JPH03235037A - Particle analyzing apparatus - Google Patents

Particle analyzing apparatus

Info

Publication number
JPH03235037A
JPH03235037A JP2031127A JP3112790A JPH03235037A JP H03235037 A JPH03235037 A JP H03235037A JP 2031127 A JP2031127 A JP 2031127A JP 3112790 A JP3112790 A JP 3112790A JP H03235037 A JPH03235037 A JP H03235037A
Authority
JP
Japan
Prior art keywords
lens
light
aspherical
photodetector
optical system
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Pending
Application number
JP2031127A
Other languages
Japanese (ja)
Inventor
Tatsuya Yamazaki
達也 山崎
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Canon Inc
Original Assignee
Canon Inc
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Canon Inc filed Critical Canon Inc
Priority to JP2031127A priority Critical patent/JPH03235037A/en
Publication of JPH03235037A publication Critical patent/JPH03235037A/en
Pending legal-status Critical Current

Links

Landscapes

  • Investigating, Analyzing Materials By Fluorescence Or Luminescence (AREA)

Abstract

PURPOSE:To obtain a compact and inexpensive particle analyzing apparatus in a simple structure by receiving the obtained light by use of a photodetector through a photometric optical system having an optical member with at least one aspherical surface. CONSTITUTION:A laser beam from a laser source 2 irradiates a particle to be detected which passes a circulating part 1a of a flow cell 1, through a cylindrical lens 3 and a lens 4. The front scattering light is condensed by an aspherical lens 12 and received by a photodetector 7 via a field stop 6. The side scattering light and fluorescence are condensed by an aspherical lens 13 and received by a photodetector 10 via a condenser lens 8 and a field stop 9. The front scattering light or the side scattering light, fluorescense is correctly formed into an image at the position of the field stop 6 or 9. Accordingly, if the lenses 12, 13 are processed to be an ideal shape, the number of lenses of the condenser lens 8 can be reduced. An efficient photometric optical system can be formed of a small number of lenses, so that the particle analyzing apparatus becomes compact and inexpensive.

Description

【発明の詳細な説明】 [産業上の利用分野] 本発明は、例えばフローサイトメータのように、フロー
セル内を通過する被検粒子にレーザービーム等を照射し
、被検粒子からの散乱光、偏光解消光、蛍光等を測光し
て、被検粒子の性質、構造等を解析する粒子解析装置に
関するものである。
Detailed Description of the Invention [Industrial Application Field] The present invention, for example in a flow cytometer, irradiates test particles passing through a flow cell with a laser beam or the like, and detects scattered light from the test particles, The present invention relates to a particle analysis device that measures depolarized light, fluorescence, and the like to analyze the properties, structure, etc. of test particles.

[従来の技術] フローサイトメータとは、高速で流れる細胞浮遊溶液、
即ちサンプル液に例えばレーザー光を照射し、その散乱
光・蛍光による光電信号を検出し、細胞の性質・構造を
解明する装置であり、細胞化学、免疫学、血液学、腫瘍
学、遺伝学等の分野で使用されている。
[Conventional technology] A flow cytometer is a cell suspension solution that flows at high speed.
In other words, it is a device that irradiates a sample liquid with, for example, a laser beam, detects a photoelectric signal from the scattered light and fluorescence, and elucidates the properties and structure of cells, and is used in cytochemistry, immunology, hematology, oncology, genetics, etc. used in the field of

このフローサイトメータ等に用いられる従来の粒子解析
装置では、フローセルの中央部の例えば200tLmx
200LLmの微小な四角形断面を有する流通部内を、
シース液に包まれて通過する血球細胞などの被検粒子に
レーザー光等の照射光を照射し、その結果として生ずる
前方及び側方散乱光により、被検粒子の形状・大きさ・
屈折率等の粒子的性質を得ることが可能である。また、
蛍光剤により染色され得る被検粒子に対しては、照射光
とほぼ直角方向の側方散乱光から被検粒子の蛍光を検出
することにより、被検粒子を解析するための重要な情報
を求めることができる。
In the conventional particle analysis device used in this flow cytometer, etc., the central part of the flow cell is 200 tLmx.
Inside the flow part with a minute rectangular cross section of 200 LLm,
Laser light or other light is irradiated onto test particles such as blood cells that pass through the sheath fluid, and the resulting forward and side scattered light is used to determine the shape, size, and shape of the test particles.
It is possible to obtain particle-like properties such as refractive index. Also,
For test particles that can be stained with a fluorescent agent, important information for analyzing the test particles is obtained by detecting the fluorescence of the test particles from side scattered light in a direction almost perpendicular to the irradiation light. be able to.

第3図は従来例による粒子解析装置の構成図であり、1
は被検粒子を含むサンプル液をシース液と共に高速で流
す流通部1aを有するフローセルである。フローセルl
に向けてレーザー光源2が設けられ、フローセル1との
間の光軸O1上にはレーザー光源2側からシリンドリカ
ルレンズ3.4が配置されている。前方散乱光測光光学
系として、フローセルlを挟んで反対側の光軸01上に
は、集光レンズ5、視野絞り6、光検出器7が配置され
、側方散乱光及び蛍光測光光学系として流通部1aと光
軸01に直交する方向の光軸02上には、集光レンズ8
、視野絞り9、光検出器10が配列されている。
FIG. 3 is a diagram showing the configuration of a conventional particle analysis device.
is a flow cell having a flow section 1a through which a sample liquid containing test particles flows at high speed together with a sheath liquid. flow cell l
A laser light source 2 is provided toward the flow cell 1, and a cylindrical lens 3.4 is arranged from the laser light source 2 side on the optical axis O1 between the flow cell 1 and the flow cell 1. As a forward scattered light photometric optical system, a condenser lens 5, a field stop 6, and a photodetector 7 are arranged on the optical axis 01 on the opposite side of the flow cell l, and as a side scattered light and fluorescence photometric optical system. A condensing lens 8 is disposed on the optical axis 02 in a direction perpendicular to the flow section 1a and the optical axis 01.
, a field stop 9, and a photodetector 10 are arranged.

フローセル1の内部の流通部1aを高速層流のシース液
に包まれたサンプル液を通過させた状態で、レーザー光
源2からレーザービームL1を出射すると、レーザービ
ームL1は光軸旧上を進みシリンドリカルレンズ3.4
により集光され、流通部la内の被検粒子を楕円状スポ
ットで照射する。
When the laser beam L1 is emitted from the laser light source 2 while the sample liquid wrapped in the high-speed laminar flow sheath liquid passes through the flow section 1a inside the flow cell 1, the laser beam L1 advances along the optical axis and forms a cylindrical lens 3.4
The light is focused by the ellipsoidal spot and irradiates the test particles in the flow section la with an elliptical spot.

被検粒子による前方散乱光は、集光レンズ5、視野絞り
6を介して光検出器7で受光され、その受光量から主に
被検粒子の大きさに関する情報が得られる。一方、側方
散乱光及び蛍光は集光レンズ8で集光され、視野絞り9
を介して光検出器10で受光され、その受光量から主に
被検粒子の形状に関する情報が得られる。ここで、散乱
光及び特に蛍光は微弱であるので、一般には集光レンズ
5及び集光レンズ8に顕微鏡用の対物レンズ等を組込ん
で、測光光学系の開口数を太き(する工夫がなされてい
る。
The forward scattered light from the test particles is received by the photodetector 7 via the condenser lens 5 and the field stop 6, and information regarding the size of the test particles can be obtained from the amount of the received light. On the other hand, side scattered light and fluorescence are condensed by a condenser lens 8, and a field aperture 9
The light is received by the photodetector 10 via the light beam, and information mainly regarding the shape of the particle to be detected can be obtained from the amount of light received. Here, since scattered light and especially fluorescence are weak, it is generally a good idea to incorporate an objective lens for a microscope into the condenser lenses 5 and 8 to increase the numerical aperture of the photometric optical system. being done.

[発明が解決しようとする課題] しかしながら、従来例においては、上述したように例え
ば顕微鏡用の対物レンズを利用しているが、開口数を大
きくするために測光光学系のレンズを大型にしなければ
ならず、また開口数が大きいために測光光学系に収差補
正用の多数のレンズを使用し、更にレンズの色消しのた
めに高価で加工が困難な多種の硝材を使用するという理
由から、粒子解析装置が複雑となり大型かつ高価になる
[Problems to be Solved by the Invention] However, in the conventional example, as mentioned above, for example, an objective lens for a microscope is used, but in order to increase the numerical aperture, the lens of the photometric optical system must be made large. In addition, due to the large numerical aperture, the photometric optical system uses many lenses for aberration correction, and in order to achromatize the lenses, various types of glass materials that are expensive and difficult to process are used. The analysis device becomes complicated, large and expensive.

本発明の目的は、非球面レンズを利用して、容易な構成
で小型かつ安価な粒子解析装置を提供することにある。
An object of the present invention is to provide a particle analysis device that is simple, compact, and inexpensive by using an aspherical lens.

[課題を解決するための手段] 上述の目的を達成するために、本発明に係る粒子解析装
置においては、透明体から成る流通部を通過する液体中
の被検粒子に照射光を照射し、得られる光を測光光学系
を介して光検出器で受光し、該光検出器の受光量から被
検粒子の解析を行う粒子解析装置であって、前記測光光
学系内に少なくとも一面が非球面の光学部材を配したこ
とを特徴とするものである。
[Means for Solving the Problems] In order to achieve the above-mentioned object, the particle analysis device according to the present invention irradiates test particles in a liquid passing through a flow section made of a transparent body with irradiation light, A particle analysis device that receives the obtained light with a photodetector via a photometric optical system and analyzes a target particle based on the amount of light received by the photodetector, the photometric optical system having at least one aspherical surface. It is characterized by having an optical member arranged therein.

[作用] 上述の構成を有する粒子解析装置は、流通部を通過する
液体中の被検粒子に照射光を照射し、得られる光を少な
くとも一面が非球面の光学部材を有する測光光学系を介
して光検出器で受光する。
[Operation] The particle analysis device having the above configuration irradiates the test particles in the liquid passing through the flow section with irradiation light, and transmits the obtained light through a photometric optical system having an optical member having an aspherical surface on at least one surface. The light is received by a photodetector.

[実施例] 本発明を第1図、第2図に図示の実施例に基づいて詳細
に説明する。なお、第3図と同一の符号は同一の部材を
示している。
[Example] The present invention will be explained in detail based on the example illustrated in FIGS. 1 and 2. Note that the same reference numerals as in FIG. 3 indicate the same members.

第1図は粒子解析装置の構成図であり、光軸01上のフ
ローセル1と視野絞り6との間には、ストッパ11、両
面が非球面の非球面レンズ12が配列され、光軸02上
のフローセル1と視野絞り9との間には両面が非球面の
非球面レンズ13、集光レンズ8が配列されている。
FIG. 1 is a configuration diagram of a particle analyzer. A stopper 11 and an aspherical lens 12 having aspherical surfaces on both sides are arranged between a flow cell 1 and a field stop 6 on the optical axis 01. An aspherical lens 13 having aspherical surfaces on both sides and a condensing lens 8 are arranged between the flow cell 1 and the field stop 9.

レーザー光源2からのレーザービームL1は、従来例と
同様にシリンドリカルレンズ3、レンズ4を介してフロ
ーセル1の流通部1aを通過する被検粒子を照射し、そ
の前方散乱光は非球面レンズ12で集光され、更に視野
絞り6を介して光検出器7で受光される。また、側方散
乱光及び蛍光は非球面レンズ13で集光され、集光レン
ズ8と視野絞り9を介して光検出器10で受光される。
The laser beam L1 from the laser light source 2 irradiates the test particles passing through the flow section 1a of the flow cell 1 via the cylindrical lens 3 and lens 4 as in the conventional example, and the forward scattered light is emitted by the aspherical lens 12. The light is condensed and further received by a photodetector 7 via a field diaphragm 6. Further, the side scattered light and fluorescence are collected by an aspherical lens 13 and received by a photodetector 10 via a condensing lens 8 and a field stop 9.

非球面レンズ12.12はモールド加工により製造され
、非球面レンズ12は開口数N/’;0.3の前方散乱
光の球面収差、コマ収差、色収差を良好に補正し、一方
で非球面レンズ13は集光レンズ8と組み合わさり、開
口数NA≦0.7の側方散乱光及び蛍光の収差を良好に
補正するようにされており、前方散乱光又は側方散乱光
、蛍光は、視野絞り6又は視野絞り9の位置に正確に結
像される。
The aspherical lens 12.12 is manufactured by molding, and the aspherical lens 12 has a numerical aperture N/'; 13 is combined with a condensing lens 8 to effectively correct aberrations of side scattered light and fluorescence with numerical aperture NA≦0.7, and forward scattered light, side scattered light, and fluorescence are The image is accurately formed at the position of the diaphragm 6 or field diaphragm 9.

従来例では、集光レンズ5.8には収差補正・色消しの
ために多数のレンズが組込まれているが、このように理
想的な形状に加工された非球面レンズ12、−非球面レ
ンズ13を利用すれば、集光レンズ5.8のレンズを減
少することができ、良好な性能の測光光学系を少数レン
ズで構成し、小型かつ低価格の粒子解析装置が実現され
る。この背景には、最近の特にモールド技術により要求
に合う高精度の非球面レンズが低価格で生産可能となっ
た点がある。なお、非球面レンズ13で補正可能な開口
数NAの上限を、非球面レンズ12のそれよりも大きく
設定するのは、側方散乱光及び蛍光は前方散乱光よりも
微弱であって、より大きな開口数NAの測光光学系が要
求されるからである。
In the conventional example, a large number of lenses are incorporated into the condenser lens 5.8 for aberration correction and achromatization, but the aspherical lens 12, - aspherical lens processed into an ideal shape in this way. 13, the number of condensing lenses 5.8 can be reduced, a photometric optical system with good performance can be constructed with a small number of lenses, and a compact and low-cost particle analysis device can be realized. The background to this is that recent molding technology in particular has made it possible to produce high-precision aspherical lenses that meet the requirements at low cost. The reason why the upper limit of the numerical aperture NA that can be corrected by the aspherical lens 13 is set larger than that of the aspherical lens 12 is because side scattered light and fluorescence are weaker than forward scattered light, and This is because a photometric optical system with a numerical aperture NA is required.

顕微鏡等において、対物レンズと被検物との間に媒質の
屈折率をn、対物レンズへの入射光束が光軸となす最大
角をαとすると、開口数NAは次式%式% 空気の屈折率は約1であるから、被検物と対物レンズと
の間を屈折率が1以上の媒質、例えばクリセリン、セダ
油等で満たした所謂液浸対物レンズは、空気中の対物レ
ンズよりも開口数が大きくなる。
In a microscope, etc., if the refractive index of the medium between the objective lens and the object to be examined is n, and the maximum angle that the light beam incident on the objective lens makes with the optical axis is α, then the numerical aperture NA is calculated using the following formula. Since the refractive index is approximately 1, a so-called immersion objective lens in which the space between the object to be examined and the objective lens is filled with a medium with a refractive index of 1 or more, such as chrycerin or seda oil, has a higher refractive index than an objective lens in air. Numerical aperture increases.

第2図はこの原理を応用した第2の実施例による粒子解
析装置の構成図であり、第1の実施例の非球面レンズ1
2又は非球面レンズ13の代りに、フローセル1側の面
が平面、反対面が非球面とされた非球面レンズ14及び
非球面レンズ15が、光軸01及び02上でフローセル
1の側面に固着されている。非球面レンズ13.14は
フローセル1を媒質としだ液浸レンズと見做せるので、
屈折率が1以上の例えば屈折率が1.46の石英硝子等
でフローセル1を形成すれば、第1の実施例と同様に収
差補正・色消しがなされ、更に開口数NAが1よりも大
きな測光光学系が容易に実現される。なお、非球面レン
ズ13.14をフローセル1に直接固着しなくとも、非
球面レンズ13.14とフローセルlとの間を屈折率が
1以上の媒質で充満しても同様の効果が得られる。
FIG. 2 is a block diagram of a particle analysis device according to a second embodiment applying this principle, and shows the aspherical lens 1 of the first embodiment.
2 or instead of the aspherical lens 13, an aspherical lens 14 and an aspherical lens 15, each having a flat surface on the flow cell 1 side and an aspherical surface on the opposite surface, are fixed to the side surface of the flow cell 1 on the optical axes 01 and 02. has been done. Since the aspherical lenses 13 and 14 can be regarded as immersion lenses using the flow cell 1 as a medium,
If the flow cell 1 is formed of quartz glass with a refractive index of 1 or more, for example, 1.46, aberrations can be corrected and achromatized as in the first embodiment, and furthermore, the numerical aperture NA can be larger than 1. A photometric optical system is easily realized. Note that even if the aspherical lens 13.14 is not directly fixed to the flow cell 1, the same effect can be obtained even if the space between the aspherical lens 13.14 and the flow cell 1 is filled with a medium having a refractive index of 1 or more.

[発明の効果コ 以上説明したように本発明に係る粒子解析装置は、得ら
れる光を少なくとも1面が非球面の光学部材を有する測
光光学系を介して光検出器に受光し、非球面の利用によ
って大きい開口数でも良好に収差補正・色消しがなされ
るため、測光光学系を容易な構成にすることができ、小
型かつ安価である。
[Effects of the Invention] As explained above, the particle analysis device according to the present invention receives the obtained light through a photometric optical system having an optical member with at least one aspherical surface, and receives the obtained light on a photodetector. When used, aberration correction and achromatization are performed well even with a large numerical aperture, so the photometric optical system can be easily constructed, and is small and inexpensive.

【図面の簡単な説明】[Brief explanation of drawings]

図面第1図、第2図は本発明に係る粒子解析装置の実施
例を示し、第1図は第1の実施例の構成図、第2図は第
2の実施例の構成図であり、第3図は従来例の粒子解析
装置の構成図である。 符号1はフローセル、1aは流通部、5.8は集光レン
ズ、6.9は視野絞り、7.10は光検出器、12.1
3.14.15は非球面レンズである。
Drawings 1 and 2 show an embodiment of a particle analysis device according to the present invention, FIG. 1 is a block diagram of the first embodiment, and FIG. 2 is a block diagram of the second embodiment. FIG. 3 is a block diagram of a conventional particle analysis device. 1 is a flow cell, 1a is a flow section, 5.8 is a condensing lens, 6.9 is a field stop, 7.10 is a photodetector, 12.1
3.14.15 is an aspherical lens.

Claims (1)

【特許請求の範囲】 1、透明体から成る流通部を通過する液体中の被検粒子
に照射光を照射し、得られる光を測光光学系を介して光
検出器で受光し、該光検出器の受光量から被検粒子の解
析を行う粒子解析装置であって、前記測光光学系内に少
なくとも一面が非球面の光学部材を配したことを特徴と
する粒子解析装置。 2、前記流通部を有するフローセルは屈折率1以上の透
明体とし、前記非球面光学部材を前記流通部に接着した
請求項1に記載の粒子解析装置。 3、前記流通部を有するフローセルと前記非球面光学部
材との間を屈折率が1以上の媒質で充満した請求項1に
記載の粒子解析装置。
[Claims] 1. Irradiation light is irradiated onto test particles in a liquid passing through a flow section made of a transparent body, the resulting light is received by a photodetector via a photometric optical system, and the light is detected. What is claimed is: 1. A particle analysis device for analyzing test particles based on the amount of light received by a device, characterized in that an optical member having at least one aspherical surface is disposed within the photometric optical system. 2. The particle analysis device according to claim 1, wherein the flow cell having the flow section is a transparent body having a refractive index of 1 or more, and the aspherical optical member is adhered to the flow section. 3. The particle analysis device according to claim 1, wherein a space between the flow cell having the flow section and the aspherical optical member is filled with a medium having a refractive index of 1 or more.
JP2031127A 1990-02-09 1990-02-09 Particle analyzing apparatus Pending JPH03235037A (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP2031127A JPH03235037A (en) 1990-02-09 1990-02-09 Particle analyzing apparatus

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP2031127A JPH03235037A (en) 1990-02-09 1990-02-09 Particle analyzing apparatus

Publications (1)

Publication Number Publication Date
JPH03235037A true JPH03235037A (en) 1991-10-21

Family

ID=12322763

Family Applications (1)

Application Number Title Priority Date Filing Date
JP2031127A Pending JPH03235037A (en) 1990-02-09 1990-02-09 Particle analyzing apparatus

Country Status (1)

Country Link
JP (1) JPH03235037A (en)

Cited By (12)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
EP1192447A2 (en) * 1999-05-12 2002-04-03 Aclara BioSciences, Inc. Multiplexed fluorescent detection in microfluidic devices
JP2003004625A (en) * 2001-06-15 2003-01-08 Sysmex Corp Flow sight meter
JP2006227013A (en) * 1998-05-14 2006-08-31 Luminex Corp Flow analyzer and multi-analyte diagnostic system
JP2006313151A (en) * 2005-04-07 2006-11-16 Sysmex Corp Blood analyzer, sample analyzer and flow cytometer
JP2012513031A (en) * 2008-12-18 2012-06-07 バイオビジラント システムズ,インコーポレイテッド Compact detector for simultaneous detection of particle size and fluorescence
JP2013535687A (en) * 2010-08-20 2013-09-12 バイオ−ラド ラボラトリーズ インコーポレイテッド Cytometry system with a solid numerical aperture increasing lens
JP2014006108A (en) * 2012-06-22 2014-01-16 Azbil Corp Optical particle detection device and method for detecting particle
JP2014010072A (en) * 2012-06-29 2014-01-20 Azbil Corp Optical in-liquid particle detection device and in-liquid particle detection method
JP2014190748A (en) * 2013-03-26 2014-10-06 Sysmex Corp Particle analysis device, optical system for particle analysis device, and lens for particle analysis device
JP2014209087A (en) * 2013-03-29 2014-11-06 シスメックス株式会社 Particle measuring apparatus
WO2018135488A1 (en) * 2017-01-20 2018-07-26 東京エレクトロン株式会社 Foreign matter detection device, foreign matter detection method and storage medium
JP2021503608A (en) * 2017-09-21 2021-02-12 ビーアイティー グループ フランスBit Group France Optical flow cytometer for epifluorescence measurement

Cited By (15)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2006227013A (en) * 1998-05-14 2006-08-31 Luminex Corp Flow analyzer and multi-analyte diagnostic system
EP1192447A2 (en) * 1999-05-12 2002-04-03 Aclara BioSciences, Inc. Multiplexed fluorescent detection in microfluidic devices
JP2003004625A (en) * 2001-06-15 2003-01-08 Sysmex Corp Flow sight meter
JP2006313151A (en) * 2005-04-07 2006-11-16 Sysmex Corp Blood analyzer, sample analyzer and flow cytometer
JP2012513031A (en) * 2008-12-18 2012-06-07 バイオビジラント システムズ,インコーポレイテッド Compact detector for simultaneous detection of particle size and fluorescence
US8907312B2 (en) 2010-08-20 2014-12-09 Bio-Rad Laboratories, Inc. Cytometry system with solid numerical-aperture-increasing lens
JP2013535687A (en) * 2010-08-20 2013-09-12 バイオ−ラド ラボラトリーズ インコーポレイテッド Cytometry system with a solid numerical aperture increasing lens
JP2014006108A (en) * 2012-06-22 2014-01-16 Azbil Corp Optical particle detection device and method for detecting particle
JP2014010072A (en) * 2012-06-29 2014-01-20 Azbil Corp Optical in-liquid particle detection device and in-liquid particle detection method
JP2014190748A (en) * 2013-03-26 2014-10-06 Sysmex Corp Particle analysis device, optical system for particle analysis device, and lens for particle analysis device
JP2014209087A (en) * 2013-03-29 2014-11-06 シスメックス株式会社 Particle measuring apparatus
WO2018135488A1 (en) * 2017-01-20 2018-07-26 東京エレクトロン株式会社 Foreign matter detection device, foreign matter detection method and storage medium
JPWO2018135488A1 (en) * 2017-01-20 2019-12-26 東京エレクトロン株式会社 Foreign object detection device, foreign object detection method, and storage medium
JP2021503608A (en) * 2017-09-21 2021-02-12 ビーアイティー グループ フランスBit Group France Optical flow cytometer for epifluorescence measurement
US11204310B2 (en) 2017-09-21 2021-12-21 Bit Group France Optical flow cytometer for epi fluorescence measurement

Similar Documents

Publication Publication Date Title
US5594544A (en) Flow type particle image analyzing method and apparatus
JP4817442B2 (en) Optical system for particle analyzer and particle analyzer using the same
EP2180306B1 (en) Focussing arrangement for a capillary cell
JP3306828B2 (en) Liquid flow cytometer
EP2977744B1 (en) Flow cytometer, particle analyzer, and flow cytometric method
US9766174B2 (en) Optical measuring device and optical measuring method
JPH05340865A (en) Measuring instrument
CN106019608B (en) One type Gauss flat top beam laser system
EP1836519A1 (en) System and method for a composite lens for a flow cytometer
JPH03235037A (en) Particle analyzing apparatus
JPH0715437B2 (en) Biological cell scattered light measurement device for flow cytometer
US11150458B2 (en) Multi-mode imaging optical system
JP2022172075A (en) Optical flow cytometer for epi-fluorescence measurement
JPH04115140A (en) Micro fluid cell
US8947661B2 (en) High numerical aperture light scattering instrument for detecting particles in fluid
WO1991003725A1 (en) Combined optical train for laser spectroscopy
JP2000019114A (en) Method and apparatus for detecting faint fluorescence
JPH0486546A (en) Specimen inspection device
US20240133794A1 (en) Optical particle analyser with illumination at an oblique angle onto a non-transparent microfluidic chip
US20240068925A1 (en) Particle analyzer, particle analysis method, and optical measurement device
EP4047347A1 (en) Optical particle analyser with illumination at an oblique angle onto a non-transparent microfluidic chip
US5822062A (en) Particle analyzer including a rod lens having a curved surface
EP1253421B1 (en) Method for calibrating the sample height in a sample analyzer
EP4354195A1 (en) Light energy collecting system and detection apparatus
JPH03197841A (en) Inspection device for body to be inspected