JPH0322587B2 - - Google Patents

Info

Publication number
JPH0322587B2
JPH0322587B2 JP57107615A JP10761582A JPH0322587B2 JP H0322587 B2 JPH0322587 B2 JP H0322587B2 JP 57107615 A JP57107615 A JP 57107615A JP 10761582 A JP10761582 A JP 10761582A JP H0322587 B2 JPH0322587 B2 JP H0322587B2
Authority
JP
Japan
Prior art keywords
antigen
antibody
particles
reaction
filter
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Expired - Lifetime
Application number
JP57107615A
Other languages
Japanese (ja)
Other versions
JPS58225354A (en
Inventor
Makoto Nakamura
Katsunobu Doi
Tokio Kano
Akira Tamagawa
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Olympus Corp
Original Assignee
Olympus Optical Co Ltd
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Olympus Optical Co Ltd filed Critical Olympus Optical Co Ltd
Priority to JP10761582A priority Critical patent/JPS58225354A/en
Publication of JPS58225354A publication Critical patent/JPS58225354A/en
Publication of JPH0322587B2 publication Critical patent/JPH0322587B2/ja
Granted legal-status Critical Current

Links

Classifications

    • GPHYSICS
    • G01MEASURING; TESTING
    • G01NINVESTIGATING OR ANALYSING MATERIALS BY DETERMINING THEIR CHEMICAL OR PHYSICAL PROPERTIES
    • G01N33/00Investigating or analysing materials by specific methods not covered by groups G01N1/00 - G01N31/00
    • G01N33/48Biological material, e.g. blood, urine; Haemocytometers
    • G01N33/50Chemical analysis of biological material, e.g. blood, urine; Testing involving biospecific ligand binding methods; Immunological testing
    • G01N33/53Immunoassay; Biospecific binding assay; Materials therefor
    • G01N33/543Immunoassay; Biospecific binding assay; Materials therefor with an insoluble carrier for immobilising immunochemicals
    • G01N33/54366Apparatus specially adapted for solid-phase testing

Description

【発明の詳細な説明】 本発明は免疫分析法に関するものである。[Detailed description of the invention] The present invention relates to immunoassay methods.

抗原−抗体反応は、特定の抗原と抗体との間に
起る特異的な反応であり、これを利用して定量し
た血液あるいは体液中の微量抗原(抗体)量は、
診断や治療に供されている。この抗原−抗体反応
による分析法には、測定対象の抗原または抗体を
定量する際に用いる標識物質の種類から、放射性
同位元素を用いるラジオイムノアツセイ、酵素を
用いるエンザイムノムノアツセイ、蛍光物質を用
いるフローイムノアツセイがありなかでもラジオ
イムノアツセイは高感度な分析法として知られて
いる。いずれの分析法においても測定対象である
抗原(抗体)を定量する際にその抗原(抗体)お
よび標識抗体(抗原)の結合物と、有利標識抗体
(抗原)とのいわゆるB・f分離が必要となり、
例えばラジオイムノアツセイによる免疫分析装置
として、流入口と流出口とを有し、測定対象の抗
原または抗体と特異的に反応する抗体または抗原
を固相化した反応容器(chamber)を用いてB・
f分離を行なうようにした貫流形のものが知られ
ている。この装置においては、例えばサンプル中
の所定の抗原を定量する場合は、反応容器として
測定抗原に反応する抗体を固相化したものを用
い、先ずこの反応容器(antibody chamber)の
流入口に連結されたチユーブ内で第1図Aに示す
ようにサンプルと放射性同位元素で標識された抗
原とを混合して、第1図Bに示す測定対象の抗原
に対応する固相化した抗体を有する反応容器に送
り、ここで第1図Cに示すようにサンプル内の抗
原と標識抗原とを競合させて固相化抗体に結合さ
せ、固相化抗体に捕捉されなかつた遊離抗原は、
反応容器の流出口を経てシンチレーシヨンカウン
タに送つて遊離標識抗原をその放射能によつて計
数する。次に、反応容器内の固相化抗体に捕捉さ
れた結合抗原を溶離緩衝液により固定化抗体から
溶離させ、この溶離した抗原を第1図Dに示すよ
うに反応容器の流出口を経てシンチレーシヨンカ
ウンタに送つて標識抗原をその放射能によつて計
数する。このようにして、第2図に示すような放
射能特性を得、その両ピーク値すなわち固相化抗
体に捕捉されなかつた遊離標識抗原の計数値のピ
ーク値と、捕捉されて溶離された標識抗原の計数
値のピク値との比較に基いてサンプル中の所定の
抗原を定量する。
The antigen-antibody reaction is a specific reaction that occurs between a specific antigen and an antibody, and the trace amount of antigen (antibody) in blood or body fluids determined using this reaction is
It is used for diagnosis and treatment. Analytical methods based on this antigen-antibody reaction include radioimmunoassay using radioisotopes, enzyme immunoassay using enzymes, and fluorescent substances. Among the flow immunoassays used, radioimmunoassay is known as a highly sensitive analysis method. In any of the analytical methods, when quantifying the antigen (antibody) to be measured, it is necessary to perform so-called B/f separation between the combined product of the antigen (antibody) and labeled antibody (antigen) and the advantageously labeled antibody (antigen). Then,
For example, as an immunoassay device using radioimmunoassay, B・
A once-through type device that performs f-separation is known. In this device, for example, when quantifying a predetermined antigen in a sample, a reaction chamber containing an immobilized antibody that reacts with the antigen to be measured is used, and the antibody chamber is first connected to the inlet of the reaction chamber (antibody chamber). A sample and an antigen labeled with a radioactive isotope are mixed in a tube as shown in FIG. 1A, and a reaction container containing an immobilized antibody corresponding to the antigen to be measured as shown in FIG. 1B is prepared. Here, as shown in Figure 1C, the antigen in the sample competes with the labeled antigen to bind to the immobilized antibody, and the free antigen that is not captured by the immobilized antibody is
The free labeled antigen is passed through the outlet of the reaction vessel to a scintillation counter and counted by its radioactivity. Next, the bound antigen captured by the immobilized antibody in the reaction vessel is eluted from the immobilized antibody with an elution buffer, and the eluted antigen is passed through the outlet of the reaction vessel to the scintillator as shown in Figure 1D. The labeled antigens are then sent to a radioactivity counter and counted according to their radioactivity. In this way, radioactivity characteristics as shown in Figure 2 were obtained, with both peak values, that is, the peak value of the count of free labeled antigen that was not captured by the immobilized antibody, and the peak value of the counted value of the free labeled antigen that was not captured by the immobilized antibody, and the captured and eluted label. The predetermined antigen in the sample is quantified based on a comparison of the antigen count to the PIC value.

しかし、かかる分析装置においては、サンプル
と標識抗原とを反応容器の流入口に連結したチユ
ーブ内で混合するため、比較的長いチユーブが必
要となり、このためのコンタミネーシヨンが発生
し易いと共に、混合液を反応容器に送るのに時間
がかかり、分析処理能力が低い欠点がある。ま
た、放射性同位元素で標識した化合物は通常不安
定であるため、標識物質を再三調整する必要があ
る。更に、放射性同位元素は人体に危険であり、
環境汚染の立場からその廃棄が困難であると共
に、その取扱いには一定の資格と一定の基準で認
可された高価な施設を必要とし、また測定機器も
高価となる等の欠点がある。
However, in such analyzers, the sample and labeled antigen are mixed in a tube connected to the inlet of the reaction container, which requires a relatively long tube, which tends to cause contamination and mixing. The drawback is that it takes time to send the liquid to the reaction vessel, and the analytical throughput is low. Furthermore, since compounds labeled with radioactive isotopes are usually unstable, it is necessary to repeatedly adjust the labeling substance. Furthermore, radioactive isotopes are dangerous to humans;
It is difficult to dispose of it because of environmental pollution, and its handling requires expensive facilities that are certified under certain qualifications and standards, and the measuring equipment is also expensive.

以上の観点から最近では放射性同位元素を酵素
に置き換えて標識したエンザイムイムノアツセイ
や、蛍光物質を用いたフローイムノアツセイが、
ラジオイムノアツセイに匹敵し得る感度と精度を
持ち、安全に実施できる優れた分析法として採用
されている。
In view of the above, recently enzyme immunoassays, in which radioactive isotopes are replaced with enzymes for labeling, and flow immunoassays, which use fluorescent substances, have been developed.
It has sensitivity and accuracy comparable to radioimmunoassay, and has been adopted as an excellent analytical method that can be performed safely.

一方、上記ラジオイムノアツセイ、エンザイム
イムノアツセイ、フローイムノアツセイにおける
抗原−抗体反応のステツプには比較的長い反応時
間を必要とし、この反応時間を短縮するためには
高濃度での均一な抗原−抗体反応の反応系が必要
となる。このような均一な反応系を得るために、
例えばエンザイムイムノアツセイにおいて、微細
なセルロース粒子を固体担体として用い、抗原−
抗体反応の場である反応液と、固相担体表面との
界面を増大させ、かつ均一に固相担体粒子を浮遊
させるようしたものがある。この分析法は用手法
により行なわれ、例えばサンプル中のα−フエト
プロテイン(α−fetoprotein)抗原を定量する
場合には、先ず第3図Aに示すように、サンプル
1とセルロース粒子表面に固相化した抗α−フエ
トプロテイン(anti−α−fetoprotein)抗体を含
む試薬2とを試薬管3に分注して抗原−抗体反応
を行なわせ、α−フエトプロテインと抗α−フエ
トプロテインとを結合させる。次に、第3図Bに
示すように、試験管3内に洗浄用緩衝液4を加え
て、3000r.p.m.、30秒遠心分離した後、上清を吸
引除去してセルロース担体粒子を試験管3内に残
す。その後第3図Cに示すように、試験管3内に
酵素標識抗体である共役抗α−フエトプロテイン
(conjugated anti−α−fetoprotein)を含む試
薬5を加えて抗原−抗体反応を行なわせ、抗α−
フエトプロテイン−α−フエトプロテイン−共役
抗α−フエトプロテインの結合物を形成させる。
次に、第3図Dに示すように、試験管3内に洗浄
用緩衝液4を加えて、3000r.p.m.、30秒遠心分離
した後、上清を吸引除去してセルロース担体粒子
を試験管3内に残す。この第3図Dに示す洗浄工
程を3回繰返すことにより、第3図Cにおける抗
原−抗体反応において反応しなかつた酵素標識抗
体を洗浄除去してB・f分離を行なう。その後、
第3図Eに示すように、試験管3内に酵素基質液
6を加えて、セルロース粒子表面に捕捉された標
識酵素との酵素−基質反応を行なわせ、これによ
り捕捉された標識酵素量に比例した量の発色物質
を生成する。この酵素−基質反応を所定時間行な
わせた後、試験管3を3000r.p.m.、30秒遠心分離
して発色物質を含む上清を、第3図Fに示すよう
に比色セル7に吸引吐出して分光光度計8により
吸光度を測定し、この測定値に基いて、既知濃度
のサンプルから求めた吸光度とα−フエトプロテ
イン抗原との検量線からサンプル1中のα−フエ
トプロテイン抗原を定量する。
On the other hand, the antigen-antibody reaction step in the radioimmunoassay, enzyme immunoassay, and flow immunoassay requires a relatively long reaction time, and in order to shorten this reaction time, it is necessary to A reaction system for antigen-antibody reaction is required. In order to obtain such a homogeneous reaction system,
For example, in enzyme immunoassays, fine cellulose particles are used as solid carriers to
There is a method in which the interface between the reaction solution, which is the site of antibody reaction, and the surface of the solid phase carrier is increased, and the solid phase carrier particles are evenly suspended. This analysis method is carried out manually. For example, when quantifying α-fetoprotein antigen in a sample, first, as shown in Figure 3A, sample 1 and the cellulose particle surface are immobilized. Reagent 2 containing phased anti-α-fetoprotein antibody is dispensed into reagent tube 3 to perform an antigen-antibody reaction, and α-fetoprotein and anti-α-fetoprotein Combine with protein. Next, as shown in Fig. 3B, washing buffer 4 was added into the test tube 3, centrifuged at 3000 rpm for 30 seconds, the supernatant was removed by suction, and the cellulose carrier particles were transferred to the test tube. Leave it within 3. Thereafter, as shown in FIG. 3C, a reagent 5 containing conjugated anti-α-fetoprotein, which is an enzyme-labeled antibody, is added to the test tube 3 to perform an antigen-antibody reaction. Anti-α-
A fetoprotein-α-fetoprotein-conjugated anti-α-fetoprotein conjugate is formed.
Next, as shown in FIG. 3D, washing buffer 4 was added into the test tube 3, centrifuged at 3000 rpm for 30 seconds, the supernatant was removed by suction, and the cellulose carrier particles were transferred to the test tube. Leave it within 3. By repeating this washing step shown in FIG. 3D three times, the enzyme-labeled antibody that did not react in the antigen-antibody reaction shown in FIG. 3C is washed away and B/f separation is performed. after that,
As shown in FIG. 3E, an enzyme substrate solution 6 is added into the test tube 3 to cause an enzyme-substrate reaction with the labeled enzyme captured on the surface of the cellulose particles, thereby reducing the amount of the captured labeled enzyme. Produces proportional amounts of color-forming substances. After allowing this enzyme-substrate reaction to occur for a predetermined time, the test tube 3 is centrifuged at 3000 rpm for 30 seconds, and the supernatant containing the coloring substance is aspirated and discharged into the colorimetric cell 7 as shown in Figure 3F. Then, the absorbance was measured using a spectrophotometer 8, and based on this measured value, the α-fetoprotein antigen in sample 1 was determined from a calibration curve between the absorbance determined from the sample with a known concentration and the α-fetoprotein antigen. Quantify.

上述したエンザイムイムノアツセイにおいて
は、固相担体粒子として通常用いられているビー
ズ、ボール状のものを用いるアツセイ系に比較し
て、セルロース粒子を用いることで、抗原−抗体
反応の場である反応液と固相担体との界面を増大
させ、かつ固相担体粒子を均一に浮遊させること
により均一な反応系を得ている。しかし、この分
析法においては、サンプル1と固相化した抗体を
有するセルロース粒子を含む試薬2との抗原−抗
体反応後にセルロース粒子とその反応液を分離す
るため、セルロース粒子と酵素標識抗体を含む試
薬5との抗原−抗体反応後にセルロース粒子とそ
の反応液を分離するため、およびセルロース粒子
と酵素基質液6との酵素−基質反応後に、その反
応液(発色物質を含む)を比色セル7に分離して
分取するために、それぞれ遠心分離が必要となる
ため、操作が面倒となる欠点がある。また、遠心
分離後その上清を吸引する際にセルロース粒子も
吸引してしまう技術的難点もある。更に、上述し
た分析法においては、発色物質を含む反応液を比
色セル7に移した後、試験管3内に残つたセルロ
ース粒子を除去するのが困難なため、試験管3を
ポリスチレン製でデイスポーザブルとしている
が、このように試験管3を使い捨てすると、サン
プルが血清、血漿等の体液で測定終了後反応液等
の廃棄物を消毒する場合には、反応液と試験管と
の両方を消毒しなければならないため、廃棄処理
が極めて繁雑となる欠点がある。
In the above-mentioned enzyme immunoassay, cellulose particles are used, which is the site of the antigen-antibody reaction, compared to assay systems that use beads or balls that are commonly used as solid phase carrier particles. A uniform reaction system is obtained by increasing the interface between the liquid and the solid support and by uniformly suspending the solid support particles. However, in this analysis method, the cellulose particles and their reaction solution are separated after the antigen-antibody reaction between sample 1 and reagent 2, which contains cellulose particles with immobilized antibodies. In order to separate the cellulose particles and their reaction solution after the antigen-antibody reaction with the reagent 5, and after the enzyme-substrate reaction between the cellulose particles and the enzyme substrate solution 6, the reaction solution (containing the coloring substance) is transferred to the colorimetric cell 7. Since centrifugation is required in order to separate and fractionate each, there is a drawback that the operation is troublesome. Furthermore, there is a technical difficulty in that cellulose particles are also aspirated when the supernatant is aspirated after centrifugation. Furthermore, in the above analysis method, it is difficult to remove the cellulose particles remaining in the test tube 3 after transferring the reaction solution containing the coloring substance to the colorimetric cell 7, so the test tube 3 is made of polystyrene. Although the test tube 3 is disposable, if the sample is a body fluid such as serum or plasma, and the reaction solution or other waste is to be sterilized after the measurement, both the reaction solution and the test tube can be used. The disadvantage is that the disposal process is extremely complicated, as it must be disinfected.

本発明の目的は上述した種々の欠点を除去し、
簡単かつ迅速に測定対象の抗原または抗体を定量
でき、特に自動化に適した免疫分析法を提供しよ
うとするものである。
The object of the present invention is to eliminate the various drawbacks mentioned above,
The present invention aims to provide an immunoassay method that can easily and quickly quantify antigens or antibodies to be measured, and is especially suitable for automation.

本発明の免疫分析法は、測定対象の抗原または
抗体と特異的に反応する抗体または抗原を固相化
した懸濁性の粒子を含む第1試薬とサンプルとを
混合して抗原−抗体反応を行わせた後、その反応
液を前期粒子を通過させないフイルタに通して、
前記粒子をフイルタで分離する工程と、 この分離された粒子と、前記測定対象の抗原ま
たは抗体と特異的に反応する抗体または抗原を結
合した標識物質を含む第2試薬とを反応させた
後、その反応液を前記フイルタに通して、前記粒
子をフイルタで分離する工程と、 この分離された粒子と、前記標識物質の存在下
で特定の物質を生成し得る第3試薬とを反応させ
た後、その反応液を前記フイルタに通して該フイ
ルタを通過した液体中に含まれる前記特定の物質
を比色測定して前記サンプル中の測定対象の抗原
または抗体の定量を行う工程とを有することを特
徴とするものである。
In the immunoassay method of the present invention, an antigen-antibody reaction is performed by mixing a sample with a first reagent containing suspended particles immobilized with an antibody or antigen that specifically reacts with the antigen or antibody to be measured. After the reaction is carried out, the reaction solution is passed through a filter that does not allow the particles to pass through.
a step of separating the particles with a filter; and reacting the separated particles with a second reagent containing a labeling substance bound to an antibody or antigen that specifically reacts with the antigen or antibody to be measured; A step of passing the reaction solution through the filter and separating the particles with the filter, and reacting the separated particles with a third reagent capable of producing a specific substance in the presence of the labeling substance. , passing the reaction solution through the filter and colorimetrically measuring the specific substance contained in the liquid that has passed through the filter to quantify the antigen or antibody to be measured in the sample. This is a characteristic feature.

さらに、本発明の免疫分析法は、測定対象の抗
原または抗体と特異的に反応する抗体または抗原
を固相化した懸濁性の粒子とサンプルとを混合し
て抗原−抗体反応を行わせた後、その反応液を、
上方に設けられた注入口と、該注入口の底に配置
された前記粒子を通過させないフイルタとを有す
る反応容器に通して、前記粒子をフイルタで分離
する工程と、 前記測定対象の抗原または抗体と特異的に反応
する抗体または抗原を結合した標識酵素を、前記
注入口から前記反応容器中に注入して前記粒子と
反応させた後、該粒子をフイルタで分離する工程
と、 前記標識酵素の存在下で特定の物質を生成し得
る基質溶液を、前記注入口から前記反応容器中に
注入して前記粒子に結合した前記標識酵素と反応
させ、これにより発生する発色物質を測定する工
程とを有することを特徴とするものである。
Furthermore, in the immunoassay method of the present invention, an antigen-antibody reaction is performed by mixing a sample with suspended particles immobilized with an antibody or antigen that specifically reacts with the antigen or antibody to be measured. After that, the reaction solution was
passing the particles through a reaction container having an injection port provided above and a filter placed at the bottom of the injection port that does not allow the particles to pass through, and separating the particles with a filter; and the antigen or antibody to be measured. A step of injecting a labeled enzyme bound to an antibody or antigen that specifically reacts with the labeled enzyme into the reaction container from the injection port to react with the particles, and then separating the particles with a filter; a step of injecting a substrate solution capable of producing a specific substance in its presence into the reaction container from the injection port to react with the labeled enzyme bound to the particles, and measuring a colored substance generated thereby; It is characterized by having.

以下図面を参照して本発明を詳細に説明する。 The present invention will be described in detail below with reference to the drawings.

第4図は本発明の免疫分析法に用いられる反応
容器の一例の構成を示す断面図である。この反応
容器11は注入内12と排出口13とを有する。
注入口12および排出口13を結ぶ通路14の一
部には該通路14を閉塞するように、測定対象の
抗原または抗体と特異的に反応する抗体または抗
原を固相化した粒子の通過を阻止し、反応液等を
通過させる例えばガラスより成るフイルタ15を
設ける。また、フイルタ15の近傍で排出口13
側には例えばステンレス製の金網より成るストツ
パ16を設けると共に、これらフイルタ15とス
トツパ16との間に例えばシリコンゴムより成る
板弁17を配置し、反応容器11内の圧力方向に
応じて第5図Aに示すように板弁17をフイルタ
15から離間させて反応液等をフイルタ15を通
して排出口13から排出させると共に、第5図B
に示すように板弁17をフイルタ15に密着させ
て反応液等のフイルタ15の通過を阻止するよう
構成する。なお、フイルタ15は強度的に許容さ
れる限り厚さを薄くするのが好適である。
FIG. 4 is a sectional view showing the structure of an example of a reaction container used in the immunoassay method of the present invention. This reaction vessel 11 has an inlet 12 and an outlet 13 .
A part of the passage 14 connecting the inlet 12 and the outlet 13 is provided to block the passage 14 to prevent passage of particles immobilized with antibodies or antigens that specifically react with the antigen or antibody to be measured. A filter 15 made of glass, for example, is provided to allow the reaction liquid and the like to pass through. In addition, the discharge port 13 is located near the filter 15.
A stopper 16 made of, for example, a stainless wire mesh is provided on the side, and a plate valve 17 made of, for example, silicone rubber is arranged between the filter 15 and the stopper 16. The plate valve 17 is separated from the filter 15 as shown in FIG.
As shown in FIG. 2, the plate valve 17 is brought into close contact with the filter 15 to prevent reaction liquid and the like from passing through the filter 15. Note that it is preferable that the thickness of the filter 15 be made as thin as possible in terms of strength.

第6図A〜Iは第4図に示した反応容器11を
用いる本発明の免疫分析法の一例の順次の工程を
説明するための線図であり、反応容器11は模式
的に示してある。本例では反応容器11の排出口
13を二方弁21を介して空気中に開放すると共
に、二方弁22、ポンプ23および二方弁24を
介して空気中に開放する。先ず、第6図Aにおい
て二方弁21および二方弁22を閉、二方弁24
を開としてポンプ23を吸引作動させて空気を吸
引した後、二方弁22を開、二方弁24を閉とし
てポンプ23を排出作動させて吸引した空気を排
出口13から反応容器11内に供給し、これによ
り板弁17を第5図Bに示すようにフイルタ15
を密着させて反応容器11内の通路14を閉塞し
た状態(以下この状態を「板弁17の閉」と称す
る)、サンプルカツプ25に収容されたサンプル
26をポンプ27およびサンプルノズル28を介
して注入口12から反応容器11内に分注すると
共に、試薬タンク29に収容された測定対象の抗
原(抗体)と特異的に反応する抗体(抗原)を固
相化した粒子を含む第1試薬30をポンプ31お
よび分注ノズル32を介して注入口12から反応
容器11内に分注して混合液33を得、サンプル
26中の抗原(抗体)と固相化した抗体(抗原)
との抗原−抗体反応を室温または恒温槽内で一定
時間行なわせる。
6A to 6I are diagrams for explaining the sequential steps of an example of the immunoassay method of the present invention using the reaction container 11 shown in FIG. 4, and the reaction container 11 is shown schematically. . In this example, the outlet 13 of the reaction vessel 11 is opened to the air via the two-way valve 21, and is also opened to the air via the two-way valve 22, the pump 23, and the two-way valve 24. First, in FIG. 6A, the two-way valve 21 and the two-way valve 22 are closed, and the two-way valve 24 is closed.
After opening the pump 23 and sucking air, the two-way valve 22 is opened and the two-way valve 24 is closed to discharge the pump 23 and the sucked air is drawn into the reaction vessel 11 from the discharge port 13. This causes the plate valve 17 to pass through the filter 15 as shown in FIG. 5B.
The sample 26 contained in the sample cup 25 is passed through the pump 27 and the sample nozzle 28 while the passage 14 in the reaction vessel 11 is closed (hereinafter this state is referred to as "closing the plate valve 17"). A first reagent 30 containing immobilized particles of an antibody (antigen) that specifically reacts with the antigen (antigen) to be measured stored in the reagent tank 29 and dispensed into the reaction container 11 from the injection port 12 is dispensed from the injection port 12 into the reaction container 11 via the pump 31 and the dispensing nozzle 32 to obtain a mixed solution 33, which contains the antigen (antigen) in the sample 26 and the immobilized antibody (antigen).
Allow the antigen-antibody reaction to occur at room temperature or in a thermostatic bath for a certain period of time.

第1試薬30は、本例では抗体(抗原)の固相
担体粒子として平均直径100μm、比重1.03〜1.05
の球状ナイロン粒子を用い、これを1NHCl溶液
で60℃、3時間加水分解した後純水で洗浄し、次
に1%グルタルアルデヒド中で24℃、1時間反応
させた後0.25Mリン酸ナトリウム緩衝液(PH7.5)
で洗浄し、その後1.0mg/mlの割合で測定対象の
抗原(抗体)と特異的に反応する抗体(抗原)を
加えた0.25Mリン酸ナトリウム緩衝液中で4℃、
24時間反応させて抗体(抗原)を固相化し、次に
その反応液を除去して0.25Mリン酸ナトリウム緩
衝液で洗浄した後0.1MNaCl、1mMMgCl2、0.1
%牛血清アルブミン、0.1%NaN3を含む0.01Mリ
ン酸ナトリウム緩衝液中に浮遊させて構成する。
この懸濁性の粒子からなる第1試薬30は4℃で
保存する。
In this example, the first reagent 30 is a solid phase carrier particle of an antibody (antigen) with an average diameter of 100 μm and a specific gravity of 1.03 to 1.05.
Using spherical nylon particles, the particles were hydrolyzed in 1NHCl solution at 60°C for 3 hours, washed with pure water, reacted in 1% glutaraldehyde at 24°C for 1 hour, and then treated with 0.25M sodium phosphate buffer. Liquid (PH7.5)
After washing at 4°C in a 0.25M sodium phosphate buffer containing an antibody (antigen) that specifically reacts with the antigen (antibody) to be measured at a rate of 1.0mg/ml.
The antibody (antigen) was immobilized by reaction for 24 hours, and then the reaction solution was removed and washed with 0.25M sodium phosphate buffer.
% bovine serum albumin, suspended in 0.01 M sodium phosphate buffer containing 0.1% NaN3 .
The first reagent 30 made of suspended particles is stored at 4°C.

このように、固相担体粒子として、平均直径
100μm、比重1.03〜1.05の懸濁性の球状ナイロン
粒子を用いれば、抗原−抗体反応の場である混合
液と、固相担体表面との界面を大きくとることが
できると共に、これを混合液中に均一に浮遊させ
ることができ、したがつて均一な反応系を得るこ
とができる。
In this way, as solid phase carrier particles, the average diameter
By using suspended spherical nylon particles with a diameter of 100 μm and a specific gravity of 1.03 to 1.05, it is possible to create a large interface between the mixed liquid, which is the site of the antigen-antibody reaction, and the surface of the solid support. can be suspended uniformly in the water, and therefore a homogeneous reaction system can be obtained.

次に、第6図Bにおいて、二方弁22が開、二
方弁24が閉の状態下でポンプ23を吸引作動さ
せ、これにより板弁17を開いて反応容器11内
の混合液33をフイルタ15を通してナイロン粒
子と分離して吸引した後、二方弁21を開として
ポンプ23を排出作動させて吸引した混合液を排
出する。
Next, in FIG. 6B, the pump 23 is operated for suction with the two-way valve 22 open and the two-way valve 24 closed, thereby opening the plate valve 17 and draining the mixed liquid 33 in the reaction vessel 11. After separating it from the nylon particles and sucking it through the filter 15, the two-way valve 21 is opened and the pump 23 is operated to discharge the sucked liquid mixture.

その後、第6図Cにおいて、板弁17が閉とな
るように二方弁21,22,24およびポンプ2
3を作動させた状態で、洗浄液タンク34内に収
容された洗浄液35をポンプ36および分注ノズ
ル37を介して注入口12から反応容器11内に
分注してから、第6図Bにおいて説明したように
二方弁21,22,24およびポンプ23を作動
させて板弁17を開として分注した洗浄液を排出
し、これによりフイルタ15およびナイロン粒子
を洗浄する。この洗浄工程は1回または複数回行
なう。
Thereafter, in FIG. 6C, the two-way valves 21, 22, 24 and the pump 2 are closed so that the plate valve 17 is closed.
3 is activated, the cleaning liquid 35 contained in the cleaning liquid tank 34 is dispensed from the injection port 12 into the reaction vessel 11 via the pump 36 and the dispensing nozzle 37, and then the process is explained with reference to FIG. 6B. As described above, the two-way valves 21, 22, 24 and the pump 23 are operated to open the plate valve 17 to discharge the dispensed cleaning liquid, thereby cleaning the filter 15 and the nylon particles. This washing step is performed once or multiple times.

次に、第6図Dにおいて、板弁17を開として
試薬タンク38に収容された測定対象の抗原(抗
体)に対する抵抗(抗原)に酵素標識した第2試
薬39を、ポンプ40および分注ノズル41を介
して注入口12から反応容器11内に分注して、
室温または恒温槽内で一定時間抗原−抗体反応を
行なわせ、これにより酵素標識抗体(抗原)−測
定抗原(抗体)−固相化抗体(抗原)を結合させ
る。この第2試薬39の標識酵素としては、例え
ばマレートデヒドロゲナーゼ、グルコース・6・
リン酸脱水素酵素、グルコース酸化酵素、ホース
ラデイツシユパーオキシダーゼ、アセチルコリン
エステラーゼ、アルカリホスフアターゼ、ペルオ
キシダーゼ、コリコアミラーゼ、リゾチーム、β
−D・ガラクトシダーゼ等の高い活性を有し、使
用される基質が比較的安価でかつ安定な酵素を使
用することができる。
Next, in FIG. 6D, the plate valve 17 is opened and the second reagent 39 containing an enzyme label in the resistance (antigen) against the antigen (antibody) to be measured stored in the reagent tank 38 is poured into the pump 40 and the dispensing nozzle. 41 into the reaction vessel 11 from the injection port 12,
The antigen-antibody reaction is carried out for a certain period of time at room temperature or in a thermostatic bath, thereby binding the enzyme-labeled antibody (antigen), the antigen to be measured (antibody), and the immobilized antibody (antigen). Examples of the labeling enzyme for this second reagent 39 include malate dehydrogenase, glucose 6.
Phosphate dehydrogenase, glucose oxidase, horseradish peroxidase, acetylcholinesterase, alkaline phosphatase, peroxidase, colicoamylase, lysozyme, β
An enzyme having high activity such as -D.galactosidase, whose substrate is relatively inexpensive, and is stable can be used.

上記の抗原−抗体反応後は、第6図BおよびC
において説明した操作を行なつてフイルタ15お
よびナイロン粒子を洗浄液で洗浄し、その後第6
図Eに示すように、板弁17を閉として試薬タン
ク42に収容された標識酵素に対する基質溶液で
ある第3試薬43をポンプ44および分注ノズル
45を介して注入口12から反応容器11内に分
注し、室温または恒温槽内で一定時間酵素−基質
反応を行なわせ、これにより発色物質を生成す
る。この第3試薬43の基質溶液は、第2試薬3
9の標識酵素が、アルカリホスフアターゼのとき
はフエニルリン酸・2・ナトリウムおよび4−ア
ミノアンチピリン、ベルオキシダーゼのときは0
−フエニレンジアミン、β−D−ガラクトシダー
ゼのときは0−ニトロフエノール・β−D−ガラ
クトシド、グルコース酸化酵素のときはβ−D−
グルコース等を用いることができる。
After the above antigen-antibody reaction, Fig. 6B and C
The filter 15 and the nylon particles are washed with a cleaning liquid by performing the operation described in the sixth section.
As shown in FIG. The enzyme-substrate reaction is carried out for a certain period of time at room temperature or in a constant temperature bath, thereby producing a coloring substance. This third reagent 43 substrate solution is the second reagent 3
When the labeling enzyme in 9 is alkaline phosphatase, it is phenyl phosphate 2-sodium and 4-aminoantipyrine, and when it is peroxidase, it is 0.
-phenylenediamine, 0-nitrophenol/β-D-galactoside for β-D-galactosidase, β-D- for glucose oxidase
Glucose etc. can be used.

一定時間の酵素−基質反応を行なわせた後は、
第6図Fに示すように、板弁17を閉じた状態で
反応停止液タンク46内に収容した反応停止液4
7をポンプ48および分注ノズル49を介して注
入口12から反応容器11内に分注し、これによ
り酵素−基質反応を停止させて発色物質の増加を
停止させた反応液50を得る。酵素−基質反応は
PHを変化させることで容易にその反応を停止させ
ることができるから、反応停止液47としては
HCl、H2SO4溶液等を用いることができる。
After carrying out the enzyme-substrate reaction for a certain period of time,
As shown in FIG. 6F, the reaction stop solution 4 is stored in the reaction stop solution tank 46 with the plate valve 17 closed.
7 is dispensed into the reaction vessel 11 from the injection port 12 via the pump 48 and the dispensing nozzle 49, thereby obtaining a reaction liquid 50 in which the enzyme-substrate reaction is stopped and the increase in the coloring substance is stopped. Enzyme-substrate reaction
Since the reaction can be easily stopped by changing the pH, the reaction stop solution 47 is
HCl, H 2 SO 4 solutions, etc. can be used.

その後、第6図Gにおいて、二方弁22を開、
二方弁24を閉としてポンプ23を吸引作動さ
せ、これにより板弁17を開いて反応容器11内
の反応液50をフイルタ15を通してナイロン粒
子と分離して吸引した後、二方弁21を開として
ポンプ23を排出作動させて吸引した反応液50
を比色セル51内に収容する。
After that, in FIG. 6G, the two-way valve 22 is opened,
The two-way valve 24 is closed, the pump 23 is operated for suction, the plate valve 17 is opened, and the reaction liquid 50 in the reaction vessel 11 is separated from the nylon particles through the filter 15 and sucked, and then the two-way valve 21 is opened. As a result, the pump 23 is discharged and the reaction liquid 50 is sucked.
is housed in the colorimetric cell 51.

次に、第6図Hに示すように、比色セル51内
に収容された反応液50の吸光度を分光光度計5
2で測定し、この測定値に基いて、既知濃度のサ
ンプルから求めた吸光度と測定抗原(抗体)との
検量線からサンプル22中の測定抗原(抗体)を
定量する。また、反応容器11は第6図Bおよび
Cにおいて説明した操作を行なつて洗浄液で洗浄
した後、第6図Iに示すように反応容器11内に
残存する洗浄液およびナイロン粒子を吸引ノズル
53および吸引ポンプ54を介して排出して次の
サンプルの分析に備える。
Next, as shown in FIG. 6H, the absorbance of the reaction solution 50 contained in the colorimetric cell 51 is measured using a spectrophotometer
2, and based on this measured value, the antigen to be measured (antibody) in the sample 22 is quantified from a calibration curve between the absorbance determined from the sample of known concentration and the antigen to be measured (antibody). After the reaction vessel 11 is cleaned with a cleaning liquid by performing the operations explained in FIGS. 6B and 6C, the cleaning liquid and nylon particles remaining in the reaction vessel 11 are removed by suction nozzle 53 and as shown in FIG. 6I. It is evacuated via suction pump 54 to prepare for the next sample analysis.

上述した吸引ノズル53は、例えば第7図Aお
よびBに正面図および底面図をそれぞれ示すよう
に、ノズル先端の端面にナイロン粒子が通過し得
る切欠き55を形成したものを用いる。このよう
な吸引ノズル53を用いれば、その先端をフイル
タ15を接触させて吸引することにより、ナイロ
ン粒子および残留する洗浄液を効果的に吸引除去
することができる。
The above-mentioned suction nozzle 53 has a notch 55 formed in the end face of the nozzle tip through which nylon particles can pass, as shown in the front and bottom views of FIGS. 7A and 7B, respectively. If such a suction nozzle 53 is used, the nylon particles and the remaining cleaning liquid can be effectively removed by suction by bringing the tip of the suction nozzle into contact with the filter 15 for suction.

第8図は本発明の免疫分析法に用いられる反応
容器の他の例の構成を示す断面図である。この反
応容器61はフイルタ15の注入口12側の面を
凹面状に加工した点のみが第4図に示すものと異
なるものである。この反応容器61を用いれば第
6図Iに示す吸引工程において、ナイロン粒子は
フイルタ15の凹面の中心部に集まるから、これ
を容易かつ確実に吸引除去することができる。
FIG. 8 is a sectional view showing the structure of another example of a reaction container used in the immunoassay method of the present invention. This reaction vessel 61 differs from the one shown in FIG. 4 only in that the surface of the filter 15 on the injection port 12 side is processed into a concave shape. If this reaction vessel 61 is used, the nylon particles will gather at the center of the concave surface of the filter 15 in the suction step shown in FIG. 6I, and therefore can be easily and reliably removed by suction.

なお、本発明は上述した例にのみ限定されるも
のではなく、幾多の変形または変更が可能であ
る。例えば、上述した反応容器11,61におい
てはいずれも板弁17およびストツパ16を設け
たが、フイルタ15の孔径、反応容器の内径、反
応(混合)液等の量を適切に設定すれば、これら
板弁17およびストツパ16を用いることなく排
出口13側からの空気圧により反応(混合)液等
を反応容器内に有効に保持することができる。ま
た、上述した例では測定対象の抗原(抗体)に特
異的に反応する抗体(抗原)の固相担体粒子とし
てナイロン粒子を用いたが、セルロース、ABS、
ポリスチレン、スチレン−ブタジエン樹脂等の粒
子、あるいは鉄粉のような比重の大きい芯物質の
表面を比重の小さい膜で被覆して比重をコントロ
ールしたマイクロカプセル等を用いることもでき
る。更に、上述した分析法においては、第6図F
において反応停止液47を分注して酵素−基質反
応を停止させたが、一定時間の酵素−基質反応後
その反応液50をフイルタ15を通して比色セル
51に吐出させるようにすれば、ナイロン粒子に
捕捉されている標識酵素はフイルタ15によつて
ナイロン粒子と基質液とに分離され、これにより
基質は酵素作用を受けなくなつて反応が停止する
から、第6図Fの工程を除くことができる。更に
また、上述した例では反応液50を比色セル51
に移して測光したが、反応容器11を通して直接
測光することもできる。
Note that the present invention is not limited to the above-mentioned example, and can be modified or changed in many ways. For example, although the plate valve 17 and the stopper 16 are provided in both the reaction vessels 11 and 61 described above, if the hole diameter of the filter 15, the inner diameter of the reaction vessel, the amount of reaction (mixed) liquid, etc. are appropriately set, these can be used. The reaction (mixture) liquid, etc. can be effectively held in the reaction vessel by air pressure from the outlet 13 side without using the plate valve 17 and the stopper 16. In addition, in the above example, nylon particles were used as solid phase carrier particles for antibodies (antigens) that specifically react with the antigen (antigen) to be measured, but cellulose, ABS,
It is also possible to use particles of polystyrene, styrene-butadiene resin, or the like, or microcapsules whose specific gravity is controlled by coating the surface of a core material with a high specific gravity such as iron powder with a film with a low specific gravity. Furthermore, in the analysis method described above, Fig. 6F
In the above, the enzyme-substrate reaction was stopped by dispensing the reaction stop solution 47, but if the reaction solution 50 is discharged into the colorimetric cell 51 through the filter 15 after the enzyme-substrate reaction for a certain period of time, the nylon particles The labeled enzyme captured by the filter 15 is separated into the nylon particles and the substrate liquid, and the substrate is no longer subjected to enzyme action and the reaction is stopped, so the step in Figure 6F can be omitted. can. Furthermore, in the above example, the reaction solution 50 is transferred to the colorimetric cell 51.
Although photometry was carried out by transferring the light to the reaction vessel 11, direct photometry can also be carried out through the reaction vessel 11.

以上の実施例によれば、測定対象の抗原(抗
体)と特異的に反応する抗体(抗原)を固相化す
る固相担体粒子として、混合液と固相担体表面と
の界面が大きく、かつ均一に浮遊し得るようにそ
の比重、形状、大きさをコントロールしたものを
用いたから、均一な反応系を得ることができる。
According to the above embodiments, the solid phase carrier particles that immobilize the antibody (antigen) that specifically reacts with the antigen (antibody) to be measured have a large interface between the liquid mixture and the surface of the solid phase carrier, and Since the specific gravity, shape, and size of the particles were controlled so that they could float uniformly, a uniform reaction system could be obtained.

以上詳述したように、第1の発明によれば、懸
濁性の粒子を用いて反応およびフイルタによる粒
子の分離を3回繰り返し、フイルタを通過した液
体中に含まれる特定物質を比色測定するようにし
たから、粒子の存在による比色測定への悪影響が
なく、サンプル中の測定対象の抗原または抗体の
定量を正確に行うことができる。
As detailed above, according to the first invention, the reaction using suspended particles and the separation of the particles by a filter are repeated three times, and a specific substance contained in the liquid that has passed through the filter is measured colorimetrically. As a result, the presence of particles does not have an adverse effect on the colorimetric measurement, and the antigen or antibody to be measured in the sample can be accurately quantified.

また、第2の発明によれば、上方に設けられた
注入口と、該注入口の底に配置された懸濁性の粒
子を通過させないフイルタとを有する反応容器を
用いて分析を行うようにしたので、遠心分離を行
うことなく粒子を分離することができ、したがつ
て分析操作が簡単になり、自動化が容易にでき
る。
Further, according to the second invention, analysis is performed using a reaction vessel having an injection port provided above and a filter disposed at the bottom of the injection port that does not allow suspended particles to pass through. Therefore, the particles can be separated without centrifugation, thus simplifying the analytical operation and facilitating automation.

【図面の簡単な説明】[Brief explanation of the drawing]

第1図A〜Dはラジオイムノアツセイによる順
次の工程を説明するための線図、第2図は第1図
に示すラジオイムノアツセイによる計数値の一例
を示す線図、第3図A〜Fはエンザイムイムノア
ツセイによる従来の順次の工程を説明するための
線図、第4図は本発明の免疫分析法に用いられる
反応容器の一例の構成を示す断面図、第5図Aお
よびBは第4図に示す反応容器の板弁の動作を説
明するための線図、第6図A〜Iは本発明の免疫
分析法の一例の順次の工程を説明するための線
図、第7図AおよびBは第6図Iに示す吸引ノズ
ルの一例の構成を示す正面図および底面図、第8
図は本発明の免疫分析法に用いられる反応容器の
他の例の構成を示す断面図である。 11,61……反応容器、12……注入口、1
3……排出口、14……通路、15……フイル
タ、16……ストツパ、17……板弁、21,2
2,24……二方弁、23,27,31,36,
40,44,48,54……ポンプ、25……サ
ンプルカツプ、26……サンプル、28……サン
プルノズル、29,38,42……試薬タンク、
30……第1試薬、32,37,41,45,4
9……分注ノズル、33……混合液、34……洗
浄液タンク、35……洗浄液、39……第2試
薬、43……第3試薬、46……反応停止液タン
ク、47……反応停止液、50……反応液、51
……比色セル、52……分光光度計、53……吸
引ノズル、55……切欠き。
Figures 1 A to D are diagrams for explaining the sequential steps by radioimmunoassay, Figure 2 is a diagram showing an example of counts by radioimmunoassay shown in Figure 1, and Figure 3A. -F are diagrams for explaining the conventional sequential steps of enzyme immunoassay, FIG. 4 is a sectional view showing the configuration of an example of a reaction vessel used in the immunoassay of the present invention, and FIGS. B is a diagram for explaining the operation of the plate valve of the reaction vessel shown in FIG. 4, FIGS. 7A and 7B are a front view and a bottom view showing the configuration of an example of the suction nozzle shown in FIG.
The figure is a sectional view showing the structure of another example of the reaction container used in the immunoassay method of the present invention. 11, 61...Reaction container, 12...Inlet, 1
3...Discharge port, 14...Passway, 15...Filter, 16...Stopper, 17...Plate valve, 21,2
2, 24...Two-way valve, 23, 27, 31, 36,
40, 44, 48, 54... pump, 25... sample cup, 26... sample, 28... sample nozzle, 29, 38, 42... reagent tank,
30...First reagent, 32, 37, 41, 45, 4
9...Dispensing nozzle, 33...Mixed liquid, 34...Washing liquid tank, 35...Washing liquid, 39...Second reagent, 43...Third reagent, 46...Reaction stop liquid tank, 47...Reaction Stop solution, 50...Reaction solution, 51
... Colorimetric cell, 52 ... Spectrophotometer, 53 ... Suction nozzle, 55 ... Notch.

Claims (1)

【特許請求の範囲】 1 測定対象の抗原または抗体と特異的に反応す
る抗体または抗原を固相化した懸濁性の粒子を含
む第1試薬とサンプルとを混合して抗原−抗体反
応を行わせた後、その反応液を前記粒子を通過さ
せないフイルタに通して、前記粒子をフイルタで
分離する工程と、 この分離された粒子と、前記測定対象の抗原ま
たは抗体と特異的に反応する抗体または抗原を結
合した標識物質を含む第2試薬とを反応させた
後、その反応液を前記フイルタに通して、前記粒
子をフイルタで分離する工程と、 この分離された粒子と、前記標識物質の存在下
で特定の物質を生成し得る第3試薬とを反応させ
た後、その反応液を前記フイルタに通して該フイ
ルタを通過した液体中に含まれる前記特定の物質
を比色測定して前記サンプル中の測定対象の抗原
または抗体の定量を行う工程とを有することを特
徴とする免疫分析法。 2 前記第2試薬の標識物質として標識酵素を用
い、前記第3試薬として前記標識酵素に対する基
質溶液を用いることを特徴とする特許請求の範囲
第1項記載の免疫分析法。 3 測定対象の抗原または抗体と特異的に反応す
る抗体または抗原を固相化した懸濁性の粒子とサ
ンプルとを混合して抗原−抗体反応を行わせた
後、その反応液を、上方に設けられた注入口と、
該注入口の底に配置された前記粒子を通過させな
いフイルタとを有する反応容器に通して、前記粒
子をフイルタで分離する工程と、 前記測定対象の抗原または抗体と特異的に反応
する抗体または抗原を結合した標識酵素を、前記
注入口から前記反応容器中に注入して前記粒子と
反応させた後、該粒子をフイルタで分離する工程
と、 前記標識酵素の存在下で特定の物質を生成し得
る基質溶液を、前記注入口から前記反応容器中に
注入して前記粒子に結合した前記標識酵素と反応
させ、これにより発生する発色物質を測定する工
程とを有することを特徴とする免疫分析法。
[Claims] 1. Performing an antigen-antibody reaction by mixing a sample with a first reagent containing suspended particles immobilized with an antibody or antigen that specifically reacts with the antigen or antibody to be measured. After that, the reaction solution is passed through a filter that does not allow the particles to pass through, and the particles are separated by the filter; a step of reacting with a second reagent containing a labeling substance bound to an antigen, passing the reaction solution through the filter to separate the particles with the filter; and the presence of the separated particles and the labeling substance. After reacting with a third reagent capable of producing a specific substance, the reaction solution is passed through the filter, and the specific substance contained in the liquid that has passed through the filter is measured colorimetrically to obtain the sample. An immunoassay method characterized by comprising the step of quantifying an antigen or antibody to be measured in the sample. 2. The immunoassay method according to claim 1, wherein a labeled enzyme is used as the labeling substance of the second reagent, and a substrate solution for the labeled enzyme is used as the third reagent. 3. After the sample is mixed with the sample and suspended particles immobilized with an antibody or antigen that specifically reacts with the antigen or antibody to be measured, an antigen-antibody reaction is performed, and then the reaction solution is poured upward. an injection port provided;
separating the particles with a filter by passing the particles through a reaction container having a filter placed at the bottom of the injection port that does not allow the particles to pass; and an antibody or antigen that specifically reacts with the antigen or antibody to be measured. A step of injecting a labeled enzyme bound to the labeled enzyme into the reaction container from the injection port to react with the particles, and then separating the particles with a filter, and producing a specific substance in the presence of the labeled enzyme. An immunoassay method comprising the step of injecting the obtained substrate solution into the reaction container from the injection port to react with the labeled enzyme bound to the particles, and measuring the colored substance generated thereby. .
JP10761582A 1982-06-24 1982-06-24 Analysis method of immune and reagent and reaction container used therein Granted JPS58225354A (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP10761582A JPS58225354A (en) 1982-06-24 1982-06-24 Analysis method of immune and reagent and reaction container used therein

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP10761582A JPS58225354A (en) 1982-06-24 1982-06-24 Analysis method of immune and reagent and reaction container used therein

Publications (2)

Publication Number Publication Date
JPS58225354A JPS58225354A (en) 1983-12-27
JPH0322587B2 true JPH0322587B2 (en) 1991-03-27

Family

ID=14463658

Family Applications (1)

Application Number Title Priority Date Filing Date
JP10761582A Granted JPS58225354A (en) 1982-06-24 1982-06-24 Analysis method of immune and reagent and reaction container used therein

Country Status (1)

Country Link
JP (1) JPS58225354A (en)

Citations (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS51123819A (en) * 1975-04-07 1976-10-28 Summa Corp Fixed immune adsorbing agent
JPS54154397A (en) * 1978-03-31 1979-12-05 Union Carbide Corp Reaction and separation device for automatic soliddphase immunity measurement
JPS5673347A (en) * 1979-10-26 1981-06-18 Guigan Jean Analyser

Patent Citations (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS51123819A (en) * 1975-04-07 1976-10-28 Summa Corp Fixed immune adsorbing agent
JPS54154397A (en) * 1978-03-31 1979-12-05 Union Carbide Corp Reaction and separation device for automatic soliddphase immunity measurement
JPS5673347A (en) * 1979-10-26 1981-06-18 Guigan Jean Analyser

Also Published As

Publication number Publication date
JPS58225354A (en) 1983-12-27

Similar Documents

Publication Publication Date Title
US4424279A (en) Rapid plunger immunoassay method and apparatus
US4225575A (en) Method and apparatus for performing in vitro clinical diagnostic tests using a solid phase assay system
CA1141660A (en) Immunoaassay with the same component on receptacle and insert
AU633485B2 (en) Device and process for high-speed qualitative and quantitative determination of the presence of a reactive ligand in a fluid
US4948726A (en) Enzyme immunoassay based on membrane separation of antigen-antibody complexes
US4090850A (en) Apparatus for use in radioimmunoassays
EP1417489B1 (en) Rapid diagnostic device and assay
CA1225586A (en) Method of performing an immuno-assay, article for use therein and method for making such article
US4632901A (en) Method and apparatus for immunoassays
AU603290B2 (en) Reaction vessel for performing sequential analytical assays
AU639703B2 (en) Automated method and device for performing solid-phase diagnostic assay
EP0480497B1 (en) Device for performing a rapid single manual assay
JPH01299464A (en) Solid phase analyzer
CA1109791A (en) Solid phase assay with one component immobilized on solid insert of high surface to volume ratio
US5427739A (en) Apparatus for performing immunoassays
US5137691A (en) Antibody testing system with removable air gap
EP0263978A1 (en) Method and apparatus for assaying whole blood
CA1084394A (en) Extraction-free cortisol assay
JPH0322587B2 (en)
JPS6224745B2 (en)
AU556193B2 (en) Rapid plunger immunoassay method and apparatus
JPH05346428A (en) Kit for rapidly counting granulocyte and method using the kit
NO860937L (en) DIAGNOSTICS FOR ASSAY PROVISIONS.
CA1221627A (en) Rapid plunger immunoassay method and apparatus
JPS58225355A (en) Analysis method of immune and reaction container used therein