JPH03221886A - Method for measuring core loss - Google Patents

Method for measuring core loss

Info

Publication number
JPH03221886A
JPH03221886A JP1723890A JP1723890A JPH03221886A JP H03221886 A JPH03221886 A JP H03221886A JP 1723890 A JP1723890 A JP 1723890A JP 1723890 A JP1723890 A JP 1723890A JP H03221886 A JPH03221886 A JP H03221886A
Authority
JP
Japan
Prior art keywords
voltage
coil
winding
iron loss
magnetic core
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Pending
Application number
JP1723890A
Other languages
Japanese (ja)
Inventor
Toru Fujiwara
徹 藤原
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Panasonic Electric Works Co Ltd
Original Assignee
Matsushita Electric Works Ltd
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Matsushita Electric Works Ltd filed Critical Matsushita Electric Works Ltd
Priority to JP1723890A priority Critical patent/JPH03221886A/en
Publication of JPH03221886A publication Critical patent/JPH03221886A/en
Pending legal-status Critical Current

Links

Landscapes

  • Measuring Magnetic Variables (AREA)

Abstract

PURPOSE:To accurately measure the core loss of a magnetic material even in a low power factor state by winding up the windings of a magnetic core coil and an air-core coil in the same direction on the primary side, winding respective coils in the mutually reverse directions on the secondary side and then connecting respective coils in series. CONSTITUTION:On the primary side for supplying power by using the air-core coil 7 in addition to the magnetic core coil 2, the primary windings (a), (c) of the coils 2, 7 are wound up in the same direction and connected to each other in series. On the secondary side for detecting voltage, the secondary windings (b), (d) of the coils 2, 7 are wound up respectively in the reverse directions and then connected to each other in series. Thereby, the absolute value of voltage E2 generated on the winding (b) is reversed to voltage E2' generated on the winding (d) and voltage E3 obtained by synthesizing the voltages E2, E2' is remarkably reduced and the phase of the E3 is almost the same as that of a primary current I1. Since I1.E3=E1.E2 is formed, the core loss can be accurately found out in a high power factor state by measuring I1.E3 instead of the measurement of I1.E2.

Description

【発明の詳細な説明】 [産業上の利用分野] 本発明は、鉄損の測定方法に関するものであり、特に低
透磁率の磁心材の鉄損測定に適するものである。
DETAILED DESCRIPTION OF THE INVENTION [Industrial Application Field] The present invention relates to a method for measuring iron loss, and is particularly suitable for measuring iron loss of a magnetic core material with low magnetic permeability.

[従来の技術] 最近、磁気記録装置やスイッチング電源装置の需要が増
加しているが、これらの製品の中でトランスやコイル等
の部品は、全体に占めるコストも高く、重要部品となっ
ている。小型、低損失のトランス、コイルを設計するた
めには、磁心材の鉄損特性を把握する必要がある。
[Prior art] Recently, demand for magnetic recording devices and switching power supplies has been increasing, but components such as transformers and coils account for high costs and have become important components in these products. . In order to design compact, low-loss transformers and coils, it is necessary to understand the iron loss characteristics of the magnetic core material.

従来の鉄損測定方法を第4図に示す。図中、1は高周波
電圧の発振器であり、その発振出力を増幅する増幅器を
含む。この発振器1により、磁心付きコイル2に巻かれ
ている1次巻線aに通電し、磁心付きコイル2の磁心を
励磁する。3は電流検出のための抵抗である。この抵抗
3に発生する電圧と、2次巻線すに発生する電圧が、波
形記憶装W4に記憶されて、コンピュータ5によって演
算処理される。
Figure 4 shows the conventional iron loss measurement method. In the figure, 1 is a high-frequency voltage oscillator, and includes an amplifier for amplifying its oscillation output. The oscillator 1 energizes the primary winding a wound around the cored coil 2 to excite the magnetic core of the cored coil 2 . 3 is a resistor for current detection. The voltage generated across the resistor 3 and the voltage generated across the secondary winding are stored in the waveform storage W4 and processed by the computer 5.

ここで、磁心付きコイル2の磁心の単位体積当たりの鉄
損W c (単位W/m’)は、次式て表される。
Here, the iron loss W c (unit: W/m') per unit volume of the magnetic core of the cored coil 2 is expressed by the following formula.

上式において、N1は1次巻線aの巻数、N2は2次巻
線すの巻数、■は磁心の体積、11は1次巻線aに流れ
る電流、Elは抵抗3の両端電圧、E2は2次巻線すの
電圧、Rは抵抗3の抵抗値である。
In the above equation, N1 is the number of turns in the primary winding a, N2 is the number of turns in the secondary winding, ■ is the volume of the magnetic core, 11 is the current flowing in the primary winding a, El is the voltage across resistor 3, and E2 is the voltage of the secondary winding, and R is the resistance value of the resistor 3.

また、Tは発振器1による発振波形の周期であり、発振
周波数をfとすると、T=1/fの関係がある。
Further, T is the period of the oscillation waveform by the oscillator 1, and when the oscillation frequency is f, there is a relationship of T=1/f.

■式の積分値はコンピュータ5で演算されることが一般
的であるが、波形記憶装置4とコンピュータ5を用いる
代わりに、乗算型電圧計を用いてアナログ的に電圧の積
分を行う測定方法もある。また、1次電流■1を検出す
る方法としては、抵抗3を用いる方法以外に、電流プロ
ーブを用いる方法もある。
■The integral value of the equation is generally calculated by the computer 5, but instead of using the waveform storage device 4 and the computer 5, there is also a measurement method in which a multiplier voltmeter is used to integrate the voltage in an analog manner. be. Further, as a method for detecting the primary current (1), in addition to the method using the resistor 3, there is also a method using a current probe.

また、第5図に示すように、2次巻線1〕の電圧E2を
検出せずに、1次巻線aの電圧E、を代わりに検出する
方法も提案されている。この方法では2次巻線すを設け
る必要が無いので、前述の方法と比べると簡略ではある
が、1次巻線aによる銅損も合わせた損失を測定してし
まう。さらに、発振器]の発振周波数が高くなると、1
次巻線aに流れる電流りと1次巻線aの電圧E1との間
に位相差を生しることがあるので、これをコンピュータ
を使って補正することも提案されている(信学技報PE
86−27参照)。
Furthermore, as shown in FIG. 5, a method has also been proposed in which the voltage E of the primary winding a is detected instead of the voltage E2 of the secondary winding 1. Since this method does not require the provision of a secondary winding, it is simpler than the above-mentioned method, but the loss including the copper loss due to the primary winding a is measured. Furthermore, as the oscillation frequency of the oscillator increases, 1
Since a phase difference may occur between the current flowing through the secondary winding a and the voltage E1 of the primary winding a, it has also been proposed to correct this using a computer (IEICE Information PE
86-27).

[発明が解決しようとする課題] 上述の鉄損測定方法は広く使われており、測定装置も市
販されている。フェライトのような高透磁率材料の鉄損
を測定する場合には、上述の鉄損測定方法の測定精度は
比較的高く、測定値の1言頼性は高い。しかしながら、
ギャップ付きのフェライト磁心や一部のダスI−コアの
ような低透磁率材料の鉄損を測定する場合には、力率の
低い状態ては、測定精度が劣化することが知られている
。これは、II、E2の大きさ(例えば実効値)に比I
&で、(1/T)Sご11E2dtの値が著しく小さく
なるためであり5測定時の条件や積分の計算精度によっ
て測定値が変動することがあった。具体的に言えば、抵
抗3の抵抗値、1次巻線a及び2次巻線)〕の巻数Nl
、N2、波形記憶装置4の記憶ビット数などによって、
鉄損の測定値が変動することかあつた。
[Problems to be Solved by the Invention] The above-described iron loss measuring method is widely used, and measuring devices are also commercially available. When measuring the iron loss of a high magnetic permeability material such as ferrite, the measurement accuracy of the above-mentioned iron loss measuring method is relatively high, and the reliability of the measured value is high. however,
When measuring the core loss of low permeability materials such as gapped ferrite cores and some Das I-cores, it is known that measurement accuracy deteriorates under low power factor conditions. This is the ratio of I to the magnitude of II and E2 (for example, effective value).
This is because the value of 11E2dt per (1/T)S becomes extremely small at &, and the measured value may fluctuate depending on the conditions at the time of measurement and the calculation accuracy of the integral. Specifically, the resistance value of the resistor 3, the number of turns Nl of the primary winding a and the secondary winding)
, N2, the number of storage bits of the waveform storage device 4, etc.
The measured value of iron loss sometimes fluctuated.

このような低力率の状態て鉄損を正確に測定する方法と
して、第6図に示すような方法(電気学会マグネティス
研究会資料MAG−88−178参照)が提案されてい
る。この方法では、1次巻線aのインダクタンスと測定
周波数で共振を生しるコンデンサ6を直列的に配置する
ことにより、■、どElの位相をほぼ同じにさせて、測
定時の力率を向上させようとするものである。1次巻線
aのインダクタンスをし、コンデンサ6の容量をCどす
ると、2xf=1/(LC)”という関係が成り立つよ
・うにコンデンサ6の容量C又は発振器1の測定周波数
fを設定する。この方法により、ギャップ付き磁心の鉄
損を正確に測定することが可能どなった。I7かしなが
ら、この方法は、1次巻線方式にしか適用できないため
に、1次巻線aの抵抗による銅損及びコンデンサ6によ
る損失をきわせた損失しか直接に測定できない。このた
めに、単位電流当たりの鉄損の小さい磁心材の測定は困
難になるという欠点があった。
As a method for accurately measuring iron loss under such a low power factor state, a method as shown in FIG. 6 (see IEE of Japan magnetis study group material MAG-88-178) has been proposed. In this method, a capacitor 6 that resonates at the measurement frequency is placed in series with the inductance of the primary winding a to make the phases of El and El almost the same, thereby reducing the power factor during measurement. It is something that we are trying to improve. The capacitance C of the capacitor 6 or the measurement frequency f of the oscillator 1 is set so that the relationship 2xf=1/(LC) is established, where the inductance of the primary winding a is the inductance and the capacitance of the capacitor 6 is C. With this method, it has become possible to accurately measure the iron loss of a gapped core.I7 However, this method can only be applied to the primary winding method, so the resistance of the primary winding a It is possible to directly measure only the loss that excludes the copper loss caused by the capacitor 6 and the loss caused by the capacitor 6. Therefore, there is a drawback that it is difficult to measure magnetic core materials with a small iron loss per unit current.

本発明はこのような点に鑑みてなされたものであり、そ
の目的とするところは、低力率の状態で弓 も磁心利の鉄損を精度良く測定てきる鉄損測定方法を提
供することにある9 [課題を解決するための手段] 本発明による鉄損の測定方法では、第1図に示すように
、磁心付きコイル2の他に空心コイル7を使用し、電力
供給を行う1次側ては、磁心(−1きコイル2の1次巻
線aと空心コイル7の1次巻線Cとは、同方向に巻いた
ものを直列に接続する。また、電圧検出を行う2次側で
は、磁心イ=jきコイル2の2次巻線)Jと空心コイル
7の2次巻線dとは、逆方向に巻いたものを直列に接続
する。1次巻線aとCを逆方向に巻いて、2次巻線1)
とdを同方向に巻いても、同様の結果を得ることができ
る。こうすれば、磁心付きコイル2の2次巻線すに発生
する電圧E2と、空心コイル7の2次巻線dに発生ずる
電圧E2’とは逆方向となり、これらを合成した電圧E
3は、E2よりもその絶対値は著しく小さくなり、さら
にE3のは相は1次電流11とほぼ同相となる。
The present invention has been made in view of the above points, and its purpose is to provide an iron loss measurement method that can accurately measure the iron loss of a bow or magnetic core under a low power factor condition. 9 [Means for Solving the Problems] In the iron loss measuring method according to the present invention, as shown in FIG. 1, an air-core coil 7 is used in addition to the magnetic-core coil 2 to On the side, the primary winding a of the magnetic core (-1 coil 2) and the primary winding C of the air-core coil 7 are wound in the same direction and connected in series. On the other hand, the secondary winding (J) of the coil 2 (with magnetic core i=j) and the secondary winding (d) of the air-core coil 7 are wound in opposite directions and connected in series. Wind the primary windings a and C in opposite directions to create the secondary winding 1)
Similar results can be obtained by winding and d in the same direction. In this way, the voltage E2 generated in the secondary winding of the magnetic core coil 2 and the voltage E2' generated in the secondary winding d of the air-core coil 7 will be in opposite directions, and the voltage E2 that is the sum of these voltages will be
3 has a significantly smaller absolute value than E2, and the phase of E3 is almost in phase with the primary current 11.

ここて、空心コイル7の寸法及び1次巻線Cと2次巻線
dの巻数N、’、N2“は、E2+E2″ができるたけ
小さくなるように設計することが望ましい。
Here, it is desirable that the dimensions of the air-core coil 7 and the number of turns N, ', N2'' of the primary winding C and the secondary winding d be designed so that E2+E2'' is as small as possible.

−例として、空心コイル7の寸法を磁心付きコイル2と
同一とし、1次巻線Cの巻数N、′は磁心付きコイル2
の1次巻線aの巻数N1と等しくし、2次巻線dの巻数
N2′については、磁心付きコイル2の2次巻ill 
13の巻数N2に比透磁率を乗じた巻数とする。つまり
、磁心付きコイル2の比透磁率をμ丁・とすると、N2
′−μrN2とする。このようにすれば、空心コイル7
に励磁される磁場が、磁心付きコイル2と同じとなり、
2次巻線1) 、 dに誘起される電圧E2.E、’が
、磁心付きコイル2と空心コイル7とでほぼ同じどなる
- As an example, assume that the dimensions of the air-core coil 7 are the same as those of the magnetic-core coil 2, and the number of turns N,' of the primary winding C is the same as that of the magnetic-core coil 2.
The number of turns N1 of the primary winding a is equal to N1, and the number of turns N2' of the secondary winding d is equal to the number of turns N1 of the primary winding a of
The number of turns is the number of turns N2 of 13 multiplied by the relative magnetic permeability. In other words, if the relative magnetic permeability of the coil 2 with a magnetic core is μmm, then N2
'-μrN2. In this way, the air core coil 7
The magnetic field excited by is the same as that of coil 2 with magnetic core,
The voltage E2. induced in the secondary winding 1), d. E,' are almost the same for the magnetic cored coil 2 and the air-core coil 7.

なお、第1図では、理解しやすいように、磁心付きコイ
ル2の1次巻線aと2次巻線b、空心コイル7の1次巻
線Cと2次巻線dを分割巻きとしているが、実際の測定
では、漏れ磁束を少なくするために、1次巻線と2次巻
線を全体に均一に巻く必要がある。また、2次巻線側で
磁心付きコイル2と空心コイル7の2次巻線す、dの接
続点Sを、波形記憶装置4に結線しているのは、磁心付
きコイル2の2次電圧E2を時間積分することにより、
磁心付きコイル2に誘起される磁束密度Bを鉄損Wcと
同時に測定するためてあり、鉄損のみを測定する場合は
上記の結線は不必要である。2次巻線す、dの接続点S
を波形記憶装置4に結線しない回路構成でも、磁場(電
流)に対する鉄損の関係を知ることが可能である。
In Fig. 1, for ease of understanding, the primary winding a and secondary winding b of the magnetic core coil 2 and the primary winding C and secondary winding d of the air-core coil 7 are shown as split windings. However, in actual measurements, it is necessary to wind the primary winding and the secondary winding uniformly over the whole in order to reduce leakage magnetic flux. In addition, on the secondary winding side, the connection point S of the secondary windings S and d of the magnetic core coil 2 and the air-core coil 7 is connected to the waveform storage device 4 due to the secondary voltage of the magnetic core coil 2. By integrating E2 over time,
It is provided to measure the magnetic flux density B induced in the cored coil 2 at the same time as the iron loss Wc, and the above-mentioned wiring is unnecessary when measuring only the iron loss. Connection point S of secondary windings S and d
Even with a circuit configuration in which the waveform storage device 4 is not connected to the waveform storage device 4, it is possible to know the relationship between the iron loss and the magnetic field (current).

また、1次巻線方式による測定回路例を第2図に示した
。この回路構成では、2次巻線す、dを省略し、波形記
憶装置4で2次巻線す、clの電圧E2E2”を記憶す
る代わりに、1次巻線a、eの電圧EEl′を記憶する
。1次巻線a、cは逆方向に巻いた状態で直列に接続す
る。ただし、このときは、磁心付きコイル2ど空心コイ
ル7の巻線抵抗による銅損を含んだ損失を測定すること
になる。
Further, an example of a measurement circuit using the primary winding method is shown in FIG. In this circuit configuration, the secondary windings s and d are omitted, and instead of storing the voltage E2E2'' of the secondary windings s and cl in the waveform storage device 4, the voltage EE1' of the primary windings a and e is stored. Memorize. Primary windings a and c are wound in opposite directions and connected in series. However, in this case, measure the loss including the copper loss due to the winding resistance of the magnetic core coil 2 and the air-core coil 7. I will do it.

[作用] 第1図に示す測定回路を用いた場合に、低力率ても磁心
付きコイル2の鉄損が精度良く測定できる理由を、第3
図のムク1−ル図を用いて説明する。
[Function] The reason why the iron loss of the cored coil 2 can be measured accurately even at a low power factor when using the measurement circuit shown in Fig. 1 is explained in the third section.
This will be explained using the square diagram in the figure.

第1図に示す測定回路における1次巻線a、cに流れる
1次電流■、と、2次巻線1)、dに発生する2次電圧
E 2 、 E 2′をベクトルとして第3図に示して
いる。ここて、鉄損Weは次式で表される。
In the measurement circuit shown in Fig. 1, the primary currents flowing through the primary windings a and c, and the secondary voltages E 2 and E 2' generated in the secondary windings 1) and d are shown as vectors in Fig. 3. It is shown in Here, the iron loss We is expressed by the following formula.

We”” I 、  E2/V 111XIE2ICO3θ/V   、、−■上式にJ
3いて、■は磁心体積、11・E2はベクトル■1とE
2の内積、IIII、1E21はベクトル1.、E2の
絶対値、θはノ\りトル■;とE2のなす角である。今
、問題としているのは5θが90度に近く、力率cos
θが著しく小さい状態である。
We"" I, E2/V 111XIE2ICO3θ/V,, - ■ J in the above formula
3, ■ is the magnetic core volume, 11・E2 is the vector ■1 and E
The inner product of 2, III, 1E21 is the vector 1. , the absolute value of E2, θ is the angle formed by E2 and The current problem is that 5θ is close to 90 degrees, and the power factor is cos
This is a state in which θ is extremely small.

このとき、ベクトルエ1とE2の内積工、・E2は、絶
対値l111,1E21に比べて小さくなり、鉄損Wc
の測定精度は悪くなってしまう。
At this time, the inner load of vectors E1 and E2, ・E2, becomes smaller than the absolute values l111 and 1E21, and the iron loss Wc
The measurement accuracy will deteriorate.

一方、空心コイル7では、鉄損は発生しないがら、原理
的に、空心コイル7の2次電圧E2’ど1次電流1.ど
がなす角は90度であり、ベクトルLとE2′の内積は
I+’ E2””0である。ここで、第1図のように配
線すれば、2次電圧E2とE2は逆方向となる。したが
って、第3図に示すように、E3=E2+E2’は、E
2.E2”と比べて小さくなるが、E、と11とのなす
角θ′は、θに比べて著しく小さく、力率cosθ′は
、cO8θよりも大きくなる。
On the other hand, in the air-core coil 7, although no iron loss occurs, in principle, the secondary voltage E2' of the air-core coil 7 and the primary current 1. The angle they make is 90 degrees, and the inner product of the vectors L and E2' is I+'E2""0. Here, if the wiring is arranged as shown in FIG. 1, the secondary voltages E2 and E2 will be in opposite directions. Therefore, as shown in FIG. 3, E3=E2+E2' is E
2. E2'', but the angle θ' between E and 11 is significantly smaller than θ, and the power factor cos θ' is larger than cO8θ.

工1・E3−1.・E2−+−I、・E2■1・E2 となるから、■1・E2の代わりにXl・E3を測定す
れば、力率cosθ′が高い状態で精度良く、鉄損を求
めることが可能となる。
Engineering 1/E3-1.・E2−+−I, ・E2■1・E2 Therefore, if you measure Xl・E3 instead of ■1・E2, it is possible to calculate the iron loss with high accuracy when the power factor cos θ' is high. becomes.

[実施例] 本発明による鉄損の測定方法の一実施例どして、トーキ
ン製ダス)へコアHP −12について、本発明の測定
法及び従来法で鉄損を測定した。この磁心はトロイダル
形状で、寸法は平均磁路長が52゜15mm、断面積が
25.4mm2で、比透磁率はμr−100である。周
波数f−100kHz、励磁磁場Hm−800A/m、
誘起磁束密度B=0.IT、磁束正弦波の条件で鉄損を
測定した。なお、本実施例の測定法では、磁心付きコイ
ルと同寸法の空心コイルを用いて、その2次電圧が磁心
付きコイルの2次電圧とほぼ同じようになるように巻線
を施した。第4図に示す従来法による測定結果を第1表
に、本発明による測定結果を第2表に示した。
[Example] As an example of the method for measuring iron loss according to the present invention, the iron loss was measured using the measuring method of the present invention and a conventional method for a core HP-12 manufactured by Tokin. This magnetic core has a toroidal shape, an average magnetic path length of 52.degree. 15 mm, a cross-sectional area of 25.4 mm.sup.2, and a relative magnetic permeability of .mu.r-100. Frequency f-100kHz, excitation magnetic field Hm-800A/m,
Induced magnetic flux density B=0. Iron loss was measured under the conditions of IT and magnetic flux sine wave. In the measurement method of this example, an air-core coil having the same dimensions as the coil with a magnetic core was used, and the coil was wound so that its secondary voltage was almost the same as the secondary voltage of the coil with a magnetic core. The measurement results according to the conventional method shown in FIG. 4 are shown in Table 1, and the measurement results according to the present invention are shown in Table 2.

鉄損の測定値の単位はkW/m3である。この表に示さ
れた測定結果を見れば明らかなように、従来法では、巻
数N、、N2によって鉄損Wcの測定値が大きく変化し
ているのに対して、本発明による測定法では、巻数N、
、N、N、°、N2′による測定値の変動は僅かであり
、鉄損が精度良く測定されていることが分かる。
The unit of iron loss measurement is kW/m3. As is clear from the measurement results shown in this table, in the conventional method, the measured value of iron loss Wc changes greatly depending on the number of turns N, , N2, whereas in the measurement method according to the present invention, Number of turns N,
, N, N, °, and N2', the fluctuations in the measured values are slight, and it can be seen that the iron loss is measured with high accuracy.

第1表 1 第2表 [発明の効果] 本発明にあっては、上述のように、磁心付きコイルの励
磁電流と巻線電圧との内積に基づいて磁心の鉄損を測定
する方法において、鉄損を有さない空心コイルに磁心付
きコ、イルと同じ励磁電流を通電し、磁心付きコイルの
巻線電圧と空心コイルの巻線電圧とを逆極性となるよう
に合成した電圧と励磁電流との内債に基づいて磁心の鉄
損を測定1? するものであるから、低透磁率材料の測定のような低力
率状態での鉄損測定を精度良く行うことができるという
効果がある9
Table 1 Table 2 [Effects of the Invention] In the present invention, as described above, in the method of measuring the iron loss of a magnetic core based on the inner product of the excitation current of a coil with a magnetic core and the winding voltage, The same excitation current as the coil with a magnetic core is passed through an air-core coil that has no iron loss, and the voltage and excitation current are obtained by combining the winding voltage of the coil with a magnetic core and the winding voltage of the air-core coil so that they have opposite polarities. Measure the iron loss of the magnetic core based on the internal bond 1? Therefore, it has the effect of making it possible to accurately measure iron loss in low power factor conditions, such as when measuring low magnetic permeability materials9.

【図面の簡単な説明】[Brief explanation of drawings]

第1図は本発明の測定方法を実施するための測定回路の
回路図、第2図は本発明の測定方法を実施するための他
の測定回路の回路図、第3図は本発明の動作説明図、第
4図は従来例の回路図、第5図は他の従来例の回路図、
第6図は別の従来例の回路図である。 1は発振器、2は磁心付きコイル、3は抵抗、4は波形
記憶装置、5はコンピュータ、7は空心コイルである。
FIG. 1 is a circuit diagram of a measuring circuit for implementing the measuring method of the present invention, FIG. 2 is a circuit diagram of another measuring circuit for implementing the measuring method of the present invention, and FIG. 3 is an operation of the present invention. Explanatory diagram, Fig. 4 is a circuit diagram of a conventional example, Fig. 5 is a circuit diagram of another conventional example,
FIG. 6 is a circuit diagram of another conventional example. 1 is an oscillator, 2 is a coil with a magnetic core, 3 is a resistor, 4 is a waveform storage device, 5 is a computer, and 7 is an air-core coil.

Claims (1)

【特許請求の範囲】[Claims] (1) 磁心付きコイルの励磁電流と巻線電圧との内積
に基づいて磁心の鉄損を測定する方法において、鉄損を
有さない空心コイルに磁心付きコイルと同じ励磁電流を
通電し、磁心付きコイルの巻線電圧と空心コイルの巻線
電圧とを逆極性となるように合成した電圧と励磁電流と
の内積に基づいて磁心の鉄損を測定することを特徴とす
る鉄損の測定方法。
(1) In the method of measuring the iron loss of a magnetic core based on the inner product of the excitation current of the coil with a magnetic core and the winding voltage, the same excitation current as that of the coil with a magnetic core is passed through an air-core coil that has no iron loss, and the A method for measuring iron loss characterized by measuring the iron loss of a magnetic core based on the inner product of the excitation current and the voltage obtained by combining the winding voltage of the attached coil and the winding voltage of the air-core coil so as to have opposite polarities. .
JP1723890A 1990-01-26 1990-01-26 Method for measuring core loss Pending JPH03221886A (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP1723890A JPH03221886A (en) 1990-01-26 1990-01-26 Method for measuring core loss

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP1723890A JPH03221886A (en) 1990-01-26 1990-01-26 Method for measuring core loss

Publications (1)

Publication Number Publication Date
JPH03221886A true JPH03221886A (en) 1991-09-30

Family

ID=11938368

Family Applications (1)

Application Number Title Priority Date Filing Date
JP1723890A Pending JPH03221886A (en) 1990-01-26 1990-01-26 Method for measuring core loss

Country Status (1)

Country Link
JP (1) JPH03221886A (en)

Cited By (7)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2008170320A (en) * 2007-01-12 2008-07-24 Nippon Steel Corp Electromagnetic field analyzing system
JP2009288010A (en) * 2008-05-28 2009-12-10 Nippon Steel Corp Core loss optimizing system
US20130049744A1 (en) * 2011-08-31 2013-02-28 Mingkai Mu High Frequency Loss Measurement Apparatus and Methods for Inductors and Transformers
JP2017135213A (en) * 2016-01-26 2017-08-03 株式会社東芝 Degradation diagnosis device of magnetic core member, degradation diagnosis method of magnetic core member, electrical apparatus
AT520391A1 (en) * 2017-09-07 2019-03-15 Helmut Dr Pfuetzner Method for the physically correct measurement of magnetic reversal losses
JP2019132604A (en) * 2018-01-29 2019-08-08 パナソニックIpマネジメント株式会社 Reactor loss measurement method, and reactor loss measurement apparatus
JP2020008380A (en) * 2018-07-05 2020-01-16 富士通株式会社 Magnetic measurement module, magnetic property measurement device and magnetic property measurement method

Cited By (10)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2008170320A (en) * 2007-01-12 2008-07-24 Nippon Steel Corp Electromagnetic field analyzing system
JP2009288010A (en) * 2008-05-28 2009-12-10 Nippon Steel Corp Core loss optimizing system
US20130049744A1 (en) * 2011-08-31 2013-02-28 Mingkai Mu High Frequency Loss Measurement Apparatus and Methods for Inductors and Transformers
US8823370B2 (en) * 2011-08-31 2014-09-02 Virginia Tech Intellectual Properties, Inc. High frequency loss measurement apparatus and methods for inductors and transformers
JP2017135213A (en) * 2016-01-26 2017-08-03 株式会社東芝 Degradation diagnosis device of magnetic core member, degradation diagnosis method of magnetic core member, electrical apparatus
AT520391A1 (en) * 2017-09-07 2019-03-15 Helmut Dr Pfuetzner Method for the physically correct measurement of magnetic reversal losses
AT520391B1 (en) * 2017-09-07 2024-03-15 Helmut Dr Pfuetzner Method for physically correct measurement of core losses
JP2019132604A (en) * 2018-01-29 2019-08-08 パナソニックIpマネジメント株式会社 Reactor loss measurement method, and reactor loss measurement apparatus
JP2020008380A (en) * 2018-07-05 2020-01-16 富士通株式会社 Magnetic measurement module, magnetic property measurement device and magnetic property measurement method
US11402443B2 (en) 2018-07-05 2022-08-02 Fujitsu Limited Magnetic characteristic measuring apparatus and method

Similar Documents

Publication Publication Date Title
US8901919B2 (en) Compact, two stage, zero flux electronically compensated current or voltage transducer employing dual magnetic cores having substantially dissimilar magnetic characteristics
WO2013088766A1 (en) Current sensor
CN103592490A (en) High-accuracy electronic compensated current transformer
CN105575639A (en) Broadband current transformer
Kaczmarek The source of the inductive current transformers metrological properties deterioration for transformation of distorted currents
Costa et al. Wide bandwidth, large AC current probe for power electronics and EMI measurements
JPH03221886A (en) Method for measuring core loss
Baguley et al. A new technique for measuring ferrite core loss under DC bias conditions
CN109188048A (en) A kind of contactless weak current sensor based on passive zero flux
JP2002202328A (en) Magnetic field type current sensor
JP4716030B2 (en) Current sensor
JP2000121307A (en) Apparatus for measuring quantity of inductive displacement
WO2007018355A1 (en) Error compensating method for instrument transformer
US11402443B2 (en) Magnetic characteristic measuring apparatus and method
JPH06249932A (en) Measuring instrument for residual magnet of transformer core
JP2729903B2 (en) Displacement measuring device
JP6960655B2 (en) Magnetic property measurement method for magnetic materials and magnetic property measurement device for magnetic materials
JPH01158365A (en) Method and apparatus for detecting small current
Wang et al. Research on Small-Size Closed-Loop Fluxgate Transducer for Current Sensor Applications
JP2003177167A (en) Magnetic sensor
CN218788059U (en) Active magnetic compensation pincerlike current sensor
JPH0677065A (en) Differential transformer
Nishikawa et al. Verification of Iron Loss Affected by Secondary Frequency in Multi-core Transformer for Frequency Multiplying Circuit
JP2004235595A (en) Zct
JPS631253Y2 (en)