JPH03236221A - Vapor growth apparatus - Google Patents

Vapor growth apparatus

Info

Publication number
JPH03236221A
JPH03236221A JP3416290A JP3416290A JPH03236221A JP H03236221 A JPH03236221 A JP H03236221A JP 3416290 A JP3416290 A JP 3416290A JP 3416290 A JP3416290 A JP 3416290A JP H03236221 A JPH03236221 A JP H03236221A
Authority
JP
Japan
Prior art keywords
gas
liner tube
susceptor
tube
liner
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Pending
Application number
JP3416290A
Other languages
Japanese (ja)
Inventor
Masaru Takechi
勝 武智
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Fujitsu Ltd
Original Assignee
Fujitsu Ltd
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Fujitsu Ltd filed Critical Fujitsu Ltd
Priority to JP3416290A priority Critical patent/JPH03236221A/en
Publication of JPH03236221A publication Critical patent/JPH03236221A/en
Pending legal-status Critical Current

Links

Abstract

PURPOSE:To achieve high uniformity in a growing film from the upstream side to the downstream side by providing a cooling-gas introducing mechanism for cooling a liner tube part at the upper part from a substrate which is mounted on a susceptor from the outside of the liner tube. CONSTITUTION:At the time of growing, a susceptor 6 on which a substrate 5 is mounted is heated with a high-frequency coil 7. Raw material gas is introduced into a liner tube 2 from a raw-material-gas introducing pipe 3. The gas is discharged through an exhaust port 9 with purging gas. The gas around the susceptor and the liner tube 2 are heated by the thermal conduction and heat radiation from the susceptor 6 to high temperature. Cooling gas is blown to a liner tube part 11 at the upper part from the susceptor 6 from the tip of a liner-tube-cooling-gas introducing pipe 10. Thus, the rise of the temperature at the liner tube part 11 at the upper part from the substrate is considerably suppressed. The cooling gas is blown to the outside of the liner tube, and the flow of the raw material gas in the liner tube is not disturbed.

Description

【発明の詳細な説明】 [概要] 基板上に気相成長により薄膜を堆積させる気相成長装置
に関し、 原料ガスの分解温度がサセプタの温度に近い場合におい
ても、優れた均一性を有する膜を成長できる気相成長装
置を提供することを目的とし、反応管と、反応管の内部
に配置され、原料ガスが流れるライナー管と、を備える
横形反応管型の気相成長装置において、サセプタ上に載
った基板の上方のライナー管部分をライナー管の外側か
ら冷却するための冷却ガス導入機構を備えるように構成
する。
[Detailed Description of the Invention] [Summary] This invention relates to a vapor phase growth apparatus that deposits a thin film on a substrate by vapor phase growth, and is capable of producing a film with excellent uniformity even when the decomposition temperature of the source gas is close to the temperature of the susceptor. The purpose of the present invention is to provide a vapor phase growth apparatus that can perform growth, and is a horizontal reaction tube type vapor growth apparatus that includes a reaction tube and a liner tube disposed inside the reaction tube and through which source gas flows. The structure includes a cooling gas introduction mechanism for cooling the liner tube portion above the mounted substrate from the outside of the liner tube.

〔産業上の利用分野] 本発明は、基板上に気相成長により薄膜を堆積させる気
相成長装置に関する。
[Industrial Application Field] The present invention relates to a vapor phase growth apparatus for depositing a thin film on a substrate by vapor phase growth.

[従来の技術] 第3図は従来の気相成長装置の模式側面断面図である。[Conventional technology] FIG. 3 is a schematic side sectional view of a conventional vapor phase growth apparatus.

第3図において1は反応管、2はライナー管、3は原料
ガス導入管、4はパージ用ガス導入管、5は基板、6は
カーボン製サセプタ、7はサセプタ加熱用高周波コイル
、8は成長期にライナー管内壁に堆積する付着物、9は
排気口である。
In Fig. 3, 1 is a reaction tube, 2 is a liner tube, 3 is a raw material gas introduction tube, 4 is a purge gas introduction tube, 5 is a substrate, 6 is a carbon susceptor, 7 is a high frequency coil for heating the susceptor, and 8 is a growth coil. Deposits deposited on the inner wall of the liner pipe during the period, 9 is the exhaust port.

成長時には基板5を載せたサセプタ6が高周波コイル7
により加熱されている。
During growth, the susceptor 6 on which the substrate 5 is placed serves as a high-frequency coil 7.
is heated by.

原料ガス導入管3から導入された原料ガスは基板5上に
薄膜を堆積させ、その後パージガスにより排気口9から
反応管1外に排出される。
The raw material gas introduced from the raw material gas introduction pipe 3 deposits a thin film on the substrate 5, and is then discharged to the outside of the reaction tube 1 from the exhaust port 9 by the purge gas.

気相成長中には、サセプタ6周辺のガスおよびライナー
管2もサセプタ6からの熱伝導や輻射によって加熱され
高温になる。そのため、成長を行っていると、気相中ま
たはライナー管2の内壁表面で原料ガスの一部が加熱・
分解され、次第にライナー管2の内壁に付着物8が堆積
して行く。
During the vapor phase growth, the gas around the susceptor 6 and the liner tube 2 are also heated by heat conduction and radiation from the susceptor 6 and reach a high temperature. Therefore, during growth, part of the raw material gas is heated and heated in the gas phase or on the inner wall surface of the liner tube 2.
It is decomposed and deposits 8 gradually accumulate on the inner wall of the liner tube 2.

付着物8は主にサセプタ6の先端から原料ガスの流れの
下流側にかけてのライナー管2の上方に堆積する。サセ
プタ6の先端から原料ガスの流れ方向で見て上流側では
、原料ガスがまだあまり加熱されていないため付着物の
堆積は少ない。
The deposits 8 are mainly deposited above the liner pipe 2 from the tip of the susceptor 6 to the downstream side of the flow of raw material gas. On the upstream side as seen from the tip of the susceptor 6 in the flow direction of the raw material gas, the raw material gas has not yet been heated much, so there is little deposit of deposits.

[発明が解決しようとする課題] 上述の従来方法によると、成長中に次第にライナー管2
の内壁に付着物が堆積して行く。付着物が堆積するとい
うことは、その分だけ原料ガスが消費されているという
ことであり、従って原料ガスの流れの上流から下流にか
けて原料ガス中の原料の濃度が次第に下がることになる
。基板5に成長する膜の成長速度は、濃厚勾配により支
配される拡散律速であるから、原料ガスの流れの上流で
厚く下流で薄い不均一な膜になるという問題を生ずる。
[Problems to be Solved by the Invention] According to the above-mentioned conventional method, the liner tube 2 is gradually removed during growth.
Deposits accumulate on the inner walls of the The accumulation of deposits means that the raw material gas is consumed accordingly, and therefore the concentration of the raw material in the raw material gas gradually decreases from upstream to downstream of the flow of the raw material gas. Since the growth rate of the film grown on the substrate 5 is diffusion-limited by the concentration gradient, a problem arises in that the film becomes thicker upstream of the flow of source gas and thinner downstream of the flow of source gas, resulting in a non-uniform film.

サセプタ6の温度は一般に高い方が成長膜の結晶性は良
くなるが、不純物などが成長膜中に取り込まれ易くなる
。したがって、サセプタ6の温度は成長させる結晶の種
類に応じて所望の特性の結晶が得られるように定められ
る。
Generally, the higher the temperature of the susceptor 6, the better the crystallinity of the grown film, but the easier it is for impurities to be incorporated into the grown film. Therefore, the temperature of the susceptor 6 is determined depending on the type of crystal to be grown so as to obtain a crystal with desired characteristics.

原料ガスの分解温度が上記のようにして定められるサセ
プタ6の温度よりも十分高ければ、付着物の堆積は少な
(成長する膜の均一性はまだ良いが、原料ガスの分解温
度がサセプタ6の温度に近かければ、付着物の堆積は多
く成長する膜の均一性は悪くなる。
If the decomposition temperature of the raw material gas is sufficiently higher than the temperature of the susceptor 6 determined as described above, the deposition of deposits will be small (the uniformity of the grown film is still good, but if the decomposition temperature of the raw material gas is sufficiently higher than the temperature of the susceptor 6 determined as described above) The closer the temperature is, the more deposits will be deposited and the uniformity of the grown film will be poor.

このような膜の均一性の低下を防止するためには従来は
ライナー管2内を減圧にして成長を行っていた。減圧気
相成長の場合はガス流速が大になるので、サセプタ近傍
での原料ガス濃度勾配が低下し、膜の均一性は良好にな
る。しかし、減圧気相成長装置では装置自体の構造が複
雑になるという問題がある。
In order to prevent such a decrease in the uniformity of the film, growth was conventionally performed with the inside of the liner tube 2 under reduced pressure. In the case of reduced pressure vapor phase growth, the gas flow rate is high, so the raw material gas concentration gradient near the susceptor is reduced, and the uniformity of the film is improved. However, the reduced pressure vapor phase growth apparatus has a problem in that the structure of the apparatus itself becomes complicated.

したがって、本発明では、原料ガスの分解温度がサセプ
タ6の温度に近い場合においても、優れた均一性を有す
る膜を成長できる気相成長装置を提供することを目的と
するものである。
Therefore, an object of the present invention is to provide a vapor phase growth apparatus that can grow a film with excellent uniformity even when the decomposition temperature of the source gas is close to the temperature of the susceptor 6.

[課題を解決するための手段] 上記問題点の解決は、第1図に示すサセプタ6上に載っ
た基板5の上方のライナー管部分を冷却するために、ラ
イナー管の外側に冷却用ガスを吹き付けるための冷却用
ガス導入機構を備えた気相成長装置で膜を成長すること
によって達成される。
[Means for Solving the Problems] The above problem can be solved by supplying a cooling gas to the outside of the liner tube in order to cool the liner tube portion above the substrate 5 placed on the susceptor 6 shown in FIG. This is achieved by growing the film in a vapor phase growth apparatus equipped with a cooling gas introduction mechanism for spraying.

[作用〕 すなわち本発明は、成長中に、サセプタ6上に載った基
板5の上方のライナー管部分に冷却用ガスを吹き付けて
サセプタ6の温度は低下させず、付着物が付き易い部分
のライナー管を冷却することにより、成長中のライナー
管2の内壁への付着物の堆積を抑える。これによって、
原料ガスのながれの上流から下流にかけての原料ガス中
の原料の濃度変化を小さくし、成長膜の上流から下流に
かけての均一性を改善するものである。
[Function] That is, the present invention sprays cooling gas onto the liner tube portion above the substrate 5 placed on the susceptor 6 during growth, so that the temperature of the susceptor 6 is not lowered, and the liner is removed from the portion where deposits are likely to adhere. By cooling the tube, deposits of deposits on the inner wall of the growing liner tube 2 are suppressed. by this,
This method reduces the change in the concentration of the raw material in the raw material gas from upstream to downstream in the flow of the raw material gas, and improves the uniformity of the grown film from upstream to downstream.

[実施例] 以下、本発明を図示の一実施例により具体的に説明する
[Example] Hereinafter, the present invention will be specifically explained with reference to an illustrated example.

第1図は本発明の一実施例における気相成長装置の模式
側面断面図である。
FIG. 1 is a schematic side sectional view of a vapor phase growth apparatus in one embodiment of the present invention.

第2図において、1は反応管、2はライナー管、3は原
料ガス導入管、4はパージ用ガス導入管、5は基板、6
はカーボン製サセプタ、7はサセプタ加熱用高周波コイ
ル、8は成長中にライナー管内壁に堆積する付着物、9
は排気口、10はライナー管冷却用ガス導入管、11は
基板の上方のライナー管部分、12は3.4.10の各
管を機密に固定しかつ突畠させ、反応管1を封止する蓋
、13は蓋12とは反対側で反応管1を封止する蓋であ
る。
In Fig. 2, 1 is a reaction tube, 2 is a liner tube, 3 is a raw material gas introduction tube, 4 is a purge gas introduction tube, 5 is a substrate, and 6
7 is a carbon susceptor; 7 is a high-frequency coil for heating the susceptor; 8 is deposits deposited on the inner wall of the liner tube during growth; 9
10 is an exhaust port, 10 is a gas inlet pipe for cooling the liner tube, 11 is a liner tube portion above the substrate, 12 is a tube that securely fixes each tube in 3.4.10 and stands out, and seals the reaction tube 1. The lid 13 is a lid that seals the reaction tube 1 on the opposite side from the lid 12.

成長時には、基板5を載せたサセプタ6が高周波コイル
7により加熱され、原料ガス導入管3から原料ガスライ
ナー管2内に導入され、排気口9からパージ用ガスによ
り排気される。サセプタ周辺のガスおよびライナー管2
もサセプタ6からの熱伝導や輻射によって加熱され高温
になるが、ライナー管冷却用ガス導入管10の先端から
サセプタ6の上方のライナー管部分11に向かって吹き
出る冷却用ガスによって、基板の上方のライナー管部分
11の温度の上昇はかなり抑えられる。なお、この冷却
用ガスはライナー管の外側に吹き付られているため、ラ
イナー管内部の原料ガスの流れを乱すことはない。
During growth, the susceptor 6 on which the substrate 5 is placed is heated by the high-frequency coil 7, introduced into the source gas liner tube 2 from the source gas introduction tube 3, and exhausted from the exhaust port 9 with a purge gas. Gas and liner pipes around the susceptor 2
However, the cooling gas blowing out from the tip of the liner tube cooling gas introduction tube 10 toward the liner tube section 11 above the susceptor 6 causes the temperature to rise above the substrate. The rise in temperature of the liner tube section 11 is considerably suppressed. Note that since this cooling gas is blown to the outside of the liner tube, it does not disturb the flow of the raw material gas inside the liner tube.

ライナー管の冷却用ガス導入管11は蓋12から突出さ
せるこことが好ましい。反応管lの構造が複雑になり、
好ましくはないが反応管lの側壁に穴を開けて基板除法
のライナー管部分11を冷却してもよい。
It is preferable that the cooling gas introduction pipe 11 of the liner pipe protrudes from the lid 12. The structure of the reaction tube l becomes complicated,
Although not preferred, a hole may be made in the side wall of the reaction tube 1 to cool the liner tube portion 11 for removing the substrate.

冷却用ガスによって基板の上方のライナー管の温度上昇
が抑えられる結果、基板5の上方のライナー管部分11
の内壁への堆積物8の付着が減る。これによって、原料
ガスの流れの上流から下流にかけての原料ガス中の原料
の濃度変化が小さくなり、成長する膜の上流から下流に
かけての均一性が改善される。
As a result of suppressing the temperature rise of the liner tube above the substrate by the cooling gas, the liner tube portion 11 above the substrate 5 is
The adhesion of deposits 8 to the inner walls of the is reduced. This reduces the change in the concentration of the raw material in the raw material gas from upstream to downstream in the flow of the raw material gas, and improves the uniformity of the growing film from upstream to downstream.

従来法の一例として、サセプタ温度630℃で、原料ガ
ス導入管3からの水素ガス流量をE5j2/min、パ
ージ用ガス導入管4からの水素ガス流量を10j2/m
in、ライナー管冷却用ガス導入管10からの水素ガス
流量を0.5β/winとし、原料ガスとしてTMG(
トリメチルガリウム)を2 、 6cc/min 、 
TM I (’t−リメチルインジウム)を0.63c
c/l!lin 、 AsHm  (アルシン)を18
 cc/ min原料ガス導入管3から流して3インチ
G a A s基板上にInGaAs膜を常圧で成長し
たところ、第3図に点線で示すように、3インチ基板の
原料ガスの流れの上流がら下流にがけてInGaAs膜
のIn組成は0.15からOまで減少した。これはTM
Gより熱分解しゃすいTMI(分解温度的300℃)が
基板の上流側でA s Haと反応してしまい、基板の
下流側でTMIが枯渇してしまったためである。
As an example of the conventional method, the susceptor temperature is 630° C., the hydrogen gas flow rate from the source gas introduction pipe 3 is E5j2/min, and the hydrogen gas flow rate from the purge gas introduction pipe 4 is 10j2/m.
In, the hydrogen gas flow rate from the liner tube cooling gas introduction pipe 10 was set to 0.5β/win, and TMG (
trimethyl gallium) at 2.6 cc/min,
TM I ('t-limethylindium) at 0.63c
c/l! lin, AsHm (arsine) 18
When an InGaAs film was grown at normal pressure on a 3-inch GaAs substrate by flowing cc/min raw material gas from the inlet pipe 3, as shown by the dotted line in Fig. 3, the upstream of the flow of raw material gas on the 3-inch substrate In the downstream direction, the In composition of the InGaAs film decreased from 0.15 to O. This is TM
This is because TMI, which is more thermally decomposable than G (decomposition temperature: 300° C.), reacted with As Ha on the upstream side of the substrate, and TMI was depleted on the downstream side of the substrate.

次に、本発明実施例としてライナー管冷却用ガス導入管
10からの水素ガス流量を1012/winとし、その
他の成長条件は同一でI nGaAs膜を成長したとこ
ろ、第2図に実線で示すように、3インチ基板の原料ガ
スの流れの上流から下流にかけてI nGaAs膜のI
n組成は0.15から0.13まで僅かに減少しただけ
であった。このように、ライナー管冷却用ガス導入管1
0から冷却用ガスを10β/+++in流すことにより
InGaAs膜のIn組成の均一性が大幅に改善された
Next, as an example of the present invention, an InGaAs film was grown with the hydrogen gas flow rate from the liner tube cooling gas introduction pipe 10 set to 1012/win and other growth conditions being the same, as shown by the solid line in FIG. In addition, the I nGaAs film is
The n composition decreased only slightly from 0.15 to 0.13. In this way, the liner pipe cooling gas introduction pipe 1
The uniformity of the In composition of the InGaAs film was greatly improved by flowing the cooling gas from 0 to 10β/+++in.

[発明の効果ゴ 以上のように本発明によれば、常圧での成長中に、基板
の上方のライナー管部分11に冷却用ガスを吹き付けこ
の部分を冷却することにより、成長中の基板の上方のラ
イナー管部分11の内への付着物の堆積を抑えることが
でき、原料ガスの流れの上流から下流にかけての原料ガ
ス中の原料の濃度変化を小さくすることができるため、
成長膜の上流から下流にかけての高均一化に有効である
[Effects of the Invention] As described above, according to the present invention, during growth at normal pressure, cooling gas is sprayed onto the liner tube portion 11 above the substrate to cool this portion, thereby cooling the substrate during growth. Since it is possible to suppress the accumulation of deposits inside the upper liner pipe section 11 and to reduce the change in the concentration of the raw material in the raw material gas from upstream to downstream of the flow of the raw material gas,
This is effective in making the grown film highly uniform from upstream to downstream.

本発明の装置は減圧で使用しても減圧の程度に応じて効
果はあるが、常圧に近い方が効果は大である。
Although the device of the present invention is effective depending on the degree of pressure reduction even when used at reduced pressure, the effect is greater when the pressure is closer to normal pressure.

【図面の簡単な説明】[Brief explanation of drawings]

第1図は本発明の一実施例における気相成長装置の模式
側面断面図、 第2図は原料ガスの流れの上流から下流にかけての原料
ガス中の原料濃度および成長膜の膜厚の一例を示すグラ
フ、 第3図は従来の気相成長装置の模式側面断面図である。 1−は反応管、2−ライナー管、3−原料ガス導入管、
4−パージ用ガス導入管、5一基板、6−カーボン製サ
セプタ、7−サセプタ加熱用高周波コイル、8−成長中
にライナー管内壁に堆積する付着物、9−排気口、10
−ライナー管冷却用ガス導入管、11一基板の上方のラ
イナー管部分特許比願人     富士通株式会社
Fig. 1 is a schematic side sectional view of a vapor phase growth apparatus in an embodiment of the present invention, and Fig. 2 shows an example of the raw material concentration in the raw material gas and the film thickness of the grown film from upstream to downstream of the flow of the raw material gas. The graph shown in FIG. 3 is a schematic side sectional view of a conventional vapor phase growth apparatus. 1- is a reaction tube, 2- is a liner tube, 3- is a raw material gas introduction tube,
4-Purge gas introduction pipe, 5-Substrate, 6-Carbon susceptor, 7-High frequency coil for heating the susceptor, 8-Deposits deposited on the inner wall of the liner tube during growth, 9-Exhaust port, 10
- Liner tube cooling gas introduction tube, liner tube portion above the substrate 11 Patent applicant Fujitsu Limited

Claims (1)

【特許請求の範囲】[Claims] 1、反応管と、反応管の内部に配置され、原料ガスが流
れるライナー管と、を備える横形反応管型の気相成長装
置において、サセプタ上に載った基板の上方のライナー
管部分をライナー管の外側から冷却するための冷却ガス
導入機構を備えたことを特徴とする気相成長装置。
1. In a horizontal reaction tube type vapor phase growth apparatus comprising a reaction tube and a liner tube placed inside the reaction tube through which source gas flows, the liner tube portion above the substrate placed on the susceptor is connected to the liner tube. A vapor phase growth apparatus characterized by being equipped with a cooling gas introduction mechanism for cooling from the outside.
JP3416290A 1990-02-14 1990-02-14 Vapor growth apparatus Pending JPH03236221A (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP3416290A JPH03236221A (en) 1990-02-14 1990-02-14 Vapor growth apparatus

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP3416290A JPH03236221A (en) 1990-02-14 1990-02-14 Vapor growth apparatus

Publications (1)

Publication Number Publication Date
JPH03236221A true JPH03236221A (en) 1991-10-22

Family

ID=12406511

Family Applications (1)

Application Number Title Priority Date Filing Date
JP3416290A Pending JPH03236221A (en) 1990-02-14 1990-02-14 Vapor growth apparatus

Country Status (1)

Country Link
JP (1) JPH03236221A (en)

Cited By (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
WO1999015712A1 (en) * 1997-09-22 1999-04-01 Applied Materials, Inc. Cvd chamber inner lining
US6364954B2 (en) 1998-12-14 2002-04-02 Applied Materials, Inc. High temperature chemical vapor deposition chamber
US20130125819A1 (en) * 2010-07-26 2013-05-23 Altatech Semiconductor Chemical gas deposition reactor
JP2013251442A (en) * 2012-06-01 2013-12-12 Sharp Corp Vapor growth device and manufacturing method of nitride semiconductor light emitting element

Cited By (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
WO1999015712A1 (en) * 1997-09-22 1999-04-01 Applied Materials, Inc. Cvd chamber inner lining
US6364954B2 (en) 1998-12-14 2002-04-02 Applied Materials, Inc. High temperature chemical vapor deposition chamber
WO2000036179A3 (en) * 1998-12-14 2002-10-17 Applied Materials Inc High temperature chemical vapor deposition chamber
US20130125819A1 (en) * 2010-07-26 2013-05-23 Altatech Semiconductor Chemical gas deposition reactor
JP2013251442A (en) * 2012-06-01 2013-12-12 Sharp Corp Vapor growth device and manufacturing method of nitride semiconductor light emitting element

Similar Documents

Publication Publication Date Title
US5158750A (en) Boron nitride crucible
JP2006319301A (en) Catalyst chemical vapor deposition equipment
US5075055A (en) Process for producing a boron nitride crucible
US5599732A (en) Method for growing III-V semiconductor films using a coated reaction chamber
JPH03236221A (en) Vapor growth apparatus
JPS58135633A (en) Epitaxial growth of silicon
JP4222630B2 (en) Method for epitaxially growing objects and apparatus for performing such growth
JPH0194613A (en) Vapor growth method
JPH03236220A (en) Vapor growth method for semiconductor
JP3093716B2 (en) Vertical vacuum deposition equipment
JPH0354193A (en) Organic metal gaseous phase growth device
JP2003100642A (en) Vapor phase thin film epitaxial growth system and vapor phase thin film epitaxial growth method
JPS6342137Y2 (en)
JPS61155291A (en) Vapor growth process
JPH05888A (en) Vapor phase epitaxy device
JPH06151339A (en) Apparatus and method for growth of semiconductor crystal
JPS58185499A (en) Device for growing thin film in vapor phase
JP4427694B2 (en) Film forming apparatus and film forming method
JPS61177713A (en) Apparatus for vapor phase epitaxial growth of silicon carbide compound semiconductor
JPS6131393A (en) Vapor phase growth device
JPS58140391A (en) Device for vapor deposition
JPS62155511A (en) Vapor growth device
JPH07142393A (en) Device for growing semiconductor crystal
JPS58132921A (en) Vapor phase growth method
JPH09309792A (en) Apparatus for molecular beam epitaxial growth