JPH0323742A - Signal system detecting method - Google Patents

Signal system detecting method

Info

Publication number
JPH0323742A
JPH0323742A JP15685689A JP15685689A JPH0323742A JP H0323742 A JPH0323742 A JP H0323742A JP 15685689 A JP15685689 A JP 15685689A JP 15685689 A JP15685689 A JP 15685689A JP H0323742 A JPH0323742 A JP H0323742A
Authority
JP
Japan
Prior art keywords
wave
phase
signal vector
signal
symbol
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Granted
Application number
JP15685689A
Other languages
Japanese (ja)
Other versions
JPH0817407B2 (en
Inventor
Hiroyasu Muto
武藤 広泰
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
NEC Corp
Original Assignee
NEC Corp
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by NEC Corp filed Critical NEC Corp
Priority to JP15685689A priority Critical patent/JPH0817407B2/en
Priority to DE69018897T priority patent/DE69018897T2/en
Priority to CA002019359A priority patent/CA2019359C/en
Priority to EP90111664A priority patent/EP0413108B1/en
Priority to US07/541,690 priority patent/US5113415A/en
Priority to AU57738/90A priority patent/AU642148B2/en
Publication of JPH0323742A publication Critical patent/JPH0323742A/en
Publication of JPH0817407B2 publication Critical patent/JPH0817407B2/en
Anticipated expiration legal-status Critical
Expired - Lifetime legal-status Critical Current

Links

Classifications

    • HELECTRICITY
    • H04ELECTRIC COMMUNICATION TECHNIQUE
    • H04LTRANSMISSION OF DIGITAL INFORMATION, e.g. TELEGRAPHIC COMMUNICATION
    • H04L7/00Arrangements for synchronising receiver with transmitter
    • H04L7/02Speed or phase control by the received code signals, the signals containing no special synchronisation information
    • H04L7/033Speed or phase control by the received code signals, the signals containing no special synchronisation information using the transitions of the received signal to control the phase of the synchronising-signal-generating means, e.g. using a phase-locked loop
    • H04L7/0334Processing of samples having at least three levels, e.g. soft decisions
    • HELECTRICITY
    • H04ELECTRIC COMMUNICATION TECHNIQUE
    • H04LTRANSMISSION OF DIGITAL INFORMATION, e.g. TELEGRAPHIC COMMUNICATION
    • H04L7/00Arrangements for synchronising receiver with transmitter
    • H04L7/04Speed or phase control by synchronisation signals
    • H04L7/041Speed or phase control by synchronisation signals using special codes as synchronising signal
    • H04L7/046Speed or phase control by synchronisation signals using special codes as synchronising signal using a dotting sequence

Landscapes

  • Engineering & Computer Science (AREA)
  • Computer Networks & Wireless Communication (AREA)
  • Signal Processing (AREA)
  • Digital Transmission Methods That Use Modulated Carrier Waves (AREA)

Abstract

PURPOSE:To detect a specific signal system even in fast digital transmission by detecting the fact that the change of a sampled phase is always kept constant at every symbol. CONSTITUTION:In an example in which a signal vector obtained by performing synchronization detection on a digital angle modulation wave (MSK wave) capable of performing cycle detection is sampled with a clock synchronized with the symbol, a white circle shows the example of only a direct wave, and a black circle shows the example of a wave on which a delay wave is superimposed, and those examples correspond to a case where all the signal systems are symbols '1'. At such a case, when the signal vector of the direct wave transits in sequence of 11 12 13 14 11 in a counterclockwise direction, the signal vector of a superimposed wave transits in sequence of 15 16 17 18 15 in the counterclockwise direction. When the change of the phase of the signal vector of the direct wave is always equal to that of the phase of the signal vector of the delay wave, the change of the phase of the signal vector of the superimposed wave is always equal. In such a manner, transmission information can be demodulated correctly even in fast digital communication, and the specific signal system can be detected.

Description

【発明の詳細な説明】 [産業上の利用分野] 本発明は,信号系列検出方法に関し,特に,多重伝搬路
環境下における時分割多元接続(TDMA)通信方式等
において,MSK方式のように周期検波が可能なディジ
タル角度変調波の中からブリアンプルのような特定の信
号系列を検出する方法に関する。
[Detailed Description of the Invention] [Industrial Application Field] The present invention relates to a signal sequence detection method, and in particular, in a time division multiple access (TDMA) communication system under a multiple propagation path environment, the present invention relates to a signal sequence detection method. The present invention relates to a method for detecting a specific signal sequence such as a preamplifier from detectable digital angle modulated waves.

周知のように,TDMA通信方式では.送受信波がバー
スト状となっている。このようなパースト状の受信波を
受信するために,この受信波には,実際に送出したいデ
ータを含む伝達情報の前にプリアンプルが設けられてい
る。すなわち,各局の受信部では,このプリアンプルを
検出することによって,受信波の到来を認識し.受信波
に含まれるデータを復調するようになっている。又,一
般に,この受信波を同期検波(復調)して得られた復調
された信号は,同相成分(Iチャネル信号)と直交成分
(Qチャネル信号)を含んでいる。従って,この復調さ
れた信号は信号ベクトルと呼ばれる。
As is well known, in the TDMA communication system. The transmitted and received waves are burst-like. In order to receive such a burst-like received wave, a preamble is provided in the received wave before the transmission information including the data to be actually transmitted. In other words, the receiving section of each station recognizes the arrival of the received wave by detecting this preamble. It is designed to demodulate the data contained in the received waves. Generally, a demodulated signal obtained by synchronously detecting (demodulating) this received wave includes an in-phase component (I channel signal) and a quadrature component (Q channel signal). Therefore, this demodulated signal is called a signal vector.

[従来の技術】 従来,この種の信号系列検出方法は.復調された信号の
同相成分と直交成分より,クロック再生をおこない,再
生されたクロックを用いて,最適な判定点で復調された
信号の同相成分と直交成分の各々に対し判定をおこない
,データを再生した後,再生された信号系列と検出すべ
き特定の信号系列とを比較することにより,行っている
[Prior Art] Conventionally, this type of signal sequence detection method is as follows. A clock is recovered from the in-phase and quadrature components of the demodulated signal, and the recovered clock is used to make a decision on each of the in-phase and quadrature components of the demodulated signal at the optimal decision point. This is done by comparing the reproduced signal sequence with a specific signal sequence to be detected after reproduction.

【発明が解決しようとするallml ?述した従来の信号系列検出方法は,高速ディジタル通
信においては,伝搬遅延の影響により,プリアンプルの
みならず伝送情報をも正しく復調されない場合がある。
[Allml that the invention tries to solve? In the conventional signal sequence detection method described above, in high-speed digital communication, not only the preamble but also the transmitted information may not be correctly demodulated due to the influence of propagation delay.

以下.変調方式としてMSK方式を例にとって説明する
。MSK波は.周知のように,cosφ(t)cosω
c t +slnφ(t)s1nωctと表わされる。
below. An explanation will be given by taking the MSK method as an example of the modulation method. The MSK wave is. As is well known, cosφ(t)cosω
It is expressed as c t +slnφ(t)s1nωct.

ここで,ωCは搬送波の角周波数であり, eOsφ(
t).sinφ(1)は各々,入力信号の同相戊分,直
交成分であり.φ(1)は信号ベクトルの位相である。
Here, ωC is the angular frequency of the carrier wave, and eOsφ(
t). sinφ(1) are the in-phase component and quadrature component of the input signal, respectively. φ(1) is the phase of the signal vector.

MSK波の直接波に対し,時間toだけ遅延した振幅比
aの遅延波は,a cosφ(t  tg) eoli
 ω(  (t  t■) +a sinφ(t−tg
)slnωc  (t  to)と表わされる。従って
,直接波と遅延波が重畳した波(重畳波)は, ( cosφ(1) + a cos(φ (t−to
)一ωcto)]cos ω( t + [sinφ(
t) 十as1n  (φ(t−to )一ωc t 
o ) ] s1nωct乏表わされる。
A delayed wave with an amplitude ratio a that is delayed by the time to with respect to the direct wave of the MSK wave is a cosφ(t tg) eoli
ω( (t t■) +a sinφ(t-tg
) slnωc (t to). Therefore, the wave (superimposed wave) in which the direct wave and the delayed wave are superimposed is (cosφ(1) + a cos(φ (t-to
)1ωcto)]cosω(t+[sinφ(
t) 10as1n (φ(t-to)1ωc t
o)] s1nωct is poorly expressed.

以下,図面を用いて説明する。第2図はMSK波を同期
検波した信号をシンボルに同期したクロックでサンプル
した例を示す。同図において.I軸は同相成分,Q軸は
直交成分を示す。MSK波の信号軌跡は円周上を変化し
て行くことになり,当然サンプル値もこの円周上にある
。MSK波の信号ベクトルの位相は.シンボルとして“
1゜が入力されると(π/2),“0“が入力されると
(一π/2)だけ変化する。したがって,シンボルに同
期したクロックでサンプルするとすれば,同図(a)の
丸印で示した点のように,サンプルされた信号が一定の
位置に固定されていなければならない。ところが多重伝
搬路の伝搬遅延の影響を受け,直接波と遅延波が重畳し
た波をサンプルすると,サンプル値は円周上の固定され
た位置には存在しなくなる。
This will be explained below using drawings. FIG. 2 shows an example in which a signal obtained by synchronously detecting an MSK wave is sampled using a clock synchronized with a symbol. In the same figure. The I axis shows the in-phase component, and the Q axis shows the orthogonal component. The signal locus of the MSK wave changes on the circumference, and naturally the sample values also lie on this circumference. The phase of the signal vector of the MSK wave is . As a symbol “
When 1° is inputted, it changes by (π/2), and when “0” is inputted, it changes by (1π/2). Therefore, if the sample is to be sampled using a clock synchronized with the symbol, the sampled signal must be fixed at a fixed position, as shown by the circle in FIG. However, when sampling a wave in which a direct wave and a delayed wave are superimposed due to the influence of propagation delays in multiple propagation paths, the sampled value no longer exists at a fixed position on the circumference.

第2図(b)は点1の位置を基準にして,“ttoto
oo ”という信号系列をMSK波の直接波と遅延波と
が重畳した波をシンボルに周期したクロックでサンプル
した例である。白丸印が直接波のみの例で,1−2−3
−2→3→2→1→4という順にベクトルは遷移する。
Figure 2(b) shows "ttoto" based on the position of point 1.
This is an example in which a signal sequence called ``00'' is sampled using a clock whose symbol is a superimposed direct wave and delayed wave of the MSK wave.The white circle is an example of only the direct wave, and 1-2-3
The vector transitions in the order of -2→3→2→1→4.

黒丸印は( COSωC”O*sln tI)c t 
o ) − (f丁/ 2,−(丁/2),a−(T/
2,to−T (1/Tはシンボル・レート)である遅
延波が重畳した波(重畳波)の例である。例として,直
接波が1→2に遷移したとき.点2のタイミングにおい
て.直接波のベクトルに点1のタイミングにおける直接
波のベクトルをωctoだけ回転させて,a倍したもの
を足したものが重畳波のベクトル5になる。以下同様に
して,ベクトルは5→7→6→7−46→9→8という
順に遷移していく。この例のように.遅延がサンプリン
グの間隔以上の時間に及び,遅延波の振幅が大きい場合
,正しくデータを再生することは困難である。 このよ
うに正しくデータを再生することができない場合は.プ
リアンプルを検出することができないという欠点がある
The black circle mark is (COSωC”O*sln tI)c t
o ) − (f d/2, -(d/2), a-(T/
This is an example of a wave (superimposed wave) in which a delayed wave of 2.to-T (1/T is the symbol rate) is superimposed. For example, when the direct wave transitions from 1 to 2. At the timing of point 2. The vector of the direct wave at the timing of point 1 is rotated by ωcto and multiplied by a to the vector of the direct wave, and the result becomes vector 5 of the superimposed wave. Similarly, the vector changes in the order of 5→7→6→7-46→9→8. Like this example. If the delay is longer than the sampling interval and the amplitude of the delayed wave is large, it is difficult to reproduce the data correctly. If you cannot reproduce the data correctly like this. The disadvantage is that the preamble cannot be detected.

又,多重伝搬路における符号間干渉によって起こるこの
欠点を補なうために,従来から伝送路等化という方法が
採用されている。しかしながら.その方法によって正し
くデータを再生することができたとしても,特定の信号
系列を検出するのに時間がかかるという問題がある。
Furthermore, in order to compensate for this drawback caused by intersymbol interference in multiple propagation paths, a method called transmission path equalization has been employed. however. Even if data can be reproduced correctly using this method, there is a problem in that it takes time to detect a specific signal sequence.

また,伝搬遅延の影響がない場合でも,従来の方法はク
ロック再生を行なっているため,安定したクロックが得
られなければ,データを正しく再生することができない
という欠点がある。
Furthermore, even when there is no effect of propagation delay, conventional methods perform clock recovery, which has the disadvantage that data cannot be correctly recovered unless a stable clock is obtained.

[課題を解決するための手段及び作用1本発明による信
号系列検出方法は,検出すべき信号系列として,任意な
信号系列でなく,伝搬遅延の影響を受けない,例えばプ
リアンプルのような,特定の信号系列を選ぶことによっ
て,従来技術の問題点を取り除かんとするものであって
,クロック再生,伝送路等化を必要としないことを特徴
とする。ここで,伝搬遅延の影響を受けない信号系列と
は,変調波を同期検波して得られた信号ベクトルの位相
のサンプリング時間間隔T毎の変化が,常に等しくなる
ような信号系列のことをいう。
[Means and Effects for Solving the Problems 1] The signal sequence detection method according to the present invention detects not an arbitrary signal sequence but a specific signal sequence, such as a preamble, which is not affected by propagation delay. The present invention attempts to eliminate the problems of the prior art by selecting the signal sequence of , and is characterized in that it does not require clock recovery or transmission line equalization. Here, a signal sequence that is not affected by propagation delay refers to a signal sequence in which the changes in the phase of the signal vector obtained by synchronously detecting the modulated wave at each sampling time interval T are always the same. .

以下.本発明の原理について,先ず,第3図を用い,後
で第4図を参照して説明する。
below. The principle of the present invention will be explained first with reference to FIG. 3 and later with reference to FIG. 4.

第3図を参照すると,第2図と同様に,MSK波を同期
検波して得られた信号ベクトルをシンボルに同期したク
ロックでサンプルした例で,白丸印が直接波のみの例で
,黒丸印が, (COSωCiO+s1n ω( to
 ) −(I丁/2, =f丁/2).a−J]7/2
,t.II−Tなる遅延波が重畳した波の例であり.(
a〉は信号系列が全てシンボル“1゛の場合,(b〉は
全てシンボル“Omの場合である。
Referring to Figure 3, similar to Figure 2, the signal vector obtained by synchronously detecting the MSK wave is sampled with a clock synchronized with the symbol. , (COSωCiO+s1n ω( to
) −(I/2, =f/2). a-J] 7/2
, t. This is an example of a wave in which a delayed wave called II-T is superimposed. (
a> is the case where all the signal sequences are symbols "1", (b> is the case where all the signal sequences are symbols "Om").

第3図(a)において,直接波の信号ベクトルが11→
12→13→14→11という順に反時計回りに遷移す
る場合.重畳波の信号ベクトルは15→16→17→1
g−15という順に反時計回りに遷移する。このように
,直接波の信号ベクトルの位相の変化と遅延波の信号ベ
クトルの位相の変化が常に等しければ,重畳波の信号ベ
クトルの位相の変化も常に等しい。
In Figure 3(a), the signal vector of the direct wave is 11→
When transitioning counterclockwise in the order of 12 → 13 → 14 → 11. The signal vector of the superimposed wave is 15→16→17→1
Transition counterclockwise in the order g-15. In this way, if the changes in the phase of the direct wave signal vector and the changes in the phase of the delayed wave signal vector are always equal, then the changes in the phase of the superimposed wave signal vector are also always equal.

第3図(b)についても同様に,直接波の信号ベクトル
の21→24→23→22→21という時計回りの遷移
に対して,重畳波の信号ベクトルは25−28−27−
26→25という時計回りの遷移を呈する。
Similarly, regarding FIG. 3(b), for the clockwise transition of the signal vector of the direct wave from 21 to 24 to 23 to 22 to 21, the signal vector of the superimposed wave is 25-28-27-
It exhibits a clockwise transition of 26→25.

第4図は第2図.第3図の場合と異なり,MSK波を同
期検波して得られた信号ベクトルをシンボルに同期した
クロックに対してわずかに周波数のずれているクロック
でサンプルしたものを短かい時間について表示したもの
で,信号系列が全てシンボル“1″の場合である。直接
波の信号ベクトルが31→32→33→34峠31とい
う順に反時計回りに遷移するが8サンプリング・クロッ
クがシンボルに同期していないため.サンプル値はf,
Q軸上に存在しない。また,時間の経過とともに.サン
プル値は円周上をゆっくり動いていく。しかし2サンプ
ル時間間隔T毎の信号ベクトルの位相の変化は常に(π
/2)であるので,I−Q平面上の4点に固定されて見
える。
Figure 4 is similar to Figure 2. Unlike the case in Figure 3, this is a sample of the signal vector obtained by synchronously detecting the MSK wave using a clock whose frequency is slightly different from the clock synchronized with the symbol, and is displayed over a short period of time. , the signal sequence is all symbols "1". The signal vector of the direct wave transitions counterclockwise in the order of 31 → 32 → 33 → 34, but the 8 sampling clock is not synchronized with the symbol. The sample value is f,
It does not exist on the Q axis. Also, over time. The sample values move slowly around the circumference. However, the change in the phase of the signal vector every two sample time intervals T is always (π
/2), so it appears to be fixed at four points on the I-Q plane.

したがって,重畳波の信号ベクトルも35−3 6−3
 7 − 3 8→35というように反時計回りに遷移
し,サンプル時間間隔T毎の信号ベクトルの位相の変化
は常に(π/2)である。信号系列が全てシンボル“O
“の場合も同様であって.サンプル時間間隔T毎の信号
ベクトルの位相の変化は常に(一π/2)である。
Therefore, the signal vector of the superimposed wave is also 35-3 6-3
The signal vector transitions counterclockwise as 7-38→35, and the change in the phase of the signal vector for each sample time interval T is always (π/2). All signal sequences are symbol “O”
The same is true in the case of ``.The change in the phase of the signal vector for each sampling time interval T is always (1π/2).

以上説明したように,変調波を同期検波して得られる直
接波の信号ベクトルの位相のサンプル時間間隔T毎の変
化が常に等しければ,重畳波の信号ベクトルの位相の変
化も常に等しい。また,位相の変化のみに着目するため
,サンプリング・クロックがシンボルに完全に同期して
いなくても,ある精度内で周波数同期がとれていればよ
い。
As explained above, if the changes in the phase of the direct wave signal vector obtained by synchronously detecting the modulated wave at each sampling time interval T are always the same, then the changes in the phase of the superimposed wave signal vector are also always the same. Moreover, since only the phase change is focused, even if the sampling clock is not completely synchronized with the symbol, it is sufficient that the frequency synchronization can be achieved within a certain accuracy.

本発明による信号系列検出方法は,受信波を同期検波す
ることにより得られる信号ベクトルの位相をシンボル・
レートに等しいサンプリング・レートでサンプリングを
行ない,連続する有限個のシンボルにわたって.あるサ
ンプリングされた位相値と1シンボル前のサンプリング
された位相値との位相差が各々所定の位相差となること
を検出して,特定の信号系列を検出する。
The signal sequence detection method according to the present invention converts the phase of a signal vector obtained by synchronously detecting a received wave into a symbol.
sample over a finite number of consecutive symbols with a sampling rate equal to the rate. A specific signal sequence is detected by detecting that the phase difference between a certain sampled phase value and a sampled phase value one symbol before becomes a predetermined phase difference.

〔実施例] 次に,本発明について図面を参照して説明する。〔Example] Next, the present invention will be explained with reference to the drawings.

第1図は本発明の一実施例による信号系列検出方法の手
順を示すフローチャートである。
FIG. 1 is a flowchart showing the procedure of a signal sequence detection method according to an embodiment of the present invention.

受信波を同期検波することにより得られる信号ベクトル
の位相φ(1)をシンボル◆レートに等しいサンプリン
グ●レー1’(1./T)で,時刻1−0からサンプリ
ングを開始し(ステップ101,102,103,10
4),サンプリングされた位相値φ(T)と1シンボル
前にサンプリングされた位相値)φ〈0〉との位相差Δ
φ1を求める(ステップ105)。この求められた位相
差Δφ1が,位相変化の基準値(予め定められた位相差
)Δφcと一致しているかを見て(ステップ106)一
致していなければ次のサンプリングを行ない,処理を続
ける(ステップ110,103.104)一致していれ
ば,一致したことが何回続いたかを調べる(ステップ1
07)。一致した回数iが検出すべき特定の信号系列の
長さn未満であれば.次のサンプリングをおこない処理
を続ける(ステップ111,103,104)。一致し
た回数iがn回以上ならば,特定の信号系列が検出され
たことがわかる(ステップ108)。次の特定の信号系
列を検出するならば再びサンプリングをおこない(ステ
ップ109のNO),そうでなければ処理を終える(ス
テップ109のYe s)。
The phase φ(1) of the signal vector obtained by synchronously detecting the received wave is symbol ◆Sampling equal to the rate●Ray 1' (1./T), and sampling starts from time 1-0 (step 101, 102, 103, 10
4), Phase difference Δ between the sampled phase value φ(T) and the phase value sampled one symbol before) φ<0>
φ1 is determined (step 105). It is checked whether the obtained phase difference Δφ1 matches the phase change reference value (predetermined phase difference) Δφc (step 106), and if it does not match, the next sampling is performed and the process continues ( Steps 110, 103, 104) If they match, check how many times the matches continued (Step 1)
07). If the number of matches i is less than the length n of the specific signal sequence to be detected. Next sampling is performed and processing continues (steps 111, 103, 104). If the number of matches i is n or more, it can be seen that a specific signal sequence has been detected (step 108). If the next specific signal sequence is detected, sampling is performed again (NO in step 109); otherwise, the process ends (Yes in step 109).

上述の手順において,位相変化の基準値Δφcのとるべ
き値は,変調方式がMSK方式であるにおいては,全て
のシンボルが′1″である信号系列を検出する場合は(
π/2),全てのシンボルが“0“である信号系列を検
出する場合は・(一π/2)である。又.変調方式が,
ガウスフィルタをベースバンドフィルタεして用いたG
MSK方式の場合も,上記M S. K方式のそれと同
様である。
In the above procedure, the value that the phase change reference value Δφc should take is (when detecting a signal sequence in which all symbols are '1' when the modulation method is the MSK method).
π/2), and when detecting a signal sequence in which all symbols are "0", it is .pi./2). or. The modulation method is
G using a Gaussian filter as a baseband filter ε
In the case of the MSK method, the above MS. This is similar to that of the K method.

一方.変調方式が,シンボル01#が三つ続けて入力さ
れたら信号ベクトルの位相が1シンボルにつき(π/2
)増加し.シンボルMO“が三つ続けて入力されたら信
号ベクトルの位相が1シンボルにつき(π/2)減少し
.シンボル“01,シンボルが″1”が交互に入力され
たら信号ベクトルの位相が変化しないというTamed
FM方式の場合については.基準値Δφcは,全てのシ
ンボルが゜1“である信号系列を検出する場合は(π/
2),全てのシンボルが“O“である信号系列を検出す
る場合は(一π/2),シンボル“0“とシンボル“1
゛とが交互に続く信号系列を検出する場合は0である。
on the other hand. In the modulation method, if three symbols 01# are input in succession, the phase of the signal vector will be (π/2
) increases. If three symbols MO" are input in succession, the phase of the signal vector decreases by (π/2) per symbol. If the symbol "01" and the symbol "1" are input alternately, the phase of the signal vector will not change. Tamed
Regarding the FM method. The reference value Δφc is (π/
2) When detecting a signal sequence in which all symbols are “O” (1π/2), symbol “0” and symbol “1” are detected.
The value is 0 when detecting a signal sequence in which `` and `` are alternately continued.

又.前述の手順において,求められた位相差Δφiと予
め定められた位相差とΔφcとが一致する回数について
は.遅延波がある場合,符号間干渉のために,検出すべ
き特定の信号系列の長さよりも少なくなることがある。
or. In the above procedure, the number of times that the obtained phase difference Δφi matches the predetermined phase difference and Δφc is as follows. If there is a delayed wave, the length may be less than the length of the specific signal sequence to be detected due to intersymbol interference.

このような場合,検出すべき特定の信号系列の長さをな
るべく長くして,求められた位相差,Δφiと予め定め
られた位相差Δφcとが一致する回数iが,それより数
回少なくても,特定の信号系列が検出できたとみなす等
の対策を施せばよい。
In such a case, the length of the specific signal sequence to be detected is made as long as possible so that the number of times i that the obtained phase difference Δφi and the predetermined phase difference Δφc match is several times less than that. However, countermeasures such as assuming that a specific signal sequence has been detected may be taken.

[発明の効果] 以上説明したように本発明は、受信波を同期検波するこ
とにより得られる信号ベクトルの位相をシンボル・レー
トと等しいサンプリング●レートでサンプリングを行な
い,サンプリングされた位相の変化がシンボル毎に常に
一定であることを検出することにより.高速ディジタル
伝送においても,伝送路等化.クロック再生を必要εし
ない簡単な構成の復調器で.特定の信号系列を検出でき
るという効果がある。
[Effects of the Invention] As explained above, the present invention samples the phase of a signal vector obtained by synchronously detecting a received wave at a sampling rate equal to the symbol rate, and the change in the sampled phase corresponds to the symbol. By detecting that each time is always constant. Transmission path equalization is also used in high-speed digital transmission. A demodulator with a simple configuration that does not require clock recovery. This has the effect of being able to detect a specific signal sequence.

【図面の簡単な説明】[Brief explanation of the drawing]

第1図は本発明の一実施例による信号系列検出方法の手
順を示すフローチャート,第2図はMSK波を同期検波
で得られた信号ベクトルをシンボルに同期したクロック
でサンプルした例を示す図で,(a)は直接波のみの例
,(b)は直接波と重畳波の例を示し.第3図は検出す
べきMSK波を同期検波して得られた信号ベクトルをシ
ンボルに同期したクロックでサンプルした例を示す図で
,(a)は信号系列が全てシンボル“1”の場合,(b
)は信号系列が全てシンボル″01の場合の例を示し,
第4図は検出すべきMSK波を同期検波して得られた信
号ベクトルをシンボルに同期したクロックに対してわず
かに周波数のずれているククでサンプルしたものを短か
い時間について表示した図である。 惰2図 第1図 第3図
FIG. 1 is a flowchart showing the procedure of a signal sequence detection method according to an embodiment of the present invention, and FIG. 2 is a diagram showing an example in which a signal vector obtained by synchronous detection of an MSK wave is sampled with a clock synchronized with a symbol. , (a) shows an example of only direct waves, and (b) shows an example of direct waves and superimposed waves. Figure 3 is a diagram showing an example in which the signal vector obtained by synchronously detecting the MSK wave to be detected is sampled with a clock synchronized with the symbol. b
) shows an example when the signal sequence is all symbols "01",
Fig. 4 is a diagram showing, over a short period of time, the signal vector obtained by synchronously detecting the MSK wave to be detected, sampled with a clock whose frequency is slightly shifted from the clock synchronized with the symbol. . Figure 2 Figure 1 Figure 3

Claims (1)

【特許請求の範囲】 1、送信すべきシンボルの“1”及び“0”に対応して
、それぞれ搬送波の位相が第1の方向及び該第1の方向
とは逆方向の第2の方向に所定角度だけ変化された変調
波を受信波として受け、該受信波の中から、該受信波を
同期検波して得られた信号ベクトルの位相の変化が、サ
ンプリング時間間隔T毎に等しいような特定のシンボル
パターンに対応した特定の信号系列を検出する方法であ
って、 前記得られた信号ベクトルの位相を、シンボル・レート
に等しいサンプリング・レート(1/T)でサンプリン
グして、サンプリングされた位相値φ[kT]を得、 該サンプリングされた位相値φ[kT]と1シンボル前
にサンプリングされた位相値φ[(k−1)T]との位
相差Δφiを求め、 該求められた位相差φiと予め定められた位相差Δφc
とが連続して等しい回数iを計算し、該計算された回数
iが所定の回数nに達したか否かを判定し、 前記計数された回数iが前記所定の回数nに達したとき
をもって、前記特定の信号系列の検出時とすることを特
徴とする信号系列検出方法。
[Claims] 1. Corresponding to symbols "1" and "0" to be transmitted, the phase of the carrier wave is in a first direction and in a second direction opposite to the first direction, respectively. A modulated wave changed by a predetermined angle is received as a received wave, and a change in phase of a signal vector obtained by synchronously detecting the received wave from among the received waves is the same at every sampling time interval T. A method for detecting a specific signal sequence corresponding to a symbol pattern, the method comprising: sampling the phase of the obtained signal vector at a sampling rate (1/T) equal to the symbol rate; Obtain the value φ[kT], determine the phase difference Δφi between the sampled phase value φ[kT] and the phase value φ[(k-1)T] sampled one symbol before, and calculate the determined position. Phase difference φi and predetermined phase difference Δφc
calculate the number of times i that are consecutively equal, determine whether the calculated number of times i reaches a predetermined number of times n, and when the counted number of times i reaches the predetermined number of times n; , when the specific signal sequence is detected.
JP15685689A 1989-06-21 1989-06-21 Signal sequence detection method Expired - Lifetime JPH0817407B2 (en)

Priority Applications (6)

Application Number Priority Date Filing Date Title
JP15685689A JPH0817407B2 (en) 1989-06-21 1989-06-21 Signal sequence detection method
DE69018897T DE69018897T2 (en) 1989-06-21 1990-06-20 Method for detecting a specific signal sequence that reduces the effects of multipath transmission.
CA002019359A CA2019359C (en) 1989-06-21 1990-06-20 Detection of a particular signal sequence with no adverse influence of multipath transmission
EP90111664A EP0413108B1 (en) 1989-06-21 1990-06-20 Method of detecting a particular signal sequence which reduces the effects of multipath transmission
US07/541,690 US5113415A (en) 1989-06-21 1990-06-21 Detection of a particular signal sequence with no adverse influence of multipath transmission
AU57738/90A AU642148B2 (en) 1989-06-21 1990-06-21 Detection of a particular signal sequence with no adverse influence of multipath transmission

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP15685689A JPH0817407B2 (en) 1989-06-21 1989-06-21 Signal sequence detection method

Publications (2)

Publication Number Publication Date
JPH0323742A true JPH0323742A (en) 1991-01-31
JPH0817407B2 JPH0817407B2 (en) 1996-02-21

Family

ID=15636876

Family Applications (1)

Application Number Title Priority Date Filing Date
JP15685689A Expired - Lifetime JPH0817407B2 (en) 1989-06-21 1989-06-21 Signal sequence detection method

Country Status (1)

Country Link
JP (1) JPH0817407B2 (en)

Cited By (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
EP0691764A2 (en) 1994-07-06 1996-01-10 Nec Corporation Precise detection of frequency error for bursts modulated by predetermined symbol sequence

Cited By (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
EP0691764A2 (en) 1994-07-06 1996-01-10 Nec Corporation Precise detection of frequency error for bursts modulated by predetermined symbol sequence
US5535249A (en) * 1994-07-06 1996-07-09 Nec Corporation Precise detection of frequency error for bursts modulated by predetermined symbol sequence

Also Published As

Publication number Publication date
JPH0817407B2 (en) 1996-02-21

Similar Documents

Publication Publication Date Title
JP2773562B2 (en) Signal sequence detection method
CA2256169A1 (en) Circuit for reproducing bit timing and method of reproducing bit timing
US6519303B1 (en) Clock reproduction circuit
JPH04160843A (en) Demodulation circuit
JPH0323742A (en) Signal system detecting method
JPH10164152A (en) Center error detecting circuit for fsk receiver
JPH09501277A (en) Method and demodulator for demodulating digitally modulated signal
JPS58114654A (en) Reproducing circuit of reference carrier wave
JP2931454B2 (en) Digital phase modulation signal demodulation circuit
JP2771365B2 (en) Carrier recovery circuit
JP3088892B2 (en) Data receiving device
JP3088894B2 (en) Data receiving device
JPH11355372A (en) Frequency recovery circuit and frequency recovery method
JPH0817408B2 (en) Signal sequence detector
JP3558811B2 (en) Modulator and modulation method, demodulator and demodulation method
JP3167341B2 (en) Continuous phase modulation signal demodulation circuit
JP2958612B2 (en) Multi-level QAM demodulator
JPH02203645A (en) Quasi-synchronization type demodulator
JP2523750B2 (en) Carrier regeneration circuit
JPH066397A (en) Delay detector
JPH07115446A (en) Clock regenerator for digital phase modulation
JPH0479183B2 (en)
JP3353331B2 (en) Clock extraction method and clock extraction circuit
JPH07105765B2 (en) Phase-modulated signal grouping demodulator
JPH04297168A (en) Carrier recovery device

Legal Events

Date Code Title Description
FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20080221

Year of fee payment: 12

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20090221

Year of fee payment: 13

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20100221

Year of fee payment: 14

EXPY Cancellation because of completion of term
FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20100221

Year of fee payment: 14