concentration is known in advance is measured using light of one or more specific wavelengths between 0.8 and 2.6μ. , the correlation coefficient is determined by multiple regression analysis using the peak intensity of this differential spectrum.

ピッチの定量法を提供するものである。This provides a method for quantifying pitch.

以下、本発明についてさらに詳細に説明する。The present invention will be explained in more detail below.

本発明において用いる測定光としては、波長0.8μか
ら26μまでの範囲の1つ以上の波長光を用いる。−例
として1.1〜1.2,1.3〜1.5,1.6〜1.
8,2.1〜2.4μの光はピッチに特有な吸収を有す
るので、有利に使用することができる。この領域の吸光
度はピッチ量に比例関係を有し、ピッチ量が増加すれば
当然、吸光度も増大する。
As the measurement light used in the present invention, one or more wavelength lights in the range of wavelengths from 0.8μ to 26μ are used. - Examples include 1.1-1.2, 1.3-1.5, 1.6-1.
Light of 8,2.1 to 2.4μ has pitch-specific absorption and can therefore be used advantageously. The absorbance in this region has a proportional relationship to the pitch amount, and as the pitch amount increases, the absorbance naturally increases.

砕木パルプ原料の赤松材の0.8から2.6μの波長の
吸収スペクトルを測定すると、1.2゜1.4,1.9
4μ付近に水の吸収が現れる他に、1.55,2.1μ
付近にセルロースの吸収、1.67.2.15.2.2
6μ付近にリグニンの吸収、1.1,1.7,1.75
.2.28゜2.36μ付近にピッチの吸収を示す、ピ
ッチによる吸収の波長域での吸光度とピッチによる影響
の少ない波長域の吸光度の差を求めることにより、予め
抽出操作などにより求めておいたピッチ量との関係式よ
り求めることにより、予め抽出操作などにより求めてお
いたピッチ量との関係式よりピッチ量を測定することが
できる。
When we measure the absorption spectrum of red pine wood, which is the raw material for ground wood pulp, at wavelengths from 0.8 to 2.6 μ, it is 1.2° 1.4, 1.9
In addition to water absorption appearing around 4μ, 1.55, 2.1μ
Absorption of cellulose nearby, 1.67.2.15.2.2
Lignin absorption near 6 μ, 1.1, 1.7, 1.75
.. This was determined in advance by an extraction operation, etc. by determining the difference between the absorbance in the wavelength range of pitch absorption, which shows pitch absorption around 2.28° and 2.36μ, and the absorbance in the wavelength range that is less affected by pitch. By finding the relational expression with the pitch amount, the pitch amount can be measured from the relational expression with the pitch amount previously obtained by an extraction operation or the like.

本発明において測定光として用いる、波長0.8〜2.
6μの範囲の光は、一般に近赤外光と呼ばれるものであ
る。近赤外領域の光は、化合物に特有な吸収スペクトル
を与え、化合物の同定、定量に用いることができること
が知られている。
The wavelength used as the measurement light in the present invention is 0.8 to 2.
Light in the 6μ range is generally called near-infrared light. It is known that light in the near-infrared region gives a unique absorption spectrum to a compound and can be used for identification and quantification of the compound.

しかし、スペクトルは複雑で一般に解析は困難である。However, spectra are complex and generally difficult to analyze.

混合成分の非破壊測定を目的とした近赤外分光スペクト
ルでは、一般的な赤外吸収スペクトルで見られるような
鋭敏な吸収を得ることは難しく、吸収帯は各種成分の吸
収が互いに影響しあったブロードなものになる。このよ
うに重なり合った吸収帯を持った吸収スペクトルの処理
方法として。
In near-infrared spectroscopy aimed at non-destructive measurement of mixed components, it is difficult to obtain the sharp absorption seen in general infrared absorption spectra, and the absorption bands are formed by the absorption of various components influencing each other. It becomes a broad thing. As a method for processing absorption spectra with overlapping absorption bands like this.

微分スペクトルの概念が用いられる。The concept of differential spectrum is used.

本発明の一つの方法によれば、元のスペクトルを波長て
微分して用いるので、複雑なスペクトルから表面性状の
違い、あるいは色の違いなどによる緩やかな変化を消去
することにより、ピッチ成分に特有の吸収を抽出するこ
とが可能である。元のスペクトルと同様に微分スペクト
ルの各ピークは成分量に比例するので、正確な定量が可
能である。微分スペクトルは1次からn次まで求めるこ
とが可能であるが、一般に2次微分スペクトルが使われ
る。
According to one method of the present invention, since the original spectrum is differentiated by wavelength and used, gradual changes due to differences in surface texture or color can be eliminated from a complex spectrum, thereby making it possible to obtain characteristics specific to the pitch component. It is possible to extract the absorption of As with the original spectrum, each peak in the differential spectrum is proportional to the amount of the component, so accurate quantification is possible. Although it is possible to obtain differential spectra from the first order to the nth order, generally a second order differential spectrum is used.

1次微分スペクトルは、元の吸収スペクトルの変化率す
なわちOD (optical clensity)の
差(差吸光度)の変化をとらえたものである。2次微分
スペクトルは、1次微分スペクトルの変化率であって、
元のスペクトルの吸収帯と位相が逆転する不都合はある
が、元のスペクトルの極大吸収は、2次微分スペクトル
でも極大値として得られる。
The first-order differential spectrum captures the rate of change of the original absorption spectrum, that is, the change in the difference in OD (optical clarity) (differential absorbance). The second derivative spectrum is the rate of change of the first derivative spectrum,
Although there is an inconvenience that the absorption band and phase of the original spectrum are reversed, the maximum absorption of the original spectrum can also be obtained as a maximum value in the second derivative spectrum.

微分スペクトルを得る方法としては、三波長分光光度計
などの2つの掃引波長をずらし、光学的に微分スペクト
ルを得る方法と1.全く数学的に微分を計算する方法と
があり、一般的には後者の方法がとられる。
There are two methods to obtain a differential spectrum: 1) a method of optically obtaining a differential spectrum by shifting two sweep wavelengths using a three-wavelength spectrophotometer, etc.; There is a method of calculating the differential completely mathematically, and the latter method is generally used.

本発明の特徴の1つは、ピッチの成分について特有の吸
収を示し、定量の可能な波長光を選択することにある。
One of the features of the present invention is to select wavelength light that exhibits specific absorption for pitch components and can be quantified.

ある波長域のスペクトルの吸光度もしくは微分スペクト
ルのピーク強度〔OD (optical densi
ty))とピッチの量との相関を取り、得られた相開式
を用いて未知の試料の吸光度もしくはピーク強度よりピ
ッチの量を定量する。測定に使用する波長は0.8〜2
.6μの範囲の近赤外光のうちの特定波長を使用する。
The absorbance of a spectrum in a certain wavelength range or the peak intensity of a differential spectrum [OD (optical density)
ty)) and the amount of pitch, and using the obtained phase opening equation, the amount of pitch is determined from the absorbance or peak intensity of the unknown sample. The wavelength used for measurement is 0.8~2
.. A specific wavelength of near-infrared light in the 6μ range is used.

使用する波長の数は1つ以上、好ましくは2つ以上、さ
らに好ましくは3つ以上である。
The number of wavelengths used is one or more, preferably two or more, and more preferably three or more.

相関は、公知の統計的手法である重回帰分析によって、
あらかじめ知られたインキ濃度を参照して相関式を求め
ることによって行う。
The correlation was determined by multiple regression analysis, a well-known statistical method.
This is done by finding a correlation equation with reference to a previously known ink density.

相関式は、一般に次のように表すことができる。The correlation equation can generally be expressed as follows.

C+=に、+に、α1+に2α2・・・・K、、α。C+ = to + to α1+ to 2α2...K,, α.

ここに、C1はインキの濃度、Kイは係数、C1は、イ
ンキ成分について吸収の強い波長nにおける微分スペク
トルのピーク強度(OD (opticaldensi
ty))である。α、はまた、インキ成分についての吸
収の強い波長n1と、吸収の弱い波長n2についてのピ
ーク強度(○D)の比をとることもできる。
Here, C1 is the ink concentration, K is the coefficient, and C1 is the peak intensity (OD (optical density) of the differential spectrum at wavelength n where the ink component has strong absorption.
ty)). α can also be taken as the ratio of the peak intensity (○D) for the wavelength n1 of strong absorption and the wavelength n2 of weak absorption for the ink component.

最適な相関式は用いる原料の違いに応じて異なり、その
つど求める必要がある。
The optimal correlation formula differs depending on the raw materials used, and needs to be determined each time.

2次微分スペクトル中の樹脂に起因するピークは1.1
5 1.37 1.4,1.65.1,691.78 
2.23 2.28 2.32.2.34゜2.38μ
付近あるいはそれ以外にも数多く存在する。ただし、試
料中に多量の水が存在する場合には、水の吸収に影響の
少ない波長を選ぶ必要がある。1.15,1.37,1
.69,2.28゜2.34μ付近のピークを用いるの
が好ましい。
The peak due to resin in the second derivative spectrum is 1.1
5 1.37 1.4, 1.65.1, 691.78
2.23 2.28 2.32.2.34゜2.38μ
There are many nearby and elsewhere. However, if a large amount of water is present in the sample, it is necessary to select a wavelength that has little effect on water absorption. 1.15, 1.37, 1
.. It is preferable to use a peak around 69,2.28° and 2.34μ.

微分スペクトルを用いれば1波長でもピーク強度と樹脂
量の間には充分に高い相関が得られた。
Using a differential spectrum, a sufficiently high correlation was obtained between the peak intensity and the amount of resin even at one wavelength.

当然の事ながら用いる波長数を増やせばさらに高い相関
が得られる。
Naturally, an even higher correlation can be obtained by increasing the number of wavelengths used.

本発明の方法によれば、0.98以上もの高い相関係数
で、紙バルブ製造工程中のピッチ濃度を測定することが
できる。
According to the method of the present invention, pitch concentration during the paper valve manufacturing process can be measured with a correlation coefficient as high as 0.98 or higher.

適切なピッチ量の測定箇所としては、原料木材あるいは
バルブ、バルブまたは紙の製造工程において、多くの場
合ピッチトラブルが発生するパルプ化工程、漂白工程お
よび抄紙工程の前の工程、例えば、洗浄工程の後の完成
壜入口部および調整工程のチエストが挙げられる。
Appropriate locations for measuring the amount of pitch include the steps before the pulping process, bleaching process, and papermaking process, where pitch problems often occur in raw wood, valves, or paper manufacturing processes, such as the washing process. These include the later completed bottle inlet and adjustment process.

またはピッチは工程の各部、例えば配管内、ワイヤー、
毛布などに付着堆積し、ある一定量堆積すると脱離して
紙に混入して欠陥、断紙などの障害を引起こす。このピ
ッチ汚れの程度を上記の測定法で定期的あるいは連続的
に測定することによって、この種のピッチ障害の予知法
に用いることができる。
Or the pitch can be measured at various parts of the process, such as inside piping, wires, etc.
It adheres and accumulates on blankets and the like, and when a certain amount accumulates, it detaches and mixes with paper, causing defects, paper breaks, and other problems. By periodically or continuously measuring the degree of pitch contamination using the above-mentioned measuring method, it can be used as a method for predicting this type of pitch failure.

またこれらの測定場所は、必要に応じて2ケ所以上であ
ってもよい。
Further, the number of these measurement locations may be two or more as necessary.

次いでピッチ量が測定され、ピッチトラブルの危険が探
知されたら、予防処置が行われる。バルブまたは紙の製
造工程において予防処置を行う工程は、原料段階、ピッ
チトラブルが発生しそうな工程もしくはその前の工程、
例えば、漂白工程の入口部、洗浄工程の後の完成基の出
口部および調整工程のチエスト、抄紙工程の配管系から
ワイヤ、毛布などが挙げられる。
The amount of pitch is then measured and if a risk of pitch trouble is detected, preventive measures are taken. Preventative measures in the valve or paper manufacturing process include the raw material stage, the process where pitch trouble is likely to occur, or the process before that.
Examples include the inlet part of the bleaching process, the outlet part of the finished base after the washing process, the chest in the conditioning process, the piping system, wires, blankets, etc. in the papermaking process.

予防処置は、原料木材あるいはチップのシーズニング、
ピッチトラブル防止または抑制剤(例えばタルク、カオ
リン、硫酸バンド、ポリリン酸塩、各種界面活性剤、乳
化剤など)の添加、清水あるいは苛性水溶液による工程
洗浄、抄紙機具の取替えによって行うことができる。こ
れらの予防処置はごく一般的に採用され、広くその効果
が認められているものである。
Preventive measures include seasoning raw wood or chips;
Pitch trouble can be prevented or suppressed by adding agents (for example, talc, kaolin, aluminum sulfate, polyphosphates, various surfactants, emulsifiers, etc.), cleaning the process with fresh water or a caustic aqueous solution, and replacing papermaking equipment. These preventive measures are very commonly adopted and their effectiveness is widely recognized.

原料木材あるいはチップの樹脂量を減少させるためには
、通常シーズニングが行われる。シーズニングの効果、
すなわち原料木材中の樹脂量の低下は、気候条件および
環境に大きく左右されるので、地域、季節によって最適
のシーズニング期間は異なる。シーズニングは樹脂量の
減少をもたらす反面、原料在庫量の増加、貯蔵場所の増
加、バルブ品質の低下をもたらす。本発明のピッチ定量
法により樹脂量の測定が簡便、正確に行われる結果、シ
ーズニングによる樹脂量の減少は勿論のこと、適切な貯
蔵期間、貯蔵場所の選択ならびにバルブ品質の維持が可
能になる。
Seasoning is usually performed to reduce the resin content of raw wood or chips. effect of seasoning,
In other words, the reduction in the amount of resin in raw wood is largely influenced by climate conditions and the environment, so the optimal seasoning period differs depending on the region and season. Although seasoning reduces the amount of resin, it also increases raw material inventory, increases storage space, and reduces valve quality. As a result of the pitch determination method of the present invention, the amount of resin can be easily and accurately measured, which not only reduces the amount of resin due to seasoning, but also makes it possible to select an appropriate storage period and storage location and maintain valve quality.

シーズニングのみでは充分な樹脂低減が図れない時はピ
ッチコントロール剤等の使用あるいはその他の対策を行
うのが好ましい。
When sufficient resin reduction cannot be achieved by seasoning alone, it is preferable to use a pitch control agent or take other measures.

予防処置の方法自体はいずれの方法であってもよいが、
ピッチ障害が生ずる度合いすなわち、ピッチ測定量の大
きさに応じて、適宜適切な処置を選定すればよい。
The method of preventive treatment itself may be any method, but
Appropriate measures may be selected depending on the degree to which the pitch disturbance occurs, that is, the magnitude of the pitch measurement amount.

また一方、ピッチ量の測定によって、ピッチトラブルが
発生する可能性が無いかまたは低いことも判断すること
ができ、過剰な予防処置を省略することができる。これ
は、省資源や経済面からも、本発明によってもたらされ
る大きな利点ということができる。
On the other hand, by measuring the amount of pitch, it can be determined that the possibility of pitch trouble occurring is low or absent, and excessive preventive measures can be omitted. This can be said to be a great advantage brought about by the present invention in terms of resource saving and economy.

次に本発明を実施例によって説明する。Next, the present invention will be explained by examples.

犬[1 樹脂量の種々異なるチップを用い、吸光スペクトル上の
2.18μと2,4μの点を結びベースラインとし、ベ
ースラインからの2.28μの吸光度(相対吸光度)を
測定した。樹脂量との間に、相関係数0.96で相関が
あることが判った。
Dog [1] Using chips with various amounts of resin, the points 2.18μ and 2.4μ on the absorption spectrum were connected as a baseline, and the absorbance (relative absorbance) at 2.28μ from the baseline was measured. It was found that there is a correlation with the amount of resin with a correlation coefficient of 0.96.

樹脂量(%)= −0,82+60x ((八BS)2
2.−慢×[(^BS)z、+a+(^BS)2.、]
l(八BS)。二波長nμの吸光度 さらにまた測定点を増やし、波長1.65μと1.87
μとを結んだベースラインからの17μの吸光度との関
係を加味したところ、相関係数0597以上になった。
Resin amount (%) = -0,82+60x ((8BS)2
2. -arrogant×[(^BS)z, +a+(^BS)2. , ]
l (8 BS). Absorbance at two wavelengths nμ Furthermore, the number of measurement points was increased, wavelengths 1.65μ and 1.87μ.
When the relationship with the absorbance of 17 μ from the baseline was taken into account, the correlation coefficient was 0597 or more.

樹脂量(%)=−1,3+35X((ΔBS)2.2@
−’MX[(八BS)2.+8+(八BS>2 4])
十54x((^BS)、   −騒×[(八BS)+ 
 6.+(八BS)、、、、]1犬」L爵−2 実施例1で得たスペクトルから、コンピュータ計算処理
により微分スペクトルを求め、2,28μの波長のピー
ク強度C0D)と樹脂量との相関を求めたところ、−0
,98以上の高い相関係数(−般に微分スペクトルの場
合相関係数は負の値を取る)が得られた。
Resin amount (%) = -1,3 + 35X ((ΔBS)2.2@
-'MX[(8BS)2. +8+ (8 BS>2 4])
154x((^BS), -Noisy×[(8BS)+
6. + (8 BS),,,, ]1 dog" L-2 From the spectrum obtained in Example 1, a differential spectrum was obtained by computer calculation processing, and the relationship between the peak intensity C0D at a wavelength of 2.28μ and the amount of resin was calculated. When I calculated the correlation, it was -0
, 98 or higher (correlation coefficients generally take negative values in the case of differential spectra).

m脂量(% )= 0.175−9.49X (00)
2□1この関係式を用いて、未知の試料の樹脂量を測定
すると、推定値と実測値には相関係数0.98以上の関
係が得られた。
m Fat amount (%) = 0.175-9.49X (00)
2□1 When the amount of resin in an unknown sample was measured using this relational expression, a correlation coefficient of 0.98 or more was obtained between the estimated value and the actual value.

1創」ユ 赤松の砕木バルブの1%スラリーの近赤外スペクトルを
測定し、各2次微分スペクトルを求めた。
The near-infrared spectra of a 1% slurry of crushed wood bulbs of the 1st grade Yuakamatsu were measured, and each second-order differential spectrum was determined.

1.38μの波長のピーク強度(OD )と樹脂量との
間には、−0,98以上の相関で次の相関式が得られた
The following correlation equation was obtained between the peak intensity (OD) at a wavelength of 1.38μ and the amount of resin with a correlation of -0.98 or more.

ピッチ濃度(%)=−0,01−1,06X (00)
、3゜ここに、(OD) 、 、 、口1.38μの波
長のピーク強度。
Pitch concentration (%) = -0,01-1,06X (00)
, 3° where (OD) , , , peak intensity at a wavelength of 1.38μ.

この関係式を用いて、ピッチ濃度未知のスラリーを測定
すると、推定値と実測値との間には相関係数0.98以
上の相関が得られた。
When a slurry of unknown pitch concentration was measured using this relational expression, a correlation with a correlation coefficient of 0.98 or more was obtained between the estimated value and the actual value.

1創1」 近赤外の2次微分スペクトル測定により、毛布のピッチ
汚れをその反射光により測定した。
1 Wound 1'' Pitch stains on the blanket were measured using reflected light by near-infrared second-order differential spectrum measurement.

2.28μの波長を用いることにより、抽出と・ンチ量
とピーク強度との相関係数は0.97以上を示した。
By using a wavelength of 2.28μ, the correlation coefficient between the amount of extraction and the peak intensity was 0.97 or more.

この方法により汚れ速度の監視、および付着と・yチ量
の監視が可能となった。その結果、工程の洗浄時期もし
くは抄紙機具の取替え時期の判定が容易になった。
This method made it possible to monitor the rate of contamination and the amount of adhesion and dirt. As a result, it has become easier to determine when it is time to clean the process or replace the papermaking equipment.

〔発明の効果〕〔Effect of the invention〕

本発明の手法により、パルプまたは紙製造における原料
および工程中のピッチ量を、迅速かつ正確に測定するこ
とが可能となった。このため、原料または工程水のピッ
チ量あるいは装置の付着ビ・ノ千量という、極めて簡単
で確実な測定値によって、ピッチトラブルが発生するの
を予知し、既存のピ・ンチトラブル防止剤もしくは抑制
剤の添加、またはその他の適切な措置を、過不足なく適
確に講じることができる。これは、工程管理上からも、
資源節約、コストダウンの面からも極めて有益な効果を
もたらすものである。
The method of the present invention has made it possible to quickly and accurately measure raw materials and in-process pitch amounts in pulp or paper production. For this reason, it is possible to predict the occurrence of pitch trouble using extremely simple and reliable measurements such as the pitch amount of raw materials or process water or the adhesion amount of the equipment, and use existing pinch trouble preventive agents or suppressors. Addition of agents or other appropriate measures can be taken accurately without excess or deficiency. This is also from a process management perspective.
This has extremely beneficial effects in terms of resource conservation and cost reduction.

Claims (4)

【特許請求の範囲】[Claims] (1)0.8〜2.6μの間の波長の光吸収スペクトル
の1つ以上の特定波長の吸収ピーク強度を用いて比色定
量することを特徴とする、パルプまたは紙の製造工程に
おけるピッチの定量法。
(1) Pitch in the pulp or paper manufacturing process, characterized by colorimetric determination using the absorption peak intensity at one or more specific wavelengths in the optical absorption spectrum at wavelengths between 0.8 and 2.6μ. quantitative method.
(2)光吸収スペクトルの1つ以上の特定波長のピーク
強度を用いて重回帰分析法により相関係数を求めた後、
その関係をもとにピッチを定量することを特徴とする、
請求項(1)記載のピッチの定量法。
(2) After calculating the correlation coefficient by multiple regression analysis using the peak intensity of one or more specific wavelengths of the optical absorption spectrum,
It is characterized by quantifying the pitch based on that relationship.
The method for quantifying pitch according to claim (1).
(3)光吸収スペクトルより得られる微分スペクトルの
1つ以上の特定波長光のピーク強度を用いることを特徴
とする、請求項(1)または(2)記載のピッチの定量
法。
(3) The method for quantifying pitch according to claim (1) or (2), characterized in that the peak intensity of one or more specific wavelengths of light in a differential spectrum obtained from a light absorption spectrum is used.
(4)パルプまたは紙の製造工程水中のピッチを定量す
ることを特徴とする、請求項(1)から(3)までのい
ずれかに記載のピッチの定量法。
(4) The method for quantifying pitch according to any one of claims (1) to (3), which comprises quantifying pitch in water during a pulp or paper manufacturing process.
JP2033808A 1990-02-16 1990-02-16 Method for quantifying pitch in manufacturing process of pulp or paper Pending JPH03238346A (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP2033808A JPH03238346A (en) 1990-02-16 1990-02-16 Method for quantifying pitch in manufacturing process of pulp or paper

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP2033808A JPH03238346A (en) 1990-02-16 1990-02-16 Method for quantifying pitch in manufacturing process of pulp or paper

Publications (1)

Publication Number Publication Date
JPH03238346A true JPH03238346A (en) 1991-10-24

Family

ID=12396780

Family Applications (1)

Application Number Title Priority Date Filing Date
JP2033808A Pending JPH03238346A (en) 1990-02-16 1990-02-16 Method for quantifying pitch in manufacturing process of pulp or paper

Country Status (1)

Country Link
JP (1) JPH03238346A (en)

Cited By (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2006153533A (en) * 2004-11-26 2006-06-15 Katayama Chem Works Co Ltd Analysis method of adhesive adhering to paper or pulp product, and adhesion prevention method of adhesive
JP2007332467A (en) * 2006-06-12 2007-12-27 Hymo Corp Method for analyzing and quantifying pitch particle
JP2015519483A (en) * 2012-04-16 2015-07-09 ストラ エンソ オーウーイィーStora Enso Oyj Automatic measurement method of adhesives in recycled fiber process
WO2022172882A1 (en) * 2021-02-12 2022-08-18 栗田工業株式会社 Estimation device, estimation system, estimation program, and estimation method

Cited By (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2006153533A (en) * 2004-11-26 2006-06-15 Katayama Chem Works Co Ltd Analysis method of adhesive adhering to paper or pulp product, and adhesion prevention method of adhesive
JP2007332467A (en) * 2006-06-12 2007-12-27 Hymo Corp Method for analyzing and quantifying pitch particle
JP2015519483A (en) * 2012-04-16 2015-07-09 ストラ エンソ オーウーイィーStora Enso Oyj Automatic measurement method of adhesives in recycled fiber process
WO2022172882A1 (en) * 2021-02-12 2022-08-18 栗田工業株式会社 Estimation device, estimation system, estimation program, and estimation method

Similar Documents

Publication Publication Date Title
DE19510008C2 (en) Process and device for process control in pulp and / or paper production
US5842150A (en) Method of determing the organic content in pulp and paper mill effulents
RU2390760C2 (en) Method of determining kappa number of cellulose through spectrometry in visible and near infrared band
CN104246064B (en) The method automatically measuring goo in reclaimed fibre technique
JP2000506594A (en) Measurement of sodium sulfide and sulfidity in green liquor and smelt solution
JPH07508834A (en) Measurement and control of effective alkali content in Kraft solutions using infrared spectroscopy
US7097346B2 (en) Method and system in control of coating color recipe
Chen et al. Using hyperspectral imaging technology for assessing internal quality parameters of persimmon fruits during the drying process
JPH03238346A (en) Method for quantifying pitch in manufacturing process of pulp or paper
DE19653530C1 (en) Process and device for process control and process optimization in the production of pulp
Barton II et al. Near infrared reflectance spectroscopy of untreated and ammoniated barley straw
DE60018208T2 (en) DETERMINATION OF THE KAPPA NUMBER IN CHEMICAL PULP BY RAMAN SPECTROSCOPY
CA2655661C (en) Method and system for the measurement of chemical species in caustic aluminate solutions
US10054539B2 (en) Method for determining a property of a heterogeneous medium
CruzáOrtiz Analysis of ageing and typification of vintage ports by partial least squares and soft independent modelling class analogy
CN115031643B (en) Method and system for online measurement of film thickness of coating film in fluidized bed coating process
Cozzolino et al. The use of visible (VIS) and near infrared (NIR) reflectance spectroscopy to predict fibre diameter in both clean and greasy wool samples
Zhang et al. Interference assessment and correction in the partial least squares regression method for multicomponent determination by UV spectrophotometry
JPS6257758B2 (en)
JPH03238345A (en) Residual-ink determining method
Moral et al. NIRS characterization of paper pulps to predict kappa number
EP4080196B1 (en) Method for determining the quantitative ratio of melamine-formaldehyde resin and urea-formaldehyde resin in at least one paper layer impregnated with a mixture of these resins
AU2006225251B2 (en) Method and system for the measurement of chemical species in caustic aluminate solutions
JP2950631B2 (en) Determination of constituent pulp in paper
US20220326685A1 (en) Estimating risk level in an aqueous process