JPH03227000A - Sor (synchrotron) device - Google Patents

Sor (synchrotron) device

Info

Publication number
JPH03227000A
JPH03227000A JP1934990A JP1934990A JPH03227000A JP H03227000 A JPH03227000 A JP H03227000A JP 1934990 A JP1934990 A JP 1934990A JP 1934990 A JP1934990 A JP 1934990A JP H03227000 A JPH03227000 A JP H03227000A
Authority
JP
Japan
Prior art keywords
synchrotron
sor
electrons
linear accelerator
synchrotrons
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Pending
Application number
JP1934990A
Other languages
Japanese (ja)
Inventor
Shinichi Bandai
萬代 新一
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
IHI Corp
Original Assignee
IHI Corp
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by IHI Corp filed Critical IHI Corp
Priority to JP1934990A priority Critical patent/JPH03227000A/en
Publication of JPH03227000A publication Critical patent/JPH03227000A/en
Pending legal-status Critical Current

Links

Classifications

    • HELECTRICITY
    • H05ELECTRIC TECHNIQUES NOT OTHERWISE PROVIDED FOR
    • H05HPLASMA TECHNIQUE; PRODUCTION OF ACCELERATED ELECTRICALLY-CHARGED PARTICLES OR OF NEUTRONS; PRODUCTION OR ACCELERATION OF NEUTRAL MOLECULAR OR ATOMIC BEAMS
    • H05H13/00Magnetic resonance accelerators; Cyclotrons
    • H05H13/04Synchrotrons
    • GPHYSICS
    • G21NUCLEAR PHYSICS; NUCLEAR ENGINEERING
    • G21KTECHNIQUES FOR HANDLING PARTICLES OR IONISING RADIATION NOT OTHERWISE PROVIDED FOR; IRRADIATION DEVICES; GAMMA RAY OR X-RAY MICROSCOPES
    • G21K5/00Irradiation devices
    • G21K5/04Irradiation devices with beam-forming means

Landscapes

  • Physics & Mathematics (AREA)
  • Engineering & Computer Science (AREA)
  • Plasma & Fusion (AREA)
  • Spectroscopy & Molecular Physics (AREA)
  • General Engineering & Computer Science (AREA)
  • High Energy & Nuclear Physics (AREA)
  • Particle Accelerators (AREA)

Abstract

PURPOSE:To surely and continuously perform SOR operation by arranging one linear accelerator and providing an electron incident part for making electrons from the linear accelerator selectively incident on each synchrotron respectively. CONSTITUTION:While arranging a plurality of synchrotrons 1 for taking out radiation light (SOR light) by circulating an electron beam and arranging one linear accelerator 22 to make electrons incident on the synchrotron 1 further a beam transport line 9 for mailing selectively incident electrons from the linear accelerator 22 on each synchrotron 1 respectively between the same accelerator 22 and each synchrotron 1. Since a plurality of synchrotrons are to be provided, either of synchrotrons 1 can surely perform SOR operation thus being able to constantly and surely perform lithography by means of SOR light. Further, one linear accelerator 22 can be incident on a plurality of synchrotrons 1 by turns and selectively until a prescribed amount of electrons can be accumulated and the stop time of the linear accelerator 22 is reduced thus to be able to constantly and effectively use the linear accelerator 22.

Description

【発明の詳細な説明】 [産業上の利用分野] 本発明は、電子ビームをシンクロトロン内で光速で周回
させて放射光を取り出すSOR装置に係り、特に−台の
線形加速器で複数のシンクロトロンに電子を入射できる
SOR装置に関するものである。
Detailed Description of the Invention [Industrial Application Field] The present invention relates to an SOR device that extracts synchrotron radiation by making an electron beam circulate at the speed of light within a synchrotron, and particularly relates to an SOR device that extracts synchrotron radiation by rotating an electron beam at the speed of light within a synchrotron. The present invention relates to an SOR device that can inject electrons into.

[従来の技術] 最近半導体のリソグラフィー用光源としてSOR装置が
注目されてきている。
[Prior Art] Recently, SOR devices have been attracting attention as light sources for semiconductor lithography.

SOR装置は、蓄積リング内の電子ビームを光速で周回
させ、電子ビームが磁場で偏向される際に放射される放
射光(SOR光)を取り出すものである。
The SOR device rotates an electron beam in a storage ring at the speed of light and extracts synchrotron radiation (SOR light) emitted when the electron beam is deflected by a magnetic field.

通常大型のSOR装置は、線形加速器とシンクロトロン
と蓄積リングの3台の装置から構成されるが、小型のS
OR装置は、シンクロトロンと蓄積リングを兼用したも
のが現在開発されている。
Normally, a large SOR device consists of three devices: a linear accelerator, a synchrotron, and a storage ring, but a small SOR device
An OR device that combines a synchrotron and a storage ring is currently being developed.

この小型のSOR装置においては、線形加速器より電子
エネルギ100MeV以下の低いエネルギーの電子がシ
ンクロトロンに繰返し入射され、シンクロトロン内に所
定の蓄積電流が確保されたならばシンクロトロン内の電
子ビームを最終エネルギー(例えば800MeV)*で
高め、そのエネルギーのまま電子ビームが消滅するまで
数十時間遅m S OR運転してSOR光を取り出すよ
うにしている。
In this small SOR device, low-energy electrons of 100 MeV or less are repeatedly injected into the synchrotron from a linear accelerator, and once a predetermined accumulated current is secured in the synchrotron, the electron beam in the synchrotron is finalized. The energy is increased (for example, 800 MeV)*, and the SOR operation is performed at that energy for several tens of hours until the electron beam disappears to extract the SOR light.

[発明が解決しようとする課題] ところで、半導体のリソグラフィーの実用化を考えた場
合、SOR光を取り出すにはシンクロ1〜ロンに多数の
光取り出しラインを接続すれは、リソグラフィー処理能
力は向上する。通常、SOR装置のシンクロトロン内の
真空度は10−9〜10torrの超高真空にする必要
があり、このためシンクロトロン内のベーキングが良好
になされる必要がある。ところでシンクロトロン内の真
空度が良好に維持されれば、電子ビームを繰返し入射し
て所定の電流を蓄積した後、電子ビームエネルギーを最
終エネルギーまて高めてSOR運転に入るには、比較的
短時間に行うことができる力板シンクロトロン内のベー
キングが不良なと、電子の消減量か多くなり、長時間か
けてもシンクロトロン内に所定の蓄積電流か蓄積されな
い問題がある。従って蓄積運転からSOR運転に移行す
るまでは上述した半導体リソグラフィーは行われないま
まとなり、稼動効率が極めて悪くなる問題かある。
[Problems to be Solved by the Invention] By the way, when considering the practical application of semiconductor lithography, the lithography processing capacity can be improved by connecting a large number of light extraction lines to the synchronizers 1 to 1 to extract the SOR light. Normally, the degree of vacuum in the synchrotron of an SOR device needs to be an ultra-high vacuum of 10 -9 to 10 torr, and therefore the synchrotron needs to be baked well. By the way, if the degree of vacuum inside the synchrotron is maintained well, it will take a relatively short period of time to repeatedly inject the electron beam and accumulate a predetermined current, then increase the electron beam energy to the final energy and enter SOR operation. If the baking within the power plate synchrotron that can be performed over a long period of time is inadequate, the amount of electrons consumed will be large, resulting in the problem that a predetermined accumulated current may not be accumulated within the synchrotron even after a long period of time. Therefore, the above-mentioned semiconductor lithography is not performed until the storage operation is shifted to the SOR operation, and there is a problem that the operating efficiency becomes extremely poor.

本発明は上記事情を考慮してなされたもので、SOR運
転か確実にしかも連続して行えるSOR装置を提供する
ことを目的とする。
The present invention has been made in consideration of the above circumstances, and an object of the present invention is to provide an SOR device that can perform SOR operation reliably and continuously.

[課題を解法するための手段] 本発明は、上記の目的を達成するために、電子ビームを
周回させてSOR光を取り出すシンクロ1〜ロンを複数
台配置すると共に、ジンクロト17ンに電子を入射する
線形加速器を一台配置し、その線形加速器と各シンクロ
トロン間に、線形加速器からの電子をそれぞれ選択的に
各シンクロ1〜ロンに入射するためのビーム輸送ライン
を設けたものである。
[Means for Solving the Problems] In order to achieve the above object, the present invention arranges a plurality of synchronizers 1 to 17 that make an electron beam go around and extract SOR light, and also injects electrons into a zinc 17 electron beam. One linear accelerator is disposed, and a beam transport line is provided between the linear accelerator and each synchrotron for selectively injecting electrons from the linear accelerator into each synchrotron.

「作用] 上記の構成によれは、シンクロトロンが複数台設けられ
るなめ、いずれかのシンクロ1ヘロンは必ずSOR運転
が行え、常時確実にSOR光によるリンクラフィが行え
る。またSOR運転中のシンクロトロンには線形加速器
より電子を入射する必要かないため、−台の線形加速器
で複数のシンクロトロンに順次選択的に所定量の電子の
蓄積ができるまで入射でき、線形加速器の停止時間が少
なくなり、線形加速器を常時有効に利用することができ
る。
[Function] The above configuration has multiple synchrotrons, so any one of the synchro 1 herons can always perform SOR operation, and link graphing using SOR light can be performed reliably at all times. Since there is no need to inject electrons from a linear accelerator, it is possible to sequentially and selectively inject electrons into multiple synchrotrons until a predetermined amount of electrons are accumulated, reducing the stop time of the linear accelerator, and increasing linear accelerators. The accelerator can be used effectively at all times.

[実施例] 以下、本発明の好適実施例を添付図面に基づいて説明す
る。
[Example] Hereinafter, preferred embodiments of the present invention will be described based on the accompanying drawings.

第1図において、1はシンクロトロンで、複数台並列し
て設けられる。このシンクロトロン1は、電子ビームが
周回する環状の真空容器2と、その真空容器2内を周回
する電子ビームにエネルキーを補給する高周波加速空洞
3と、電子ビームを偏向する偏向電磁石4とから構成さ
れる。また、電子発生装置8と加速管7とにより線形加
速器22が構成される。このシンクロトロン1の電子ビ
ームの偏向部には光取り出しライン5が接続され、その
光取り出しライン5に、半導体のりツクラフイーを行う
露光装置6が接続される。この光取り出しライン5は、
図ては一台のシンクロトロン1に1ライン接続しである
が、電子ビームが偏向する位置であれば、その接線方向
にSORが放射されるので何本接続してもよい。
In FIG. 1, 1 is a synchrotron, and a plurality of synchrotrons are installed in parallel. This synchrotron 1 is composed of an annular vacuum vessel 2 in which an electron beam circulates, a high-frequency acceleration cavity 3 that supplies energy to the electron beam orbiting within the vacuum vessel 2, and a deflection electromagnet 4 that deflects the electron beam. be done. Furthermore, the electron generator 8 and the acceleration tube 7 constitute a linear accelerator 22 . A light extraction line 5 is connected to the electron beam deflection section of the synchrotron 1, and an exposure device 6 for performing semiconductor processing is connected to the light extraction line 5. This light extraction line 5 is
In the figure, one line is connected to one synchrotron 1, but as long as the electron beam is deflected, the SOR will be emitted in the tangential direction, so any number of lines may be connected.

これらシンクロトロン1の配列方向に沿って加速管7が
配置される。この加速管7には電子発生装置8が接続さ
れ、その電子発生装置8で発生しな電子を、加速管7が
、例えば45MeVまで加速する。加速管7の出射端に
はビーム輸送ライン9が接続され、そのビーム輸送ライ
ン9を介して加速管7からの電子が各シンクロトロン1
に選択的に入射されるようになっている。このビーム輸
送ライン9は、加速管7の出射端に接続され、シンクロ
トロン1の配列方向に沿って延びるビームチャンネル1
0と、そのビームチャンネル1−0に接続され、ビーム
チャンネル10からの電子を各シンクロトロン1に案内
する複数の入射ヂャンネル11と、その各入射チャンネ
ル11に設けられ、ビームチャンネル10からの電子を
各シンクロトロン1に入射すべく偏向する複数のビーム
輸送系電磁石12からなる。
Accelerating tubes 7 are arranged along the direction in which these synchrotrons 1 are arranged. An electron generator 8 is connected to the acceleration tube 7, and the acceleration tube 7 accelerates electrons not generated by the electron generator 8 to, for example, 45 MeV. A beam transport line 9 is connected to the output end of the acceleration tube 7, and the electrons from the acceleration tube 7 are transferred to each synchrotron 1 via the beam transport line 9.
It is designed to be selectively incident on. This beam transport line 9 is connected to the output end of the acceleration tube 7 and has a beam channel 1 extending along the direction in which the synchrotrons 1 are arranged.
0, a plurality of input channels 11 connected to the beam channels 1-0 and guiding the electrons from the beam channel 10 to each synchrotron 1; It consists of a plurality of beam transport system electromagnets 12 that are deflected so as to be incident on each synchrotron 1.

次に、入射チャンネル11からの電子をシンクロトロン
1の真空容器2に入射するインフレクタの詳細を第2図
により説明する。
Next, details of the inflector that causes electrons from the input channel 11 to enter the vacuum chamber 2 of the synchrotron 1 will be explained with reference to FIG.

第2図において、入射チャンネル11の先端にはインフ
レクタチャンバー3が接続され、そのインフレクタチャ
ンバ13がオリフィスJ4を介して真空容器2と接続さ
れる。インフレクタチャンバ13内には入射チャンネル
11からの電子を偏向し、オリフィス14を介して真空
容器2に入射するセプタム電磁石15が設けられ、まな
真空容器2にはキツカー電磁石16か設けられ、真空容
器2を周回する電子ビームの軌道を変えてインフレクタ
チャンバ13から真空容器2内に入射される電子ビーム
と衝突しないようにされる。またこれらビームは図示し
ていないが収束電磁石で収束されるようになっている。
In FIG. 2, an inflector chamber 3 is connected to the tip of the entrance channel 11, and the inflector chamber 13 is connected to the vacuum vessel 2 via an orifice J4. A septum electromagnet 15 is provided in the inflector chamber 13 to deflect the electrons from the incident channel 11 and enter the vacuum container 2 through the orifice 14. The trajectory of the electron beam orbiting around the vacuum container 2 is changed so that it does not collide with the electron beam entering the vacuum container 2 from the inflector chamber 13. Although not shown, these beams are converged by a converging electromagnet.

次に各シンクロトロン1の偏向電磁石4や収束電磁石な
どはシンクロトロン1ごと独立した電源装置に接続され
るが、電子入射部側の電磁石、すなわちビーム輸送系電
磁石12.セプタム電磁石15及びキツカー電磁石16
の電源は共用する。
Next, the deflection electromagnet 4, focusing electromagnet, etc. of each synchrotron 1 are connected to an independent power supply device for each synchrotron 1, but the electromagnet on the electron incidence side, that is, the beam transport electromagnet 12. Septum electromagnet 15 and kitsker electromagnet 16
The power source is shared.

第3図は電子入射部flFJの電磁石の電源装置を示し
、図において、例えばシンクロトロン1がn台あるとす
ると、その台数分のビーム輸送系電磁石12゜セプタム
電磁石15及びキツカー電磁石16を、それぞれ給電ケ
ーブル17を介して電源切替回路18に接続し、その電
源切替回路18に、ビーム輸送系電磁石電源1つ、セプ
タム電磁石電源20及びキツカー電磁石電源21を接続
し、電源切替回路18にて給電ケーブル17を切り替え
て、電子を入射すべきシンクロトロン1の各ビーム輸送
系電磁石12.セプタム電磁石15及びキツカー電磁石
16に給電できるようにする。
FIG. 3 shows a power supply device for the electromagnets of the electron incidence section flFJ. In the figure, if there are n synchrotrons 1, for example, the number of beam transport system electromagnets 12°, septum electromagnets 15, and kicker electromagnets 16 are connected to each other. Connect to the power supply switching circuit 18 via the power supply cable 17, connect one beam transport system electromagnet power supply, the septum electromagnet power supply 20, and the kicker electromagnet power supply 21 to the power supply switching circuit 18, and connect the power supply cable with the power supply switching circuit 18. 17, each beam transport system electromagnet 12. of the synchrotron 1 into which electrons should be incident. Enables power to be supplied to the septum electromagnet 15 and the kicker electromagnet 16.

次に本実施例の作用を説明する。Next, the operation of this embodiment will be explained.

先ず、例えば電子入射側から見て初段のシンクロトロン
1に電子を入射してSOR運転を行う場合を説明する。
First, a case where SOR operation is performed by injecting electrons into the synchrotron 1 at the first stage when viewed from the electron incidence side will be described first.

電子発生装置8からの電子は、加速管7で、例えば45
 M e Vまで加速され、初段のビーム輸送系電磁石
1−2にて偏向され、インフレクタチャンバ13から初
段のシンクロトロン1の真空容器2内に入射される。
The electrons from the electron generator 8 are transferred to the acceleration tube 7, for example, 45
The beam is accelerated to M e V, deflected by the first-stage beam transport system electromagnet 1 - 2 , and enters the vacuum vessel 2 of the first-stage synchrotron 1 from the inflector chamber 13 .

この初段の真空容器2内に入射された電子は、偏向電磁
石4で偏向され、かつ高周波加速空洞3でエネルギーを
補給されながら真空容器2内を光速で周回する。この加
速管7よりの電子の入射を繰返行い、シンクロトロン1
内に所定の電流か蓄積された後、偏向電磁石4の磁場を
順次高めて電子ビームのエネルギーを最終エネルギー(
例えは800 M e V )まで高め、その間、偏向
磁石4で偏向されるビームの接線方向に放射されるSO
R光を光取り出しライン5より取り出し、露光装置6に
入射し、半導体のりソグラフィを行う。
The electrons entering the first stage vacuum vessel 2 are deflected by the deflection electromagnet 4, and are replenished with energy by the high frequency acceleration cavity 3, while orbiting the vacuum vessel 2 at the speed of light. This injection of electrons from the accelerating tube 7 is repeated, and the synchrotron 1
After a predetermined amount of current is accumulated in the electron beam, the magnetic field of the bending electromagnet 4 is gradually increased to increase the energy of the electron beam to the final energy (
(for example, 800 M e V), during which the SO radiated in the tangential direction of the beam deflected by the deflection magnet 4
The R light is taken out from the light extraction line 5 and enters an exposure device 6 to perform semiconductor lithography.

この初段のシンクロトロン1内の電子ビームが、最終エ
ネルギーで周回する際の電子ビームの寿命は数十時間以
上あり、この量的のシンクロトロン1に、線形加速器7
より電子を入射する。ずなわち、第3図に示した電源切
替回路18にてビーム輸送ライン9の各電磁石12,1
5.及びキツカー電磁石16への給電を切り替え対応す
るシンクロ−・ロン1に上述したように電子を入射して
SOR運転を順次行う。
The lifetime of the electron beam in this first-stage synchrotron 1 when it orbits with the final energy is several tens of hours or more.
Inject more electrons. That is, the power supply switching circuit 18 shown in FIG.
5. Then, the power supply to the kicker electromagnet 16 is switched, and electrons are injected into the corresponding synchronizer 1 as described above to sequentially perform the SOR operation.

このように加速管7からの電子を複数のシンクロトロン
1に順次選択的に入射してSOR運転を行うことで、−
台の加速管7で複数のジンクロト0ン1のSOR運転が
行え、また例えベーキング不良のシンクロトロン1があ
った場合でも、いずれか他のシンクロトロン1はSOR
運転は行えるため、SOR光による半導体のリソグラフ
ィーは連続して行える。
By performing SOR operation by sequentially and selectively injecting electrons from the accelerating tube 7 into the plurality of synchrotrons 1, -
The SOR operation of multiple synchrotrons 0 and 1 can be performed using the accelerator tube 7 of the stand, and even if there is a synchrotron 1 with baking failure, any other synchrotron 1 will be able to perform SOR operation.
Since the operation can be performed, semiconductor lithography using SOR light can be performed continuously.

尚上述の実施例においては、加速管7の出射端にビーム
チャンネル10を接続し、そのビームチャンネル10に
複数の入射チャンネル11を接続する例で説明したが、
例えばシンクロ1〜ロン1が二台の場合、加速管7の出
射端の左右にシンクロトロン1を配置し、その線形加速
器7の出射端からの電子を左右に偏向して左右のシンク
ロトロン1に選択的に切り替え入射するようにしてもよ
い。
In the above embodiment, the beam channel 10 is connected to the output end of the accelerator tube 7, and a plurality of input channels 11 are connected to the beam channel 10.
For example, if there are two synchrotrons 1 to 1, the synchrotrons 1 are placed on the left and right sides of the output end of the accelerator tube 7, and the electrons from the output end of the linear accelerator 7 are deflected left and right to the left and right synchrotrons 1. The light may be selectively switched and incident.

また加速管7の電子出射エネルギーを100 M eV
以上とし、その加速管7のビームチャンネルの途中に複
数の入射チャンネル11を接続し、各シンクロトロン1
に入射エネルギーの違う電子を入射するように構成して
もよい。
In addition, the electron emission energy of the accelerator tube 7 is set to 100 M eV.
With the above, a plurality of input channels 11 are connected in the middle of the beam channel of the acceleration tube 7, and each synchrotron 1
It may be configured such that electrons with different incident energies are incident on the two.

[発明の効果1 以上説明したことから明らかなように本発明に0 よれば次のごとき優れた効果を発揮する。[Effects of the invention 1 As is clear from the above explanation, the present invention has zero According to this method, the following excellent effects are exhibited.

(1)線形加速器からの電子を、複数のシンクロ1〜ロ
ンに選択的に切り替えて入射することで線形加速器を有
効に利用しながら、シンクロトロンのSOR運転を常時
確実に行うことができる。
(1) By selectively switching and injecting electrons from the linear accelerator into a plurality of synchrotrons 1 to ron, the synchrotron can be operated reliably at all times while making effective use of the linear accelerator.

【図面の簡単な説明】[Brief explanation of drawings]

第1図は本発明の一実施例を示す平面図、第2図は本発
明において、シンクロトロンへ電子を入射するインフレ
クタチャンバーの詳細を示す図、第3図は本発明におい
て入射部の電磁石電源装置の詳細を示す図である。 図中、1はシンクロトロン、2は真空容器、3は高周波
加速空洞、4は偏向磁石、5は光取り出しライン、6は
露光装置、7は加速管、9はビーム輸送ライン、11は
入射チャンネル、12はビーム輸送電磁石、22は線形
加速器である。 1 トヘヘ寸哨 (0> Q:10) □口Cす h〜へ r−SL++、へ −昭1
FIG. 1 is a plan view showing an embodiment of the present invention, FIG. 2 is a diagram showing details of an inflector chamber for injecting electrons into a synchrotron in the present invention, and FIG. FIG. 3 is a diagram showing details of a power supply device. In the figure, 1 is a synchrotron, 2 is a vacuum vessel, 3 is a high-frequency acceleration cavity, 4 is a deflection magnet, 5 is a light extraction line, 6 is an exposure device, 7 is an acceleration tube, 9 is a beam transport line, and 11 is an input channel. , 12 is a beam transport electromagnet, and 22 is a linear accelerator. 1 Tohehe sentinel (0> Q:10) □mouth Csu~he r-SL++, he-Sho 1

Claims (1)

【特許請求の範囲】[Claims] 1、電子ビームを周回させてSOR光を取り出すシンク
ロトロンを複数台配置すると共にシンクロトロンに電子
を入射する線形加速器を一台配置し、各シンクロトロン
に、上記線形加速器からの電子をそれぞれ選択的に入射
するための電子入射部を設けたことを特徴とするSOR
装置。
1. A plurality of synchrotrons are arranged to make the electron beam go around and extract SOR light, and one linear accelerator is arranged to input electrons into the synchrotron, and the electrons from the linear accelerator are selectively sent to each synchrotron. An SOR characterized by having an electron incidence section for making the electrons incident on the
Device.
JP1934990A 1990-01-31 1990-01-31 Sor (synchrotron) device Pending JPH03227000A (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP1934990A JPH03227000A (en) 1990-01-31 1990-01-31 Sor (synchrotron) device

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP1934990A JPH03227000A (en) 1990-01-31 1990-01-31 Sor (synchrotron) device

Publications (1)

Publication Number Publication Date
JPH03227000A true JPH03227000A (en) 1991-10-07

Family

ID=11996915

Family Applications (1)

Application Number Title Priority Date Filing Date
JP1934990A Pending JPH03227000A (en) 1990-01-31 1990-01-31 Sor (synchrotron) device

Country Status (1)

Country Link
JP (1) JPH03227000A (en)

Cited By (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US6580084B1 (en) 1999-09-14 2003-06-17 Hitachi, Ltd. Accelerator system
JP2013215616A (en) * 2013-07-25 2013-10-24 Mitsubishi Electric Corp Particle beam irradiation apparatus

Cited By (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US6580084B1 (en) 1999-09-14 2003-06-17 Hitachi, Ltd. Accelerator system
JP2013215616A (en) * 2013-07-25 2013-10-24 Mitsubishi Electric Corp Particle beam irradiation apparatus

Similar Documents

Publication Publication Date Title
US4069457A (en) High-energy accelerator for beams of heavy ions
Dimov Use of hydrogen negative ions in particle accelerators
Ogur et al. JACoW: Overall Injection Strategy for FCC-ee
Oguri et al. Status of the Japan Proton Accelerator Research Complex H− ion source
JPH03227000A (en) Sor (synchrotron) device
Zimmermann Accelerator technology and beam physics of future colliders
Delahaye et al. CLIC, a 0.5 to 5 TeV e $^{\pm} $ Compact Linear Collider
Alonso High‐current negative‐ion sources for pulsed spallation neutron sources: LBNL Workshop, October 1994
Ben-Zvi et al. Electron cooling for RHIC
Krämer et al. LightHouse-A Superconducting LINAC for Producing Medical Isotopes
Garoby the SPL at CERN
Haseroth The CERN heavy ion facility
JPH01186797A (en) Device for generating radiation light
Pagani et al. A high current proton linac with 352 MHz SC cavities
Zimmermann frontiers Frontiers in Physics publishedREVIEW
WO1996036391A2 (en) High efficiency variable energy and intensity photon radiation source
Benson et al. A possible low-energy positron source at Jefferson Lab
JPH03205797A (en) Multi-purpose sor device
Boulware et al. Double-Bend Achromat Beamline for Injection Into a High-Power Superconducting Electron Linac
Boscolo et al. arXiv: Challenges for the interaction region design of the Future Circular Collider FCC-ee
JPH03226999A (en) Small-sized sor synchrotron device
JPH0770455B2 (en) X-ray exposure device
Bossart et al. CLIC, A 0.5 TO 5 TeV e±COMPACT LINEAR COLLIDER
JPH01186796A (en) Device for generating radiation light
Bradbury et al. Light ion linacs for medical applications