JPH0322821A - Fault diagnosis unit for power source electrolytic capacitor - Google Patents

Fault diagnosis unit for power source electrolytic capacitor

Info

Publication number
JPH0322821A
JPH0322821A JP15801389A JP15801389A JPH0322821A JP H0322821 A JPH0322821 A JP H0322821A JP 15801389 A JP15801389 A JP 15801389A JP 15801389 A JP15801389 A JP 15801389A JP H0322821 A JPH0322821 A JP H0322821A
Authority
JP
Japan
Prior art keywords
power supply
electrolytic capacitor
terminal voltage
capacitor
electrolytic capacitors
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Pending
Application number
JP15801389A
Other languages
Japanese (ja)
Inventor
Norio Kagimura
紀雄 鍵村
Michiya Takezoe
美智也 竹添
Kenji Tanimoto
憲治 谷本
Hiroshi Domae
浩 堂前
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Daikin Industries Ltd
Original Assignee
Daikin Industries Ltd
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Daikin Industries Ltd filed Critical Daikin Industries Ltd
Priority to JP15801389A priority Critical patent/JPH0322821A/en
Publication of JPH0322821A publication Critical patent/JPH0322821A/en
Pending legal-status Critical Current

Links

Landscapes

  • Testing Electric Properties And Detecting Electric Faults (AREA)
  • Protection Of Static Devices (AREA)

Abstract

PURPOSE:To facilitate diagnosis by making judgement that a capacitor has degraded if the terminal voltage of the capacitor, measured upon elapse of time constant to be determined by an electrolytic capacitor and a resistor connected between a power source and a load after throw-in of power source, is higher than a predetermined value. CONSTITUTION:A current limiting resistor RO1 and an electrolytic capacitor CD1 are connected between a power source 7 and a load 1. A current limiting resistor RO2 and an electrolytic capacitor CO2 are connected between the power source 7 and a load 40. Upon elapse of a time constant, to be determined by the resistor RO1, the capacitor CD1, the resistor RO2, and the capacitor CD2, after throw-in of power source, voltages of the capacitors CD1, CD2 are detected 35, 35' and compared through comparators CP1, CP2 with a reference voltage. If they are higher than the reference voltage, diagnosis means 36, 36' make judgement that the capacitances of the capacitors CD1, CD2 are lowered. By such arrangement, degradation of capacitor can be judged in early stage and a load 1, e.g. a power transistor, can be protected against break down.

Description

【発明の詳細な説明】 (産業上の利用分野) 本発明は電源用電解コンデンサの故障診断装置に関し、
特にその劣化故障を診断するものに関する。
[Detailed Description of the Invention] (Industrial Application Field) The present invention relates to a failure diagnosis device for electrolytic capacitors for power supply.
In particular, it relates to diagnosing deterioration failures.

(従来の技術) 従来、交流を他の周波数の交流に変換するインバータで
は、例えば実開昭61−149990号公報に開示され
るように、交流電源とインバータのパワートランジスタ
部との間に、限流抵抗と、平滑コンデンサとしての電解
コンデンサとを配置している。
(Prior Art) Conventionally, in an inverter that converts alternating current into alternating current of another frequency, a limited A current resistance and an electrolytic capacitor as a smoothing capacitor are arranged.

(発明が解決しようとする課8) しかしながら、上記電解コンデンサが寿命により劣化す
ると、電解液が消失し、その容量が低下して、開放故障
に至る場合が多い。この場合には、インバータにより駆
動するモータの回生エネルギーや外来サージ、又はパワ
ートランジスタのスイッチングサージ等により、パワー
トランジスタモジュールやダイオードモジュールに過電
圧が印加されて破壊したり、異常電流が流れてトリップ
停止することになる。
(Issue 8 to be Solved by the Invention) However, when the electrolytic capacitor deteriorates over its lifespan, the electrolyte disappears and its capacity decreases, often leading to an open circuit failure. In this case, overvoltage is applied to the power transistor module or diode module due to regenerative energy of the motor driven by the inverter, external surge, or switching surge of the power transistor, causing damage or abnormal current flowing and tripping the module. It turns out.

以上、電源とパワートランジスタ部との間に配置する電
解コンデンサの場合について説明したが、その他、スイ
ッチングレギュレー夕の前段に配置する電解コンデンサ
等の電源用電解コンデンサについても同様である。
Although the case of the electrolytic capacitor disposed between the power supply and the power transistor section has been described above, the same applies to other electrolytic capacitors for power supply such as the electrolytic capacitor disposed before the switching regulator.

本発明は以上の点に鑑みてなされたものであり、その目
的は、パワートランジスタモジュールの破壊等の二次故
障を防止するよう、電解コンデンサの劣化故障を検出す
ることにある。
The present invention has been made in view of the above points, and its purpose is to detect deterioration failures of electrolytic capacitors in order to prevent secondary failures such as destruction of power transistor modules.

(課題を解決するための手段) 以上の目的を達威するため、本発明では、電源と所定の
機器との間に上記の如き電解コンデンサと共に限流抵抗
を配置した場合に電源投入時には、この両者で定まる時
定数で電圧が上昇する特性に着目し、この特性を利用し
て、電解コンデンサの端子電圧をこの時定数に応じた端
子電圧の上昇特性と比較して、電解コンデンサの劣化故
障を診断するようにしている。
(Means for Solving the Problems) In order to achieve the above object, in the present invention, when a current limiting resistor is placed between a power source and a predetermined device together with the electrolytic capacitor as described above, when the power is turned on, the current limiting resistor is Focusing on the characteristic that the voltage increases with a time constant determined by both, using this characteristic, the terminal voltage of the electrolytic capacitor is compared with the characteristic of increasing terminal voltage according to this time constant, and deterioration failure of the electrolytic capacitor can be detected. I'm trying to diagnose.

つまり、請求項(1)に係る発明の具体的な構成は、図
面に示すように、電源(7)と、該電源(7)から電圧
が印加される所定の機器(1.40)との間に配置され
た電解コンデンサ(Co s .CD 2 )の劣化故
障を診断する電源用電解コンデンサの故障診断装置を対
象とする。そして、上記電解コンデンサ(Co1 .c
o 2 )の端子電圧を検出する端子電圧検出手段(3
5.35゜〉と、上記電源(7)と所定の機器(1.4
0)との間に配置する限流抵抗(Ro I.RO 2 
)と、上記端子電圧検出手段(35.35’)の出力を
受け、電源投入から設定時間経過時における電解コンデ
ンサ(Co + .CD 2 )の端子電圧が、上記限
流抵抗(RO1、Ro2)及び電解コンデンサ(Co 
+ .cD z )で定まる時定数で上記設定時間経過
時に充電されるべき設定端子電圧値を越えるとき、電解
コンデンサ(Co s .CCl 2 )の劣化故障と
診断する診断手段(3B.38゜)とを設ける構成とし
ている。
In other words, the specific configuration of the invention according to claim (1) is, as shown in the drawing, a power source (7) and a predetermined device (1.40) to which voltage is applied from the power source (7). The present invention is directed to a failure diagnosis device for power supply electrolytic capacitors that diagnoses deterioration failures of electrolytic capacitors (Cos.CD2) disposed between them. And the electrolytic capacitor (Co1.c
terminal voltage detection means (3) for detecting the terminal voltage of o2);
5.35゜〉, the above power supply (7) and the prescribed equipment (1.4
0) and the current limiting resistor (Ro I.RO 2
) and the output of the terminal voltage detection means (35, 35'), the terminal voltage of the electrolytic capacitor (Co + .CD 2 ) after the set time has elapsed from the power-on is determined by the terminal voltage of the current limiting resistor (RO1, Ro2). and electrolytic capacitors (Co
+. A diagnostic means (3B.38°) that diagnoses a deterioration failure of the electrolytic capacitor (Cos.CCl 2 ) when the voltage exceeds the set terminal voltage value to be charged after the elapse of the set time with a time constant determined by cD z ). The configuration is such that it is provided.

また、請求項(2)に係る発明では、端子電圧検出手段
(35.35’)で検出した電解コンデンサ(Co s
 .CD2)の端子電圧が電源投入から設定電圧値にな
るまでの経過時間を計測する時間計測手段(38〉を設
けると共に、上記の請求項(1)の発明の診断手段(3
8.38’)の構成に代えて、上記時間計測手段(38
)で計測した経過時間が、上記限流抵抗(Ro + .
Ro2〉及び電解コンデンサ(Co + .cD z 
)で定まる時定数で上記設定電圧値に充電されるまでの
設定経過時間未満のとき、電解コンデンサ(Co + 
.cD2〉の劣化故障と診断する診断手段(39)を設
ける構成としている。
Further, in the invention according to claim (2), the electrolytic capacitor (Cos
.. A time measuring means (38) is provided for measuring the elapsed time from when the terminal voltage of the CD 2) reaches the set voltage value from power-on to the set voltage value, and a diagnostic means (38) according to the invention of claim (1) above is provided.
8.38'), the above time measuring means (38')
) is the elapsed time measured by the current limiting resistor (Ro + .).
Ro2> and electrolytic capacitor (Co + .cD z
), the electrolytic capacitor (Co +
.. The configuration is such that a diagnostic means (39) is provided for diagnosing a failure due to deterioration of cD2>.

(作用) 以上の構成により、請求項(1)記載の発明では、電解
コンデンサ(Co + .CD 2 )の劣化時には、
電源(7)から所定の機器(1.40)に印加する電圧
、つまり電解コンデンサ(Co + .CD 2 )の
端子電圧は急上昇し、電源投入から設定時間経過後にお
ける電解コンデンサ(Co I,CD 2 )の端子電
圧は、時定数で定まる端子電圧値を大きく越えているの
で、この状態が診断手段(3B.36゜)で検出されて
、電解コンデンサ(Co + .CD 2 )の劣化故
障時と診断される。
(Function) With the above configuration, in the invention described in claim (1), when the electrolytic capacitor (Co + .CD 2 ) deteriorates,
The voltage applied from the power supply (7) to the predetermined device (1.40), that is, the terminal voltage of the electrolytic capacitor (Co + .CD 2 ), rises rapidly, and the electrolytic capacitor (Co I, CD 2 Since the terminal voltage of 2) greatly exceeds the terminal voltage value determined by the time constant, this state is detected by the diagnostic means (3B.36°) and is detected when the electrolytic capacitor (Co + .CD 2 ) deteriorates and fails. is diagnosed.

また、請求項(′2J記載の発明では、電解コンデンサ
(Co s ,CD 2 )の劣化時には、印加される
電圧の上昇の程度は時定数よりも急峻であるので、電解
コンデンサ(Co s .CD 2 )の端子電圧が上
記設定電圧値に上昇するまでの時間は短く、設定経過時
間未満となる。このため、この状態が診断手段(39)
で検出されて、電源用電解コンデンサ(CD1、CC)
 2 )の劣化故障時と診断される。
Further, in the invention described in claim ('2J), when the electrolytic capacitor (Cos, CD 2 ) deteriorates, the degree of increase in the applied voltage is steeper than the time constant. 2) The time it takes for the terminal voltage to rise to the set voltage value is short and less than the set elapsed time.Therefore, this state is detected by the diagnostic means (39).
is detected in the power supply electrolytic capacitor (CD1, CC)
2) is diagnosed as a deterioration failure.

(発明の効果) 以上説明したように、本発明によれば、電源とその電圧
を印加すべき所定の機器との間に限流抵抗と電解コンデ
ンサとを配置し、その両者で定まる時定数に応じた印加
電圧の上昇特性を基準として、電源投入により電解コン
デンサに加わる端子電圧の上昇の程度を比較して電解コ
ンデンサの劣化故障を検出する構或としたので、電解コ
ンデンサの劣化故障を早期に検出できて、パワートラン
ジスタ等が破壊する等の二次故障を防止できると共に、
サービス性の向上を図ることができる。
(Effects of the Invention) As explained above, according to the present invention, a current limiting resistor and an electrolytic capacitor are arranged between a power source and a predetermined device to which the voltage is applied, and a time constant determined by both of them is set. The system detects deterioration failures of electrolytic capacitors by comparing the degree of increase in the terminal voltage applied to the electrolytic capacitors when the power is turned on, using the rising characteristics of the applied voltage as a reference, so deterioration failures of electrolytic capacitors can be detected early. It is possible to detect and prevent secondary failures such as destruction of power transistors, etc.
It is possible to improve serviceability.

(実施例) 以下、本発明の実施例を図面に基いて説明する。(Example) Embodiments of the present invention will be described below with reference to the drawings.

第1図はセパレート形の空気調和装置の圧縮機を回転制
御するインバータに用いる電源用電解コンデンサに対し
てその劣化故障を診断する診断装置に適用した実施例を
示す。同図にをいて、(4)は室内機を制御する室内側
コントローラ、(5)は室外機を制御する室外側コント
ローラ、(6)はインバータ用コントローラである。
FIG. 1 shows an embodiment in which the present invention is applied to a diagnostic device for diagnosing deterioration failures in a power supply electrolytic capacitor used in an inverter that controls the rotation of a compressor of a separate air conditioner. In the figure, (4) is an indoor controller that controls the indoor unit, (5) is an outdoor controller that controls the outdoor unit, and (6) is an inverter controller.

上記室内側コントローラ(4)は、電源(4l)が接続
されると共に、リモートコントロール装置(以下、リモ
コン装置という) (42)が信号線(4a)を介して
、また室外側コントローラ(5)が信号1m! (4b
)を介して接続されている。
The indoor controller (4) is connected to a power source (4l), a remote control device (hereinafter referred to as a remote control device) (42) via a signal line (4a), and an outdoor controller (5). Signal 1m! (4b
) are connected through.

一方、圧縮機のモータ(CM)には三相交流電源(7)
がモータ駆動回路ク7l)を介して接続されており、該
モータ駆動回路(7l)は、電源スイッチ(52e)と
、三相交流を直流に変換するコンバータ部(72)と、
直流リアクトル(73a)及び電解コンデンサよりなる
平滑コンデンサ(Co + )を有するフィルタ回路(
73)と、直流を任意の周波数の交流に変換するインバ
ータのパワートランジスタ部(1)とが順に接続されて
或り、制御電力を圧縮機モータ(CM)に供給するよう
に構成されている。上記フィルタ回路(73)のモータ
(CM)側にはシャント抵抗(73C)が介設される一
方、三相ffii(7)のR相及びT相には電源スイッ
チ(52C)をバイパスして限流回路(75〉が接続さ
れ、該限流回路(75)には限流抵抗(Ro+)及びb
接点の開閉スイッチ(84〉が設けられている。
On the other hand, the compressor motor (CM) is powered by a three-phase AC power source (7).
are connected via a motor drive circuit (7l), which includes a power switch (52e), a converter section (72) that converts three-phase AC into DC,
A filter circuit (having a DC reactor (73a) and a smoothing capacitor (Co
73) and a power transistor section (1) of an inverter that converts direct current into alternating current of an arbitrary frequency are connected in order, and are configured to supply control power to the compressor motor (CM). A shunt resistor (73C) is interposed on the motor (CM) side of the filter circuit (73), while a power switch (52C) is bypassed to limit the R and T phases of the three-phase FFII (7). A current circuit (75) is connected to the current limiting circuit (75), and a current limiting resistor (Ro+) and b
A contact opening/closing switch (84) is provided.

更に、上記インバータのパワートランジスタ部(1)に
は、該インバータ用のマイクロコンピュータよりなるコ
ントローラ(6)が信号線(6a)を介して接続され、
該インバータ用コントローラ(6)には、マイクロコン
ピュータ(6゛)以下、マイコンと略す)と、上記パワ
ートランジスタ部(1)を駆動するドライブ回路(39
)とを有する。マイコン(6”)は、電源(7)のR相
及びS相からトランス(45)及び2個の三端子レギュ
レータ(4B). (47)よりなる制御用電源回路(
48)を介して電源供給を受ける。
Further, a controller (6) consisting of a microcomputer for the inverter is connected to the power transistor section (1) of the inverter via a signal line (6a),
The inverter controller (6) includes a microcomputer (hereinafter referred to as microcomputer) and a drive circuit (39) that drives the power transistor section (1).
). The microcomputer (6") connects the R and S phases of the power supply (7) to a control power supply circuit (47) consisting of a transformer (45) and two three-terminal regulators (4B).
48).

一方、ドライブ回路〈39〉は、スイッチングレギュレ
ー夕よりなるドライバ用電源(40〉からインバータの
パワートランジスタ部(L)を制御する直流電圧を得る
。そして、上記ドライバ用電源(スイッチングレギュレ
ータ’) (40)の入力側には、限流抵抗(RO2)
と平滑コンデンサ(Co 2 )とが配置されている。
On the other hand, the drive circuit <39> obtains a DC voltage for controlling the power transistor section (L) of the inverter from the driver power supply (40) consisting of a switching regulator. ) is a current limiting resistor (RO2) on the input side.
and a smoothing capacitor (Co 2 ) are arranged.

上記インバータ用コントローラ(6〉はインバータのパ
ワートランジスタ部(1)をそのドライブ回路(39)
を介して制御することにより、圧縮機を回転数制御して
、その容量を制御するように構成されている。
The above inverter controller (6>) connects the power transistor section (1) of the inverter to its drive circuit (39).
The rotation speed of the compressor is controlled by controlling the compressor through the compressor, thereby controlling the capacity of the compressor.

また、インバータ用コントローラ(6〉は室外用コント
ローラ〈5)と信号線(5a)を介して接続され、該室
外用コントローラ(5〉は上記室内側フントロ一ラ(4
)及びインバータ用コントローラ(6)との間で制御信
号を授受する 而して、インバータ用コントローラ〈6〉には、上記コ
ンバータ部(72)からインバータ(1)に供給する直
流電圧の不足を検出する不足電圧検出回路(30)が備
えられる。該不足電圧検出回路(30)を利用して平滑
コンデンサ(電解コンデンサ) (Co 1)の劣化故
障を診断する。つまり、不足電圧検出回路(30)にお
いては、平滑コンデンサ(Co + )の端子電圧をコ
ンパレータ(CP + )の十端子に人力し、その一端
子に抵抗(1?5) , (1?6)で定める電圧不足
時に相当する基準電圧V1を入力する。そして、第2図
に示すようにパワートランジスタ部(1)に甲加する直
流電圧が低下して不足し、基準電圧V1以下になる,又
は瞬時停電が生じると、コンバレータ(ep + )か
ら第3図に示すような出力が発生し、この出力でフォト
カブラ(PIIC+ )を作動させ、このフォトカプラ
(PMCI )の第4図に示すような出力をマイコン(
6゛)に人力して、瞬時停電や不足電圧を検出するよう
にしている。
Further, the inverter controller (6>) is connected to the outdoor controller (5) via a signal line (5a), and the outdoor controller (5> is connected to the indoor controller (4).
) and the inverter controller (6), and the inverter controller (6) detects a shortage of DC voltage supplied from the converter section (72) to the inverter (1). An undervoltage detection circuit (30) is provided. Deterioration failure of the smoothing capacitor (electrolytic capacitor) (Co 1) is diagnosed using the undervoltage detection circuit (30). That is, in the undervoltage detection circuit (30), the terminal voltage of the smoothing capacitor (Co + ) is applied to the ten terminals of the comparator (CP + ), and the resistors (1?5), (1?6) are connected to one terminal of the terminal. Input the reference voltage V1 corresponding to the voltage shortage determined by . As shown in FIG. 2, when the DC voltage applied to the power transistor section (1) decreases and becomes insufficient and becomes below the reference voltage V1, or when a momentary power outage occurs, the converter (ep + ) An output as shown in the figure is generated, and this output operates the photocoupler (PIIC+), and the output of this photocoupler (PMCI) as shown in Figure 4 is sent to the microcontroller (
6゛) is used manually to detect instantaneous power outages and undervoltage.

?記基準電圧V1は、第5図に示すように、電源投入時
に平滑コンデンサ(Co + )の端子電圧が上記限流
抵抗(Ro + )及び平滑コンデンサ(Cot)で定
まる時定数τで図中実線の如く上昇し、電源投入時から
設定時間t1の経過時に充電されるべき設定端子電圧値
v■を越えた値であり、且つ図中破線の如く平滑コンデ
ンサ(Co + )の劣化故障時にその端子電圧が上記
設定時間t1の経過時にとる電圧値v2未満の値である
? As shown in FIG. 5, the reference voltage V1 is such that when the power is turned on, the terminal voltage of the smoothing capacitor (Co + ) is determined by the time constant τ determined by the current limiting resistor (Ro + ) and the smoothing capacitor (Cot), and the solid line in the diagram It is a value that exceeds the set terminal voltage value v■ that should be charged when the set time t1 has elapsed from power-on, and when the smoothing capacitor (Co + ) deteriorates and fails as shown by the broken line in the figure. The voltage is less than the voltage value v2 taken at the elapse of the set time t1.

そして、マイコン(6゜〉では、電源投入以後の経過時
間を計測し、t1時間の経過時に上記不足電圧検出回路
(30)のフォトカプラ(PtlC+ )からの出力(
不足電圧検出信号〉を受信していない場合には、平滑コ
ンデンサ(Co + )の劣化故障時と判断する機能を
有している。
Then, the microcomputer (6°) measures the elapsed time after the power is turned on, and when time t1 elapses, the output (
If the undervoltage detection signal> is not received, it has a function of determining that the smoothing capacitor (Co + ) has deteriorated and failed.

同様に、(3B’)はドライバ用電源(スイッチングレ
ギュレータ)(40>に供給する電圧の不足を検出する
不足電圧検出手段であって、上記インバータ(1)用の
不足電圧検出回路(30)と同様にコンバレータ(CP
 2 )とフォトカプラ(PHC2 )とを備えて、平
滑コンデンサ(CD 2 )の劣化故障を判断する機能
を有している。
Similarly, (3B') is an undervoltage detection means for detecting a shortage of voltage supplied to the driver power supply (switching regulator) (40>), and is connected to the undervoltage detection circuit (30) for the inverter (1). Similarly, the converter (CP
2) and a photocoupler (PHC2), and has a function of determining deterioration failure of the smoothing capacitor (CD2).

よって、各平滑コンデンサ(Co + ).(Co 2
 )の十側端子を各々コンバレータ(CP 1).<O
P 2 )の+端子に接続することにより、各平滑コン
デンサ(Co l),(Co z )の端子電圧を検出
する端子電圧検出手段(35) (35゜)を構戊して
いると共に、上記各不足電圧検出回路(30) . (
30゜〉及びマイコン(8゛〉により、各端子電圧検出
手段(35).(35’)の出力を受け、電源投入時か
ら設定時間t1の経過時における平滑コンデンサ(Co
 1).(Co 2 )の端子電圧が、時定数τで設定
時間t1経過時に充電されるべき設定端子電圧値Voを
越えるとき、各平滑コンデンサ(Co + ).(Co
 2 )の劣化故障と診断する診断手段(3B) , 
(3B)を構成している。
Therefore, each smoothing capacitor (Co + ). (Co2
) are connected to the respective converters (CP1). <O
By connecting to the + terminal of P 2 ), it constitutes a terminal voltage detection means (35) (35°) for detecting the terminal voltage of each smoothing capacitor (Col), (Coz). Each undervoltage detection circuit (30). (
30゜> and a microcomputer (8゛>) receive the output of each terminal voltage detection means (35).
1). When the terminal voltage of each smoothing capacitor (Co 2 ) exceeds the set terminal voltage value Vo to be charged at the elapse of the set time t1 with the time constant τ, each smoothing capacitor (Co + ). (Co
2) Diagnostic means (3B) for diagnosing deterioration failure,
(3B).

尚、第1図中、(RYI)は開閉スイッチ(84〉のO
N/OFF制御用のリレーの接点、(1?Y2)は電源
スイッチ(52C)のON/OFF制御用のリレーの接
点、(55)は室外側コントローラ(5)の内部に備え
るマイコン、(56)は保護装置である。
In Fig. 1, (RYI) is the open/close switch (84).
Relay contact for N/OFF control, (1?Y2) is a relay contact for ON/OFF control of the power switch (52C), (55) is a microcomputer provided inside the outdoor controller (5), (56 ) is a protective device.

次に、上記実施例の作動をフィルタ回路(73)の平滑
コンデンサ(CD1)の劣化故障を例に取って説明する
。先ず、電源投入時には、先ずリレーく84)がON制
御され、このことにより、コンバータ部(72〉には第
5図に示す電圧波形が印加される。そして、該コンバー
タ部(72〉からパワートランジスタ部(1)に印加さ
れる電圧波形、つまり平滑コンデンサ(Co + )の
端子電圧は、同図に示すように、限流抵抗(Ro + 
)と平滑コンデンサ(Co + )とで定まる時定数τ
でもって徐々に上昇し、設定時間t1の経過時には設定
電圧V1未満にある。このため、不足電圧検出回路(3
0〉のコンバレータ(CP1)は出力を発生していて、
これに伴いフォトカブラ(PHC+ )も作動し、その
出力が不足電圧検出信号としてマイコン(B゛〉に入力
されている。このため該マイコン(6゛)は、平滑コン
デンサ(Co + )の劣化の無い正常時と判断する。
Next, the operation of the above embodiment will be explained by taking as an example a deterioration failure of the smoothing capacitor (CD1) of the filter circuit (73). First, when the power is turned on, the relay 84) is controlled to be ON, thereby applying the voltage waveform shown in FIG. 5 to the converter section (72>).Then, the power transistor is As shown in the figure, the voltage waveform applied to section (1), that is, the terminal voltage of the smoothing capacitor (Co + ), is determined by the current limiting resistor (Ro +
) and the time constant τ determined by the smoothing capacitor (Co + )
Therefore, it gradually rises and remains below the set voltage V1 when the set time t1 has elapsed. Therefore, the undervoltage detection circuit (3
0> converter (CP1) is generating output,
Along with this, the photocoupler (PHC+) also operates, and its output is input to the microcomputer (B゛) as an undervoltage detection signal.Therefore, the microcomputer (6゛) detects the deterioration of the smoothing capacitor (Co +). It is considered normal when there is no.

その後は、同図に示すように平滑コンデンサ(Co 1
)の充電が完了すれば、リレー(84)をOFF制御す
ると共にリレー (52c)をON制御して、インバー
タのパワートランジスタ部〈1〉の運転を開始させる。
After that, as shown in the figure, a smoothing capacitor (Co 1
) is completed, the relay (84) is turned off and the relay (52c) is turned on to start the operation of the power transistor section <1> of the inverter.

一方、平滑コンデンサ(CD1)の劣化故障時には同図
に破線で示すように、その端子電圧は、時定数τよりも
大きい傾きで急上昇し、設定時間t1の経過時には設定
電圧v1を越えている。このため、不足電圧検出回路(
30)のコンバレータ(CP1)は出力を発生しなくな
り、マイコン(6゛)は不足電圧検出信号を受信しない
。このため該マイコン(B゜)は、平滑コンデンサ(C
o + )の劣化故障時と判断し、パワートランジスタ
部(1)の運転を停止すると共に、平滑コンデンサ(C
DI)の故障をリモコン装置(42〉に表示する。
On the other hand, when the smoothing capacitor (CD1) deteriorates and fails, its terminal voltage rises rapidly with a slope greater than the time constant τ, as shown by the broken line in the figure, and exceeds the set voltage v1 when the set time t1 has elapsed. For this reason, the undervoltage detection circuit (
The converter (CP1) of 30) no longer generates an output, and the microcomputer (6') does not receive the undervoltage detection signal. Therefore, the microcomputer (B゜) has a smoothing capacitor (C
o + ) is judged to have deteriorated and failed, the operation of the power transistor section (1) is stopped, and the smoothing capacitor (C
DI) failure is displayed on the remote control device (42>).

よって、平滑コンデンサ(Co + )の劣化故障を自
動検出できるので、パワートランジスタ部(1)の過電
圧による破壊等の二次故障を防止できると共に、サービ
ス性の向上を図ることができる。
Therefore, since deterioration failures of the smoothing capacitor (Co + ) can be automatically detected, secondary failures such as destruction of the power transistor section (1) due to overvoltage can be prevented, and serviceability can be improved.

また、第6図は診断装! (3B)の変形例を示す。Also, Figure 6 shows the diagnostic equipment! A modification of (3B) is shown.

同診断フローは平滑コンデンサ(Co + )の劣化故
障の診断用を示し(平滑コンデンサ(Co 2)の診断
フローは同様であるので省略する)、電源投入?にスタ
ートして、ステップS1でリレー(84)をON$11
1Lコンバータ部〈72〉に電圧を印加する。そして、
ステップS2で電源投入後の経過時間をタイマで計測し
、ステップS3で平滑コンデンサ(C0+)の端子電圧
VDCを基準値v1と比較し、VDC≠v1の場合には
上記ステップS2に戻って時間計測を続行し、VDC−
V!になればステップS4でそれまでの経過時間T1を
設定経過時間Toと比較する。ここに、設定経過時間T
oは、平滑コンデンサ(Co 1)及び限流抵抗(Ro
t)とで定まる時定数τで上記設定電圧値v1に充電さ
れるまでの経過時間である。
The same diagnostic flow is for diagnosing a deterioration failure of the smoothing capacitor (Co + ) (the diagnostic flow for the smoothing capacitor (Co 2) is the same, so it will be omitted), and the power is turned on? Start at step S1 and turn on the relay (84) at $11.
Apply voltage to the 1L converter section <72>. and,
In step S2, a timer measures the elapsed time after the power is turned on, and in step S3, the terminal voltage VDC of the smoothing capacitor (C0+) is compared with the reference value v1. If VDC≠v1, the process returns to step S2 to measure the time. Continue with VDC-
V! If so, the elapsed time T1 up to that point is compared with the set elapsed time To in step S4. Here, the set elapsed time T
o is the smoothing capacitor (Co 1) and the current limiting resistor (Ro
This is the elapsed time until the voltage is charged to the set voltage value v1 with a time constant τ determined by t).

そして、T,;a’roの場合には、平滑コンデンサ(
Co 1)の正常時と判断して、ステップS5で通常運
転を開始する。一方、T,<”r■の場合には、ステッ
プS6で平滑コンデンサ(Co + )の劣化故障時と
判断して、トリップ停止すると共に平滑コンデンサ(C
o + )の劣化故障をリモコン装置(42)に表示す
る。
And in the case of T, ;a'ro, the smoothing capacitor (
It is determined that Co 1) is normal, and normal operation is started in step S5. On the other hand, if T,<"r■, it is determined in step S6 that the smoothing capacitor (Co
o + ) deterioration failure is displayed on the remote control device (42).

よって、上記診断フローのステップS2及びS3により
、端子電圧検出手段(35)の出力を受け、平滑コンデ
ンサ(Co + )の端子電圧VOCが電源投入から設
定電圧値v1になるまでの経過時間T1を計測する時間
計測手段(38)を構成している。
Therefore, in steps S2 and S3 of the above diagnostic flow, the output of the terminal voltage detection means (35) is received, and the elapsed time T1 from when the terminal voltage VOC of the smoothing capacitor (Co + ) reaches the set voltage value v1 from power-on is calculated. It constitutes a time measuring means (38) for measuring.

また、ステップ84及びS6により、上記時間計測手段
(38)で計測した経過時間T1が、限流抵抗(Ro+
>及び平滑コンデンサ(Co + )で定まる時定数τ
で設定電圧値v1に充電されるまでの設定経過時間To
未満のとき、平滑コンデンサ(Cot)の劣化故障と診
断する診断装置(39〉を構成している。
Further, in steps 84 and S6, the elapsed time T1 measured by the time measuring means (38) is changed to the current limiting resistance (Ro+
> and the time constant τ determined by the smoothing capacitor (Co + )
The set elapsed time To until charging to the set voltage value v1 is
A diagnostic device (39) is configured to diagnose a deterioration failure of the smoothing capacitor (Cot) when the value is less than 0.

したがって、本実施例においても、上記実施例と同様に
、平滑コンデンサ(Co I),(Co z )の劣化
故障を自動で診断するので、パワートランジスタ部(1
)やドライバ用電源(スイッチングレギュレータ)(4
0)の過電圧による破壊等の二次故障を防止できると共
に、サービス性の向上を図ることができる。
Therefore, in this embodiment as well, similar to the above embodiment, deterioration failures of the smoothing capacitors (Co I) and (Co z ) are automatically diagnosed, so that the power transistor section (1
) and driver power supply (switching regulator) (4
0) can be prevented from secondary failures such as destruction due to overvoltage, and serviceability can be improved.

【図面の簡単な説明】[Brief explanation of the drawing]

図面は本発明の実施例を示し、第1図は全体構成図、第
2図ないし第4図は劣化検出回路の要部の電圧波形図、
第5図は請求項(1)に係る発明の作動説明図、第6図
は他の実施例を示す平滑コンデンサーの劣化診断を示す
フローチャート図である。 (1)−・・パワートランジスタ部、(Ro 1).(
Ro 2)・・・限流抵抗、(Co 1),(Co 2
 )・・・平滑コンデンサ(電源用電解コンデンサ) 
、(CP + ).(CP 2 )・・・コンバレー夕
、(6゜)・・・マイコン、(30)・・・不足電圧検
出回路、(35). (35’)・・・端子電圧検出手
段、(3e).(ae’)・・・診断手段、(38)・
・・経過時間計測手段、(39)・・・診断手段、(4
0)・・・ドライバ用電源(スイッチングレギュレータ
)。 ほか2名 (1)・・・パワートランジスタ部 (RO + ),(Ro : )・・・限流抵抗(Co
 + )−(Co !)・・・平滑コンデンサ(電源用
電解コンデンサ) (CP + ).(CP ! >・・・コンパレータ(
B゜〉・・−マイコン 〈30)・・不足電圧検出回路 (35),(35’)・・・端子電圧検出手段(3)i
).(36゜)・・・診断手段<38)・・経過時間計
測手段 <39)・・・診断手段 (40)・・・ドライバ用電源 (スイッチングレギュレータ) 第4
The drawings show an embodiment of the present invention, and FIG. 1 is an overall configuration diagram, and FIGS. 2 to 4 are voltage waveform diagrams of main parts of the deterioration detection circuit.
FIG. 5 is an explanatory diagram of the operation of the invention according to claim (1), and FIG. 6 is a flow chart diagram showing deterioration diagnosis of a smoothing capacitor showing another embodiment. (1)--Power transistor section, (Ro 1). (
Ro 2)...Current limiting resistance, (Co 1), (Co 2)
)...Smoothing capacitor (electrolytic capacitor for power supply)
, (CP + ). (CP 2 )... Combination controller, (6°)... Microcomputer, (30)... Undervoltage detection circuit, (35). (35')...terminal voltage detection means, (3e). (ae')...Diagnostic means, (38)
...Elapsed time measuring means, (39)...Diagnosis means, (4
0)...Driver power supply (switching regulator). Two other people (1)... Power transistor section (RO + ), (Ro : )... Current limiting resistor (Co
+ ) - (Co!)... Smoothing capacitor (electrolytic capacitor for power supply) (CP + ). (CP ! >... Comparator (
B゜〉...-Microcomputer<30)...Undervoltage detection circuit (35), (35')...Terminal voltage detection means (3)i
). (36°)...Diagnostic means<38)...Elapsed time measuring means<39)...Diagnostic means (40)...Driver power supply (switching regulator) 4th

Claims (4)

【特許請求の範囲】[Claims] (1)電源(7)と、該電源(7)から電圧が印加され
る所定の機器(1、40)との間に配置された電解コン
デンサ(C_D_1、C_D_2)の劣化故障を診断す
る電源用電解コンデンサ(C_D_1、C_D_2)の
故障診断装置であって、上記電解コンデンサ(C_D_
1、C_D_2)の端子電圧を検出する端子電圧検出手
段(35、35′)と、上記電源(7)と所定の機器(
1、40)との間に配置する限流抵抗(R_O_1、R
_O_2)と、上記端子電圧検出手段(35、35′)
の出力を受け、電源投入から設定時間経過時における電
解コンデンサ(C_D_1、C_D_2)の端子電圧が
、上記限流抵抗(R_O_1、R_O_2)及び電解コ
ンデンサ(C_D_1、C_D_2)で定まる時定数で
上記設定時間経過時に充電されるべき設定端子電圧値を
越えるとき、上記電解コンデンサ(C_D_1、C_D
_2)の劣化故障と診断する診断手段(36、36′)
とを備えたことを特徴とする電源用電解コンデンサの故
障診断装置。
(1) For power supply for diagnosing deterioration failure of electrolytic capacitors (C_D_1, C_D_2) placed between power supply (7) and predetermined equipment (1, 40) to which voltage is applied from power supply (7) A failure diagnosis device for electrolytic capacitors (C_D_1, C_D_2), the electrolytic capacitors (C_D_
1, C_D_2) terminal voltage detection means (35, 35') for detecting the terminal voltage of
1, 40) and the current limiting resistor (R_O_1, R
_O_2) and the above terminal voltage detection means (35, 35')
In response to the output of When the set terminal voltage value to be charged is exceeded over time, the electrolytic capacitors (C_D_1, C_D
Diagnostic means (36, 36') for diagnosing deterioration failure of _2)
A failure diagnosis device for a power supply electrolytic capacitor, characterized by comprising:
(2)電源(7)と、該電源(7)から電圧が印加され
る所定の機器(1、40)との間に配置された電解コン
デンサ(C_D_1、C_D_2)の劣化故障を診断す
る電源用電解コンデンサの故障診断装置であって、上記
電解コンデンサ(C_D_1、C_D_2)の端子電圧
を検出する端子電圧検出手段(35、35′)と、上記
電源(7)と所定の機器(1、40)との間に配置する
順流抵抗(R_O_1、R_O_2)と、上記端子電圧
検出手段(35、35′)の出力を受け、電解コンデン
サ(C_D_1、C_D_2)の端子電圧が電源投入か
ら設定電圧値になるまでの経過時間を計測する時間計測
手段(38)と、該時間計測手段(38)で計測した経
過時間が、上記限流抵抗(R_O_1、R_O_2)及
び電解コンデンサ(C_D_1、C_D_2)で定まる
時定数で上記設定電圧値に充電されるまでの設定経過時
間未満のとき、電解コンデンサ(C_D_1、C_D_
2)の劣化故障と診断する診断手段(39)とを備えた
ことを特徴とする電源用電解コンデンサの故障診断装置
(2) For power supply for diagnosing deterioration failure of electrolytic capacitors (C_D_1, C_D_2) placed between power supply (7) and predetermined equipment (1, 40) to which voltage is applied from power supply (7) A failure diagnosis device for electrolytic capacitors, which includes terminal voltage detection means (35, 35') for detecting terminal voltages of the electrolytic capacitors (C_D_1, C_D_2), the power source (7), and predetermined equipment (1, 40). The terminal voltage of the electrolytic capacitor (C_D_1, C_D_2) reaches the set voltage value from the power-on by receiving the output of the forward flow resistance (R_O_1, R_O_2) placed between the The elapsed time measured by the time measuring means (38) is a time constant determined by the current limiting resistors (R_O_1, R_O_2) and the electrolytic capacitors (C_D_1, C_D_2). When the elapsed time is less than the set elapsed time until the voltage is charged to the above set voltage value, the electrolytic capacitors (C_D_1, C_D_
2) A failure diagnosis device for a power supply electrolytic capacitor, comprising a diagnostic means (39) for diagnosing a deterioration failure as described in 2).
(3)所定の機器(1、40)はインバータのパワート
ランジスタ部(1)である請求項(1)又は(2)記載
の電源用電解コンデンサの故障診断装置。
(3) The failure diagnosis device for a power supply electrolytic capacitor according to claim (1) or (2), wherein the predetermined device (1, 40) is a power transistor section (1) of an inverter.
(4)所定の機器(1、40)はスイッチングレギュレ
ータ(40)である請求項(1)又は(2)記載の電源
用電解コンデンサの故障診断装置。
(4) The failure diagnosis device for a power supply electrolytic capacitor according to claim (1) or (2), wherein the predetermined device (1, 40) is a switching regulator (40).
JP15801389A 1989-06-19 1989-06-19 Fault diagnosis unit for power source electrolytic capacitor Pending JPH0322821A (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP15801389A JPH0322821A (en) 1989-06-19 1989-06-19 Fault diagnosis unit for power source electrolytic capacitor

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP15801389A JPH0322821A (en) 1989-06-19 1989-06-19 Fault diagnosis unit for power source electrolytic capacitor

Publications (1)

Publication Number Publication Date
JPH0322821A true JPH0322821A (en) 1991-01-31

Family

ID=15662364

Family Applications (1)

Application Number Title Priority Date Filing Date
JP15801389A Pending JPH0322821A (en) 1989-06-19 1989-06-19 Fault diagnosis unit for power source electrolytic capacitor

Country Status (1)

Country Link
JP (1) JPH0322821A (en)

Cited By (9)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH0879963A (en) * 1994-09-06 1996-03-22 Daikin Ind Ltd Fault diagnostic device in power conversion control device
JP2007267545A (en) * 2006-03-29 2007-10-11 Daikin Ind Ltd Controller
EP2353941A1 (en) * 2008-11-12 2011-08-10 Sanden Corporation Vehicle communication control device
JP2013236912A (en) * 2012-04-18 2013-11-28 Toshiba Corp Magnetic resonance imaging apparatus and magnetic resonance imaging method
US8829919B2 (en) 2008-01-21 2014-09-09 The Switch Drive Systems Oy Method and system for monitoring the condition of capacitors in a DC-voltage intermediate circuit
WO2017033411A1 (en) * 2015-08-25 2017-03-02 三洋電機株式会社 Power supply device, and electric vehicle provided with power supply device
EP2403090A3 (en) * 2010-06-30 2017-06-28 Eaton Corporation Apparatus for energizing a protective device, and associated method
WO2017159169A1 (en) * 2016-03-17 2017-09-21 パナソニックIpマネジメント株式会社 Electrolytic capacitor capacitance diagnosing device
JP2019118236A (en) * 2017-12-27 2019-07-18 株式会社デンソー Motor drive device

Cited By (13)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH0879963A (en) * 1994-09-06 1996-03-22 Daikin Ind Ltd Fault diagnostic device in power conversion control device
JP2007267545A (en) * 2006-03-29 2007-10-11 Daikin Ind Ltd Controller
WO2007116707A1 (en) * 2006-03-29 2007-10-18 Daikin Industries, Ltd. Controller
AU2007236906B2 (en) * 2006-03-29 2010-02-25 Daikin Industries, Ltd. Control Apparatus
US8829919B2 (en) 2008-01-21 2014-09-09 The Switch Drive Systems Oy Method and system for monitoring the condition of capacitors in a DC-voltage intermediate circuit
EP2353941A1 (en) * 2008-11-12 2011-08-10 Sanden Corporation Vehicle communication control device
EP2353941A4 (en) * 2008-11-12 2012-03-21 Sanden Corp Vehicle communication control device
EP2403090A3 (en) * 2010-06-30 2017-06-28 Eaton Corporation Apparatus for energizing a protective device, and associated method
JP2013236912A (en) * 2012-04-18 2013-11-28 Toshiba Corp Magnetic resonance imaging apparatus and magnetic resonance imaging method
WO2017033411A1 (en) * 2015-08-25 2017-03-02 三洋電機株式会社 Power supply device, and electric vehicle provided with power supply device
JPWO2017033411A1 (en) * 2015-08-25 2018-06-07 三洋電機株式会社 Power supply device and electric vehicle equipped with this power supply device
WO2017159169A1 (en) * 2016-03-17 2017-09-21 パナソニックIpマネジメント株式会社 Electrolytic capacitor capacitance diagnosing device
JP2019118236A (en) * 2017-12-27 2019-07-18 株式会社デンソー Motor drive device

Similar Documents

Publication Publication Date Title
JP6894024B2 (en) Inverter device
US7750501B2 (en) System and method of over voltage control for a power system
JP5646752B2 (en) Grid-connected inverter device and control method thereof
JP5728914B2 (en) Inverter device
JP4855057B2 (en) Motor drive device
WO1998028835A1 (en) Protecting method for inrush current preventing resistor
JP2005016958A (en) Motor driving device
JP2010252536A (en) Inverter device and fault diagnosis method for the same
JPH0879963A (en) Fault diagnostic device in power conversion control device
JPH0322821A (en) Fault diagnosis unit for power source electrolytic capacitor
JPH0880055A (en) Inverter device
JP4155307B2 (en) Control device for air conditioner
JP2004357437A (en) Power converter and failure diagnosis method for the same
JP4121972B2 (en) Inverter device
EP1610453B1 (en) Inverter device
JP2001178146A (en) Portable generator
JP2011067087A (en) Uninterruptible power supply device
JP3745264B2 (en) Power supply device and air conditioner using the same
JP7169507B2 (en) power converter
JP3263979B2 (en) Degradation failure diagnosis device for capacitors
JP3139193B2 (en) Power supply
JP4766241B2 (en) DC voltage step-down circuit and power converter
JP2001268933A (en) Overvoltage inhibition circuit of capacitor
JP2020145809A (en) Power converter
JPH0315770A (en) Fault diagnostic device for inverter