JPH0323024B2 - - Google Patents

Info

Publication number
JPH0323024B2
JPH0323024B2 JP59097963A JP9796384A JPH0323024B2 JP H0323024 B2 JPH0323024 B2 JP H0323024B2 JP 59097963 A JP59097963 A JP 59097963A JP 9796384 A JP9796384 A JP 9796384A JP H0323024 B2 JPH0323024 B2 JP H0323024B2
Authority
JP
Japan
Prior art keywords
control
clock
transmission
devices
light line
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Expired - Lifetime
Application number
JP59097963A
Other languages
Japanese (ja)
Other versions
JPS60241345A (en
Inventor
Kazuo Nishida
Shinji Nakamura
Jun Iguchi
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Panasonic Holdings Corp
Original Assignee
Matsushita Electric Industrial Co Ltd
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Matsushita Electric Industrial Co Ltd filed Critical Matsushita Electric Industrial Co Ltd
Priority to JP59097963A priority Critical patent/JPS60241345A/en
Publication of JPS60241345A publication Critical patent/JPS60241345A/en
Publication of JPH0323024B2 publication Critical patent/JPH0323024B2/ja
Granted legal-status Critical Current

Links

Classifications

    • HELECTRICITY
    • H04ELECTRIC COMMUNICATION TECHNIQUE
    • H04LTRANSMISSION OF DIGITAL INFORMATION, e.g. TELEGRAPHIC COMMUNICATION
    • H04L12/00Data switching networks
    • H04L12/28Data switching networks characterised by path configuration, e.g. LAN [Local Area Networks] or WAN [Wide Area Networks]
    • H04L12/40Bus networks
    • H04L12/407Bus networks with decentralised control
    • H04L12/413Bus networks with decentralised control with random access, e.g. carrier-sense multiple-access with collision detection [CSMA-CD]

Landscapes

  • Engineering & Computer Science (AREA)
  • Computer Networks & Wireless Communication (AREA)
  • Signal Processing (AREA)
  • Selective Calling Equipment (AREA)
  • Small-Scale Networks (AREA)

Description

【発明の詳細な説明】 産業上の利用分野 本発明は分散して配置された機器間の通信制御
方法に関するものである。
DETAILED DESCRIPTION OF THE INVENTION FIELD OF INDUSTRIAL APPLICATION The present invention relates to a method of controlling communication between devices disposed in a distributed manner.

従来例の構成とその問題点 複数の機器を集中的に制御したり、現在の機器
の状態をモニタ監視することを目的として、各機
器を電気的な伝送通信路で結び互いに制御信号を
伝送し合う伝送制御方法が各種報告されている。
一例として一般家庭内の電気器具を制御するのに
商用100V電燈線を伝送通信路として用いる方法
がある。これは電燈線の50Hzあるいは60Hz交流電
圧上にこれよりは十分高い周波数の通信用信号電
圧を重畳させて各機器間を通信させるもので、制
御用の特別配線が不必要なことから設置にともな
い手間や費用が小さいという特長を持つ。ここで
機器とは、制御される電気器具と、電気器具が通
電状態(以後ON状態と記す)が非通電状態(以
後OFF状態と記す)かを感知するセンサ機能と
電気器具をON/OFF制御する制御機能と他機器
と制御信号を送受する通信機能とを有した制御モ
ジユールとを組み合わせたものを言う。また制御
機器として、各機器と制御信号を送受する通信機
能と各機器に伝送するON/OFF制御信号を発生
する制御信号発生機能と各機器がON状態かOFF
状態かを表示するモニタ表示機能とを有した制御
ターミナルがある。
Conventional configuration and its problems In order to centrally control multiple devices or monitor the current status of devices, each device is connected through an electrical transmission channel and transmits control signals to each other. Various suitable transmission control methods have been reported.
One example is a method in which a commercial 100V electric light line is used as a transmission communication path to control electrical appliances in a general household. This superimposes a communication signal voltage of a sufficiently higher frequency on top of the 50Hz or 60Hz alternating current voltage of the electric light line to communicate between each device, and since special wiring for control is not required, it is easy to install. It has the advantage of requiring little effort and cost. Here, the equipment refers to the electrical appliance to be controlled, the sensor function that detects whether the electrical appliance is energized (hereinafter referred to as ON state) or de-energized (hereinafter referred to as OFF state), and the electrical appliance that controls ON/OFF of the appliance. A control module that has a control function to transmit and receive control signals to and from other devices and a communication function to send and receive control signals to and from other devices. In addition, as a control device, there is a communication function that sends and receives control signals to and from each device, a control signal generation function that generates ON/OFF control signals that are transmitted to each device, and a control signal generation function that generates ON/OFF control signals to be transmitted to each device.
There is a control terminal that has a monitor display function that displays the status.

電燈線を用いた伝送制御方法について次に図を
用いて詳しく説明する。
The transmission control method using the electric light line will be explained in detail below with reference to the drawings.

第1図は従来の電燈線を用いた伝送制御方法の
構成図である。1は商用100Vの電燈線であり、
一般家庭内にあるものである。機器2,3,4は
それぞれ電気機具5,6,7と制御モジユール
8,9,10が組み合わさつたものであり、それ
ぞれ電燈線1に接続されている。制御モジユール
8,9,10は前述したようにセンサ・制御・通
信機能を有したもので、自己と組み合つた電気器
具5,6,7のON/OFF状態を検知して制御
し、また電燈線1を伝送通信路として他機器と通
信する。制御ターミナル11は機器の一種であ
り、電燈線1に接続され、前述したように通信・
制御信号発生・モニタ機能を有する。また各機器
2〜4,11は他の機器と識別するため個々に指
標番号を持つ。指標番号は各機器にあらかじめ設
定した番号であり、指標番号記憶手段12,1
3,14,15に記憶される。今、機器2,3,
4の指標番号は順に1番、2番、3番に、制御タ
ーミナル11の指標番号は0番にそれぞれ設定さ
れているとする。一つの機器から送信された制御
信号は、どの機器に対して制御するのかを示す必
要があり、また必要に応じて返事を要求しなけれ
ばならない。このため制御信号は、制御信号の送
信した機器を示す自局指標番号と、制御先の機器
を示す相手局指標番号と、制御内容を示す命令と
から構成される。例えば、制御ターミナル11か
ら制御信号によりOFF状態にある電気器具5を
ON状態に変更するとする。制御ターミナル11
は制御要求が生じたならば、自局指標番号である
0番と相手局指標番号である1番とON命令とか
ら成る制御信号を電燈線1上に送信する。電燈線
1上に送信された制御信号は機器2,3,4のい
ずれにも受信される。各機器は制御信号を受信し
たなら、まずその中の相手局指標番号を自己の指
標番号と比較し、もしこれらが異なつていればこ
の制御信号を無視し、もし一致していれば制御信
号の命令に従い制御を実行する。すなわち機器2
だけが命令に従い、制御モジユール8の制御機能
によつて電気器具5はON状態に変更される。制
御モジユール8は電気器具5がON状態になつた
のを確認したなら、今度は制御ターミナル11に
対して電気器具5がON状態になつた旨の報知命
令を含んだ制御信号を出す。制御ターミナル11
はこの制御信号を受信すれば機器2の電気器具5
はON状態にある旨のモニタ表示を行なう。以上
が一連の伝送制御の過程である。この指標番号を
用いた伝送制御方法では多数の機器の相互制御
を、指標番号で自局と相手局を特定できるため
に、一本の伝送通信路で行なうことができ、設備
的に簡単に設置できるという長所がある。
FIG. 1 is a block diagram of a conventional transmission control method using electric light lines. 1 is a commercial 100V light line,
It is something that can be found in ordinary households. The devices 2, 3, and 4 are each a combination of electric devices 5, 6, and 7 and control modules 8, 9, and 10, and are connected to the electric light line 1, respectively. As mentioned above, the control modules 8, 9, and 10 have sensor, control, and communication functions, and detect and control the ON/OFF status of the electric appliances 5, 6, and 7 combined with themselves, and also control the electric lights. Communicate with other devices using line 1 as a transmission communication path. The control terminal 11 is a type of equipment, is connected to the electric light line 1, and is used for communication and communication as described above.
Has control signal generation and monitoring functions. Further, each device 2 to 4, 11 has an individual index number to distinguish it from other devices. The index number is a number set in advance for each device, and the index number storage means 12, 1
3, 14, and 15. Now, equipment 2, 3,
It is assumed that the index numbers of 4 are set to 1, 2, and 3 in order, and the index number of the control terminal 11 is set to 0. A control signal sent from one device must indicate which device is to be controlled, and must also request a reply if necessary. Therefore, the control signal is composed of a local station index number indicating the device to which the control signal was transmitted, a partner station index number indicating the device to be controlled, and a command indicating the content of the control. For example, the electrical appliance 5 that is in the OFF state is activated by a control signal from the control terminal 11.
Suppose you want to change it to ON state. Control terminal 11
When a control request occurs, it transmits a control signal on the light line 1 consisting of the local station index number 0, the partner station index number 1, and an ON command. The control signal transmitted on the electric light line 1 is received by any of the devices 2, 3, and 4. When each device receives a control signal, it first compares the other station's index number with its own index number, and if they are different, it ignores this control signal, and if they match, it sends a control signal. Executes control according to instructions. i.e. equipment 2
only follows the command and the appliance 5 is changed to the ON state by the control function of the control module 8. When the control module 8 confirms that the electric appliance 5 has turned on, it then issues a control signal to the control terminal 11 containing a command to notify that the electric appliance 5 has turned on. Control terminal 11
When receiving this control signal, the appliance 5 of device 2
displays on the monitor that it is in the ON state. The above is a series of transmission control processes. In this transmission control method using index numbers, mutual control of a large number of devices can be performed using a single transmission communication path, since the own station and the other station can be identified by index numbers, making installation easy. It has the advantage of being possible.

以上記述した従来の伝送制御方法において、場
合により複数の機器から同時に制御要求が起こり
伝送通信路上で制御信号が衝突することが生じ
る。これは伝送通信路に複数の制御ターミナルが
存在する時などに生じる。制御信号の衝突時には
一般にデータは崩れ必要な制御が不可能となり以
後の通信も混乱する。この回避の方法として2つ
考えられる。その第1は機器が衝突を検出したな
らただちに制御信号の送信を中止し同時にその制
御要求を取りやめるという方法である。この方法
では以後の通信の混乱はない反面、必要な命令が
相手機器に届かないため、制御の不実行やモニタ
の誤表示等、使用者にとつて誤動作となるという
欠点がある。第2は前方法と同じく送信を中止
し、その後各機器は乱数演算を行ないその乱数に
応じた待ち時間だけ待つてから制御信号を再送信
する方法である。この方法でも通信の混乱は解消
できる反面、乱数の桁数が小さいほどまた伝送通
信路上の機器数が多いほど再衝突・再々衝突等の
可能性が高くなるという欠点があり、これを避け
るため乱数の桁数を大きくすると待ち時間が長く
なり通信速度が遅くなるという欠点がある。
In the conventional transmission control method described above, control requests may be made simultaneously from a plurality of devices in some cases, and control signals may collide on the transmission communication path. This occurs when there are multiple control terminals on the transmission channel. When control signals collide, data generally collapses, making necessary control impossible and subsequent communication disrupted. There are two possible ways to avoid this. The first method is to immediately stop transmitting control signals and simultaneously cancel the control request when the device detects a collision. Although this method does not cause any confusion in communication thereafter, it has the disadvantage that necessary commands do not reach the other device, resulting in malfunctions for the user, such as non-execution of control or incorrect display on the monitor. The second method is to stop transmission in the same way as the previous method, and then each device calculates a random number, waits for a waiting time corresponding to the random number, and then retransmits the control signal. Although this method can also eliminate communication confusion, it has the disadvantage that the smaller the number of digits in the random number, and the greater the number of devices on the transmission communication path, the higher the possibility of re-collision or repeated collision. If the number of digits is increased, the waiting time becomes longer and the communication speed becomes slower.

発明の目的 本発明は、上記従来の問題点を解消し、制御信
号の衝突発生時に短い時間で正常通信状態に復帰
する伝送制御方法を提供することを目的とする。
OBJECTS OF THE INVENTION It is an object of the present invention to provide a transmission control method that solves the above-mentioned conventional problems and returns to a normal communication state in a short time when a collision of control signals occurs.

発明の構成 上記従来の問題点を解決するため、本発明は互
いに通信可能で指標番号記憶手段とクロツク発生
手段と演算手段と通信手段を有した複数の機器
と、それらを結ぶ伝送通信路としての電燈線から
成り、伝送通信路上で制御信号が衝突した時、機
器はただちに制御信号の送信を中止し、その後必
要に応じて指標番号と共通の最近待ちクロツクの
期間の後、制御信号の送信を行ない、かつ最低待
ちクロツクの期間は電燈線電源の半周期期間の整
数倍としたものであるため、最近待ちクロツクの
期間に誤差のない安定した衝突回避処理を行うこ
とができる。
Structure of the Invention In order to solve the above conventional problems, the present invention provides a plurality of devices capable of communicating with each other and each having an index number storage means, a clock generation means, an arithmetic means, and a communication means, and a transmission communication path connecting them. When a control signal collides on the transmission channel, the device immediately stops transmitting the control signal, and then, if necessary, resumes transmitting the control signal after a period of the last waiting clock common to the index number. In addition, since the minimum waiting clock period is an integral multiple of the half-cycle period of the electric light line power source, stable collision avoidance processing can be performed without any error in the latest waiting clock period.

実施例の説明 本発明の一実施例を図を用いて説明する。第2
図は本発明の一実施例を示す伝送制御方法の構成
図である。電燈線16には機器17,18,19
および制御ターミナル20が接続されている。機
器17,18,19はそれぞれ電気器具21,2
2,23と制御モジユール24,25,26とが
組み合わさつたものである。制御モジユール2
4,25,26は、制御・センサ・通信機能を有
し、制御ターミナル20は通信・制御信号発生・
モニタ表示機能を有しており、それぞれ電燈線1
6を伝送通信路として互いに通信が可能である。
また各機器は他の機器と識別するため個々に異な
る指標番号を持つ。指標番号は各機器にあらかじ
め設定した番号であり、指標番号記憶手段27,
28,29,30により記憶される。指標番号記
憶手段27,28,29,30は複数の切替スイ
ツチの組み合わせから成る。
DESCRIPTION OF EMBODIMENTS An embodiment of the present invention will be described with reference to the drawings. Second
The figure is a configuration diagram of a transmission control method showing an embodiment of the present invention. Electric light line 16 has equipment 17, 18, 19
and a control terminal 20 are connected. The devices 17, 18, 19 are electrical appliances 21, 2, respectively.
2, 23 and control modules 24, 25, 26 are combined. Control module 2
4, 25, and 26 have control, sensor, and communication functions, and the control terminal 20 has communication, control signal generation, and
It has a monitor display function, and each has one electric light line.
They can communicate with each other using 6 as a transmission communication path.
Each device also has a different index number to distinguish it from other devices. The index number is a number set in advance for each device, and the index number storage means 27,
28, 29, and 30. The index number storage means 27, 28, 29, and 30 consist of a combination of a plurality of changeover switches.

第3図は各機器17〜20のうち代表して機器
17の内部を示す。電燈線16には通信手段31
と制御手段32とセンサ手段33が接続されてお
り、またこれらは演算制御手段34に接続されて
いる。演算制御手段34にはまた指標番号記憶手
段27とクロツク発生手段35が接続されてい
る。クロツク発生手段35は通信に用いる信号の
中の最小単位を送信する期間を演算制御手段34
に知らせるため定期的な周期の電圧を発生するも
ので、電燈線16を用いて商用の電源電圧に同期
して行う通信では1クロツクの周期を電源電圧の
半周期(50Hzでは10モリ秒)としている。この構
成で制御ターミナル20から機器17へ制御命令
がとどいた時、演算制御手段34は通信手段31
を介して制御命令を受け取りその中にある指標番
号が指標番号記憶手段27のものと等しいのを確
認したなら制御手段32に必要な制御を行なわせ
る。また演算制御手段34はセンサ手段33から
ON/OFF状態の変化の情報を得たなら、その旨
の報知命令を通信手段31、電燈線16を介して
制御ターミナル20に送信する。ここで制御モジ
ユール24,25,26と制御ターミナル20
は、常に電燈線16上の伝送信号を監視してお
り、自己が送信するもの以外の伝送信号が電燈線
16上に存在するときは伝送信号の送信は禁止さ
れている。
FIG. 3 shows the inside of the device 17 as a representative among the devices 17 to 20. The electric light line 16 has a communication means 31
, a control means 32 and a sensor means 33 are connected to each other, and these are also connected to an arithmetic control means 34 . Also connected to the calculation control means 34 are an index number storage means 27 and a clock generation means 35. The clock generating means 35 calculates and controls the period for transmitting the minimum unit of the signals used for communication.
It generates a voltage with regular cycles to notify the power supply voltage.In communication using the electric light line 16 in synchronization with the commercial power supply voltage, the period of one clock is regarded as a half cycle of the power supply voltage (10 moliseconds at 50Hz). There is. With this configuration, when a control command reaches the device 17 from the control terminal 20, the arithmetic control means 34
When the control command is received via the control command and it is confirmed that the index number therein is equal to that of the index number storage means 27, the control means 32 is caused to carry out the necessary control. Further, the calculation control means 34 is connected to the sensor means 33.
Once information on the change in the ON/OFF state is obtained, a notification command to that effect is transmitted to the control terminal 20 via the communication means 31 and the electric light line 16. Here, control modules 24, 25, 26 and control terminal 20
always monitors the transmission signal on the electric light line 16, and when a transmission signal other than that transmitted by itself is present on the electric light line 16, transmission of the transmission signal is prohibited.

第4図は電燈線16上の伝送信号を表わす。 FIG. 4 represents the transmitted signal on the light line 16.

波形Aは電源電圧上に信号電圧が重畳したもの
であり、波形Bはその信号電圧成分を示したもの
である。クロツクCは信号電圧が電源波形半周期
の前半にありこれを論理の0とする。クロツクD
は信号電圧が電源波形半周期の後半りありこれを
論理の1とする。こうして電源波形の半周期をク
ロツク周期Tとして通信を行なうことができる。
さて信号の衝突の時にはクロツクEで示すように
クロツク周期T内の前半と後半の両方に信号電圧
が生じる。この時、機器17が電燈線16を監視
していれば衝突の事実を簡単に検出できるので演
算制御手段34はただちに送信を中止する。クロ
ツクEは信号のない状態を示している。
Waveform A is a signal voltage superimposed on a power supply voltage, and waveform B is a signal voltage component. The signal voltage of clock C is in the first half of the half cycle of the power supply waveform, and this is set to logic 0. Clock D
The signal voltage is in the second half of the half cycle of the power supply waveform, and this is set to logic 1. In this way, communication can be performed using the clock cycle T as half the cycle of the power supply waveform.
Now, when signals collide, signal voltages are generated in both the first half and the second half of the clock period T, as shown by clock E. At this time, if the device 17 monitors the electric light line 16, the fact of a collision can be easily detected, so the arithmetic control means 34 immediately stops the transmission. Clock E shows no signal.

第5図は衝突前後の伝送信号を表わす。クロツ
クT1で今機器17と制御ターミナル20とがそ
れぞれ送信した制御信号が衝突したとする。この
場合機器17の指標番号記憶手段27は1番に、
制御ターミナル20の指標番号記憶手段30は0
番に設定されている。また各機器17,18,1
9および制御ターミナル20は共通に衝突検出後
最低3クロツクは送信禁止となるようプログラム
されている。この3クロツクを最低待ちクロツク
と呼ぶ。さて衝突後各機器内の演算制御手段34
はまず最低待ちクロツクの3クロツクと自己の指
標番号記憶手段30の値を加え、この値を自己の
待ちクロツク期間とする。すなわち機器17では
これが4クロツクとなり、制御ターミナル20で
はこれが3クロツクとなる。そして衝突発生後こ
の待ちクロツク期間は送信禁止とする。すなわち
制御ターミナル20はクロツクT2の3クロツク
期間は送信禁止であり、クロツクT3から制御信
号の送信を始める。クロツクT3とクロツクT4
一連の制御ターミナル20の制御信号である。さ
て一方の機器17はクロツクT1の衝突により待
ちクロツク期間は4となり、クロツクT2とクロ
ツクT3の4クロツク間は送信禁止である。よつ
て機器17はクロツクT3の終了直後のクロツク
T4の最初から送信可能ではあるが、その直前の
クロツクT3にはすでに制御ターミナル20の信
号が存在しており伝送信号路はふさがつているの
で制御ターミナルから送られている信号(クロツ
クT3+T4)の終了を待つ。そして伝送信号路が
クロツクT5で示す4クロツク(機器17の待ち
クロツク期間)だけ使われないのを確認して後ク
ロツクT6から制御信号送信を始める。この操作
の過程を衝突に関与しない全機器にも適用する
と、各機器の待ちクロツク期間はすべて異なるも
のとなり再衝突は起こらない。
FIG. 5 shows the transmitted signals before and after the collision. Assume that the control signals transmitted by the device 17 and the control terminal 20 collide at clock T1 . In this case, the index number storage means 27 of the device 17 is set to number 1,
The index number storage means 30 of the control terminal 20 is 0.
is set to number. Also, each device 17, 18, 1
9 and control terminal 20 are commonly programmed to inhibit transmission for at least three clocks after a collision is detected. These three clocks are called the minimum waiting clocks. Now, after the collision, the calculation control means 34 in each device
First, add the three minimum waiting clocks and the value in its own index number storage means 30, and set this value as its own waiting clock period. That is, in the device 17 this becomes 4 clocks, and in the control terminal 20 this becomes 3 clocks. After the collision occurs, transmission is prohibited during this waiting clock period. That is, the control terminal 20 is prohibited from transmitting during the three clock periods of clock T2 , and starts transmitting control signals from clock T3 . Clock T 3 and clock T 4 are control signals for a series of control terminals 20 . Now, in one device 17, the waiting clock period is 4 due to the collision of clock T1 , and transmission is prohibited during the 4 clock period between clock T2 and clock T3 . Therefore, device 17 receives the clock immediately after the end of clock T3 .
Although it is possible to transmit from the beginning of clock T 4 , the signal from control terminal 20 already exists at clock T 3 immediately before that, and the transmission signal path is blocked, so the signal sent from the control terminal (clock T 3 Wait for the completion of +T 4 ). After confirming that the transmission signal path is not used for four clocks (the waiting clock period of the device 17) indicated by clock T5 , control signal transmission is started from clock T6 . If this operation process is applied to all devices not involved in the collision, the wait clock periods of each device will all be different, and no collision will occur again.

また本実施例のように制御を行なう側の機器で
ある制御ターミナル20の指標番号を、制御を受
ける機器17,18,19の指標番号よりも小さ
い値とすると、衝突発生時における再送信可能と
なる優先順位が制御ターミナル20で一番高くな
る。こうすると、比較的優先度を高くする必要の
ある制御ターミナル20の制御命令は連続して送
信することができ、逆に比較的優先度が低くてよ
い機器17,18,19からの制御ターミナル2
0への報知命令は後まわしになり、円滑な通信制
御となる。
Furthermore, if the index number of the control terminal 20, which is the device that performs control, is set to a smaller value than the index numbers of the devices 17, 18, and 19 that are controlled, as in this embodiment, retransmission is possible in the event of a collision. has the highest priority on the control terminal 20. In this way, control commands from the control terminal 20 that need to be given a relatively high priority can be transmitted continuously, and conversely, control commands from the control terminal 20 that need to be given a relatively high priority can be transmitted from the devices 17, 18, and 19 that need to be given a relatively low priority.
The notification command to 0 is postponed, resulting in smooth communication control.

ここでは共通の最低待ちクロツクは3とした
が、これは1以上の整数としても本発明の主旨は
変わらない。また待ちクロツク期間は最低待ちク
ロツクと指標番号の和としたが、これはその整数
倍としてもよいし、その和にさらに一定値を加え
たものなどでも本発明の主旨は変わらない。
Here, the common lowest waiting clock is set to 3, but the gist of the present invention does not change even if this is an integer of 1 or more. Furthermore, although the waiting clock period is the sum of the lowest waiting clock and the index number, it may be an integral multiple of the minimum waiting clock period or a fixed value may be added to the sum without changing the gist of the present invention.

また、ここでは伝送通信路は電燈線とし待ちク
ロツク期間は電燈線電源の半周期期間あるいはそ
の整数倍としたが、電燈線電源周期に同期させた
クロツクとする必要はないし、伝送通信路として
は同軸線・平行線・光ケーブルなど何を用いても
本発明の主旨は変わらない。
In addition, here, the transmission communication channel is an electric light line, and the waiting clock period is a half cycle period of the electric light line power supply, or an integral multiple thereof, but it is not necessary to use a clock synchronized with the cycle of the electric light line power supply. The gist of the present invention does not change regardless of whether coaxial lines, parallel lines, optical cables, etc. are used.

以上本発明では信号衝突時に、所定の最低待ち
クロツクと各機器が個有の値を取る指標番号の和
に対応した待ちクロツク期間を各機器の制御信号
の送信禁止期間とすることにより、衝突後の待ち
クロツク期間を全機器についてすべて異なる値と
し、このため再衝突を起こすことなく通信伝送路
を速やかに正常状態に戻すものである。
As described above, in the present invention, when a signal collision occurs, the waiting clock period corresponding to the sum of the predetermined minimum waiting clock and the index number that takes a unique value for each device is set as the period during which transmission of control signals of each device is prohibited. The waiting clock period is set to a different value for all devices, so that the communication transmission path can be quickly returned to a normal state without causing another collision.

発明の効果 本発明は、伝送通信路の信号衝突時に、全機器
についてすべて異なる待ちクロツク期間を設ける
ことにより、従来あつた衝突後の再衝突、再々衝
突等を皆無にし、速やかに通信伝送路を正常状態
に戻すという効果がある。また指標番号設定方法
で衝突後の再送信の優先順位を決定できることに
より、高優先度の必要な制御機器の信号を最優先
させしかも連続制御も可能となり、伝送通信路の
使用状況が効率よくなるという効果もある。
Effects of the Invention The present invention provides different wait clock periods for all devices when a signal collides on a transmission channel, thereby eliminating the re-collision or repeated collision that occurred in the past, and quickly clearing the communication channel. It has the effect of returning to normal state. In addition, by determining the priority of retransmission after a collision using the index number setting method, it is possible to give top priority to the signals of control equipment that require high priority, and also to enable continuous control, making the use of transmission communication channels more efficient. It's also effective.

【図面の簡単な説明】[Brief explanation of drawings]

第1図は従来の伝送制御方法のブロツク図、第
2図は本発明の一実施例を示す伝送制御方法のブ
ロツク図、第3図は第2図における機器の構成ブ
ロツク図、第4図は電燈線上の伝送信号図、第5
図は衝突前後の伝送信号図である。 16……電燈線、17,18,19……機器、
20……制御ターミナル、24,25,26……
制御モジユール、27,28,29,30……指
標番号記憶手段、31……通信手段、34……演
算制御手段、35……クロツク発生手段。
Fig. 1 is a block diagram of a conventional transmission control method, Fig. 2 is a block diagram of a transmission control method showing an embodiment of the present invention, Fig. 3 is a block diagram of the equipment configuration in Fig. 2, and Fig. 4 is a block diagram of a transmission control method showing an embodiment of the present invention. Transmission signal diagram on electric light line, No. 5
The figure shows transmission signal diagrams before and after the collision. 16...Light line, 17,18,19...Equipment,
20... Control terminal, 24, 25, 26...
Control module, 27, 28, 29, 30... index number storage means, 31... communication means, 34... arithmetic control means, 35... clock generation means.

Claims (1)

【特許請求の範囲】[Claims] 1 互いに通信可能な複数の機器およびこの機器
を制御する制御ターミナルと、それらを結ぶ伝送
通信路としての電燈線から成り、前記機器および
制御ターミナルはそれぞれ指標番号記憶手段と電
燈線の電源電圧に同期したクロツクを発生するク
ロツク発生手段と演算制御手段と通信手段とを有
し、伝送通信路上で制御信号が衝突した際には全
機器および制御ターミナルはただちに制御信号の
送信を中止し、その後指標番号と共通の最低待ち
クロツクとを加えた数に対応した待ちクロツクの
期間の後に、制御信号の送信を行ない、かつ最低
待ちクロツクの期間は電燈線電源の半周期期間の
整数倍とした伝送制御方法。
1 Consists of a plurality of devices that can communicate with each other, a control terminal that controls these devices, and an electric light line that serves as a transmission communication path connecting them, and the devices and control terminals are synchronized with the index number storage means and the power supply voltage of the electric light line, respectively. It has a clock generation means that generates a clock, an arithmetic control means, and a communication means, and when control signals collide on the transmission communication path, all devices and control terminals immediately stop transmitting the control signals, and then the index number A transmission control method in which the control signal is transmitted after a waiting clock period corresponding to the sum of the common minimum waiting clock and the minimum waiting clock period, and the minimum waiting clock period is an integral multiple of the half-cycle period of the electric light line power source. .
JP59097963A 1984-05-16 1984-05-16 Transmission control method Granted JPS60241345A (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP59097963A JPS60241345A (en) 1984-05-16 1984-05-16 Transmission control method

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP59097963A JPS60241345A (en) 1984-05-16 1984-05-16 Transmission control method

Publications (2)

Publication Number Publication Date
JPS60241345A JPS60241345A (en) 1985-11-30
JPH0323024B2 true JPH0323024B2 (en) 1991-03-28

Family

ID=14206325

Family Applications (1)

Application Number Title Priority Date Filing Date
JP59097963A Granted JPS60241345A (en) 1984-05-16 1984-05-16 Transmission control method

Country Status (1)

Country Link
JP (1) JPS60241345A (en)

Citations (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS57196649A (en) * 1981-05-29 1982-12-02 Oki Electric Ind Co Ltd Operating method for competition of transmission
JPS5847330A (en) * 1981-09-17 1983-03-19 Fuji Electric Co Ltd 2-way switch of optical control
JPS58108845A (en) * 1981-12-22 1983-06-29 Matsushita Electric Ind Co Ltd Communication controlling system
JPS5972239A (en) * 1982-10-18 1984-04-24 Matsushita Electric Ind Co Ltd Data transmitter

Patent Citations (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS57196649A (en) * 1981-05-29 1982-12-02 Oki Electric Ind Co Ltd Operating method for competition of transmission
JPS5847330A (en) * 1981-09-17 1983-03-19 Fuji Electric Co Ltd 2-way switch of optical control
JPS58108845A (en) * 1981-12-22 1983-06-29 Matsushita Electric Ind Co Ltd Communication controlling system
JPS5972239A (en) * 1982-10-18 1984-04-24 Matsushita Electric Ind Co Ltd Data transmitter

Also Published As

Publication number Publication date
JPS60241345A (en) 1985-11-30

Similar Documents

Publication Publication Date Title
EP0100668B1 (en) Data transmission system via power supply line
EP0832454B1 (en) Data communication network with highly efficient polling procedure
JPH0677968A (en) Apparatus and method for communication between nodes in network
US20140056042A1 (en) Power layer generation of inverter gate drive signals
US4463350A (en) Communication system having designated transmission lines
JPH0323024B2 (en)
JPS6069932A (en) Controlling method of transmission
JP2000040013A (en) Method for detecting line abnormality for duplex communication system
JPS611140A (en) Transmission controller
JPH0326960B2 (en)
JPS6245246A (en) Communication control equipment
JPH088750B2 (en) Distribution line remote monitoring control system
JPS6189748A (en) Transmission controller
JPH0580854B2 (en)
JPH0332937B2 (en)
JPS62171349A (en) Communication control equipment
JPS60116249A (en) Transmission control method
JPH02222237A (en) Signal transmission system
JPS60259029A (en) Transmission controller
KR940013056A (en) Communication circuit and method between devices in home automation system
JPS60116247A (en) Transmission control method
JPS636186B2 (en)
JPS6211827B2 (en)
JPH04368035A (en) Group communication method
JPH03210855A (en) Communication control system

Legal Events

Date Code Title Description
EXPY Cancellation because of completion of term