JPH03218974A - Silicon nitride sintered body and production thereof - Google Patents

Silicon nitride sintered body and production thereof

Info

Publication number
JPH03218974A
JPH03218974A JP2011779A JP1177990A JPH03218974A JP H03218974 A JPH03218974 A JP H03218974A JP 2011779 A JP2011779 A JP 2011779A JP 1177990 A JP1177990 A JP 1177990A JP H03218974 A JPH03218974 A JP H03218974A
Authority
JP
Japan
Prior art keywords
raw material
silicon nitride
sintered body
thermal conductivity
prescribed
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Granted
Application number
JP2011779A
Other languages
Japanese (ja)
Other versions
JP2661761B2 (en
Inventor
Shinichi Miwa
真一 三輪
Tsutomu Kato
務 加藤
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
NGK Insulators Ltd
Original Assignee
NGK Insulators Ltd
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by NGK Insulators Ltd filed Critical NGK Insulators Ltd
Priority to JP2011779A priority Critical patent/JP2661761B2/en
Publication of JPH03218974A publication Critical patent/JPH03218974A/en
Application granted granted Critical
Publication of JP2661761B2 publication Critical patent/JP2661761B2/en
Anticipated expiration legal-status Critical
Expired - Lifetime legal-status Critical Current

Links

Landscapes

  • Ceramic Products (AREA)

Abstract

PURPOSE:To obtain a sintered body having a prescribed microstructure, superior thermal shock resistance, prescribed heat conductivity and strength by mixing powdery starting materials having the same prescribed purity and alpha-silicon nitride content but different average particle sizes in a prescribed ratio and firing a molded body of the mixture under prescribed conditions. CONSTITUTION:Silicon nitride powder of 0.1-0.5mum average grain size (D1) as starting material (1) and silicon nitride powder of prepd. so that the ratio of D2 to D1 is regulated to 2-6. Both the powders have >=99wt.% purity and >=95wt.% alpha-silicon nitride content. A mixture of 20-60wt.% of the starting material 1 with 80-40wt.% of the starting material 2 is blended with a sintering aid, molded and fired at 1,800-1,900 deg.C under pressure to obtain a sintered body having a microstructure contg. 20-50% grains of >=10mum length and 20-50% grains of <=3mum length. This sintered body has 0.13-0.16Cal/cm.sec. deg.C heat conductivity and >=800 MPa bending strength at four points.

Description

【発明の詳細な説明】 (産業上の利用分野) 本発明は、高強度および高熱伝導特性を有し耐熱衝撃性
に優れた高温構造材料として好適な窒化珪素焼結体およ
びその製造方法に関するものである。
DETAILED DESCRIPTION OF THE INVENTION (Field of Industrial Application) The present invention relates to a silicon nitride sintered body suitable as a high-temperature structural material that has high strength, high thermal conductivity, and excellent thermal shock resistance, and a method for manufacturing the same. It is.

(従来の技術) 従来から、窒化珪素は高温構造材としての使用か期待さ
れており、種々の焼結体が開発されている。その一例と
して、例えば特公昭55−46997号公報には、機械
的強度と熱衝撃特性か良好な窒化珪素焼結体を得るため
、β相を90重量%以上含み、Bed. MgO. S
rOの所定量と希土類元素酸化物とからなる窒化珪素焼
結体か開示されている。
(Prior Art) Silicon nitride has long been expected to be used as a high-temperature structural material, and various sintered bodies have been developed. For example, in Japanese Patent Publication No. 55-46997, in order to obtain a silicon nitride sintered body with good mechanical strength and thermal shock properties, Bed. MgO. S
A silicon nitride sintered body comprising a predetermined amount of rO and a rare earth element oxide is disclosed.

(発明か解決しようとする課題) 上述した特公昭55−46997号公報記載の窒化珪素
焼結体では、例えば650〜700 MPaの高強度と
0. 06 〜0. 09 cal/am − see
 − ”Cの熱伝導率を得ることができるが、熱伝導特
性においてそれか良好なセラミック材料例えばSiCと
比較して低く、熱衝撃特性に問題があり、高温構造材料
として好適に使用できない問題があった。
(Problems to be Solved by the Invention) The silicon nitride sintered body described in Japanese Patent Publication No. 55-46997 mentioned above has a high strength of, for example, 650 to 700 MPa and a strength of 0.5 MPa. 06 ~0. 09 cal/am-see
- Although it is possible to obtain the thermal conductivity of "C", its thermal conductivity is lower than that of good ceramic materials such as SiC, and there are problems with its thermal shock properties, making it unsuitable for use as a high-temperature structural material. there were.

本発明の目的は上述した課題を解消して、高い熱伝導率
を有し、その結果熱衝撃特性を改善した窒化珪素焼結体
およびその製造方法を提供しようとするものである。
An object of the present invention is to solve the above-mentioned problems and provide a silicon nitride sintered body having high thermal conductivity and improved thermal shock characteristics as a result, and a method for manufacturing the same.

(課題を解決するための手段) 本発明の窒化珪素焼結体は、10μm以上の粒長を有す
る粒子の割合が20〜50%であるとともに、3μm以
下の粒長を有する粒子の割合か20〜50%である微構
造を有し、熱伝導率か0.13〜0.16cal/ c
m ” SeC ” ”C、4点曲げ強さか室温で80
0MPa以上の特性を有することを特徴とするものであ
る。
(Means for Solving the Problems) In the silicon nitride sintered body of the present invention, the proportion of particles having a grain length of 10 μm or more is 20 to 50%, and the proportion of particles having a grain length of 3 μm or less is 20 to 50%. It has a microstructure that is ~50% and a thermal conductivity of 0.13-0.16 cal/c
m "SeC""C, 4-point bending strength or 80 at room temperature
It is characterized by having a property of 0 MPa or more.

また、本発明の窒化珪素焼結体の製造方法は、純度99
wt%以上、α化率95wt%以上の窒化珪素粉末原料
であって、以下のように粒径の異なる原料lおよび原料
2を準備し、 (1)原料1 平均粒子径D1(0.1 〜0.5 μm )(2)原
料2 平均粒子径D2(0.3〜1.0μm)(3)原料1と
原料2の関係 2≦D2/D,≦6 準備した原料lと原料2とを、20〜60重量%の原料
1と80〜40重量%の原料2の割合で混合し、混合し
た混合原料に助剤を所定量加えて調合、成形し、180
0〜1900℃の温度で加熱焼成することを特徴とする
ものである。
Further, the method for producing a silicon nitride sintered body of the present invention has a purity of 99%.
Prepare raw material 1 and raw material 2, which are silicon nitride powder raw materials with wt% or more and alpha conversion rate of 95 wt% or more, and have different particle sizes as follows, (1) Raw material 1 average particle diameter D1 (0.1 ~ 0.5 μm) (2) Raw material 2 average particle diameter D2 (0.3 to 1.0 μm) (3) Relationship between raw material 1 and raw material 2 2≦D2/D,≦6 Prepared raw material 1 and raw material 2 , 20 to 60% by weight of raw material 1 and 80 to 40% by weight of raw material 2 are mixed, a predetermined amount of auxiliary agent is added to the mixed raw material, blended and molded, 180% by weight.
It is characterized by heating and firing at a temperature of 0 to 1900°C.

(作 用) 上述した構成において、使用する助剤組或は特公昭55
−46997号公報で開示された焼結体と類似している
か、本発明においては粒径の大きな原料と粒径の小さな
原料を混合し、所定の製造法で焼結体を得ることにより
、粒長lOμm以上の大きい粒子と粒長3μm以下の小
さい粒子とを所定の割合とした微構造により、従来の窒
化珪素焼結体では得られなかった高強度・高じん性、高
熱伝導率を達成することができる。
(Function) In the above-mentioned configuration, the auxiliary agent group used or the
The sintered body is similar to the sintered body disclosed in Publication No. 46997, or in the present invention, the sintered body is obtained by mixing a raw material with a large particle size and a raw material with a small particle size and obtaining a sintered body by a predetermined manufacturing method. The microstructure has a predetermined ratio of large particles with a length of 10 μm or more and small particles with a grain length of 3 μm or less, achieving high strength, high toughness, and high thermal conductivity that could not be obtained with conventional silicon nitride sintered bodies. be able to.

すなわち、本発明品はβ−SiaNiの針状結晶が発達
し、最大で20μmを超える一方で、3μm以下の小さ
な針状結晶も認められ、広い粒子径分布を示している。
That is, in the product of the present invention, needle-like crystals of β-SiaNi are developed, and the maximum diameter exceeds 20 μm, while small needle-like crystals of 3 μm or less are also observed, indicating a wide particle size distribution.

従来品は針状結晶の発達か進んでいない状態に加えて比
較的均一な粒子となっており、これらの微構造の差か強
度、じん性、熱伝導率の点における本発明品と従来品と
の差になって表われている。
The conventional product has relatively uniform particles in addition to poorly developed needle-shaped crystals, and this may be due to the difference in microstructure between the present product and the conventional product in terms of strength, toughness, and thermal conductivity. This is reflected in the difference between

また、本発明の製造方法によれば、強度、じん性、熱伝
導率のバランスかとれた範囲の焼成体を得ることかでき
る。すなわち、じん性、熱伝導率は焼成温度を上げるに
従ってそれぞれの値か高くなるか、強度は急激に低下す
る。一方、焼成温度を下げるとじん性、熱伝導率か低下
する。そのため、組成および原料の配合比か本発明の製
造方法の範囲内のものか、これらのバランスのとれた範
囲となる。
Further, according to the manufacturing method of the present invention, it is possible to obtain a fired body having a well-balanced range of strength, toughness, and thermal conductivity. That is, as the firing temperature increases, the values of toughness and thermal conductivity increase, or the strength sharply decreases. On the other hand, lowering the firing temperature lowers the toughness and thermal conductivity. Therefore, the composition and blending ratio of raw materials should be within the range of the production method of the present invention, or within a well-balanced range.

なお、後述する実施例から明らかなように、10μm以
上の粒長を有する粒子の割合が30〜40%であり、3
μm以下の粒長を有する粒子の割合が30〜40%であ
ると、各種特性がさらに良好になるため好ましい。
In addition, as is clear from the examples described later, the proportion of particles having a particle length of 10 μm or more is 30 to 40%, and 3
It is preferable that the proportion of particles having a particle length of .mu.m or less is 30 to 40% because various properties become even better.

(実施例) 以下、実際の例について説明する。(Example) An actual example will be explained below.

実施例1 第1表に記載する粒径の異なる2種類の窒化珪素粉末原
料1および原料2(両者とも純度99.9%)のいずれ
かと添加剤との混合粉末を、各々アトライターミルで窒
化珪素製玉石を用いて24時間湿式粉砕してスラリーを
得た。得られたスラリーにポリビニルアルコール等の成
形助剤を加え、噴霧乾燥し、平均粒子径70μmで球状
の造粒粉体を得た。
Example 1 A mixed powder of either of the two types of silicon nitride powder raw material 1 and raw material 2 (both 99.9% purity) with different particle sizes listed in Table 1 and an additive was nitrided in an attritor mill. A slurry was obtained by wet grinding for 24 hours using silicon boulders. A molding aid such as polyvinyl alcohol was added to the obtained slurry and spray-dried to obtain spherical granulated powder with an average particle diameter of 70 μm.

この粉体を5000kg/adの圧力で静水圧成形した
後、脱バインダー処理を行い、60X60X5mmの角
板試料を得た。角板試料に対して、窒素ガス雰囲気中で
1時間第1表に示す焼成温度で焼成を実施して、焼成体
を得た。
After this powder was subjected to isostatic pressing at a pressure of 5000 kg/ad, binder removal treatment was performed to obtain a square plate sample of 60 x 60 x 5 mm. The square plate sample was fired for 1 hour at the firing temperature shown in Table 1 in a nitrogen gas atmosphere to obtain a fired body.

得られた焼成体のβ化率、熱伝導率、室温および800
゜Cでの4点曲げ強度、破壊しん性値(KIc)、耐熱
衝撃抵抗係数比を測定するとともに、微構造として、焼
成体中のIOμm以上の粒長を有する粒子の割合および
3μm以下の粒長を有する粒子の割合を測定した。結果
をあわせて第1表に示す。
β conversion rate, thermal conductivity, room temperature and 800% of the obtained fired body
In addition to measuring the four-point bending strength, fracture toughness value (KIc), and thermal shock resistance coefficient ratio at °C, we also measured the microstructure of the proportion of particles with a grain length of IO μm or more and grains of 3 μm or less in the fired body. The proportion of particles with long length was determined. The results are also shown in Table 1.

β化率の測定は、X線回折により行い、α一Si3N4
の(210)と(201)面の回折強度α(210)α
(201)と、β−Si*N4の(101)と(210
)面の回折強度β(101) 、β(210)から次式
により求めた。
The β conversion rate was measured by X-ray diffraction.
The diffraction intensity α (210) α of the (210) and (201) planes of
(201), (101) and (210) of β-Si*N4
) surface diffraction intensity β(101) and β(210) using the following equation.

β化率=〔β(101)+β(210)) / (α(
210)+α(201)+β(101)十β(210)
)  XIOO窒化珪素焼結体の微構造は以下の手法に
従う数値化処理により測定した。まず、試料はダイヤモ
ンド砥粒によるラップ仕上げを実施した後、フッ酸原液
によって50゜C X 4hrsの処理を行い粒界相を
エッチングした。この試料を走査型電子顕微鏡を使用し
5000倍で写真撮影し、各試料lO視野分の写真を画
像解析装置によりその長径(最大長)、粒子面積を求め
統計処理を行った。従って、ここでの粒長とは試料断面
における粒子の長径(最大長)であり、割合は粒子面積
率を示す。
β conversion rate = [β (101) + β (210)) / (α(
210) + α (201) + β (101) 10 β (210)
) The microstructure of the XIOO silicon nitride sintered body was measured by numerical processing according to the following method. First, the sample was lapped with diamond abrasive grains, and then treated with a hydrofluoric acid stock solution at 50°C for 4 hours to etch the grain boundary phase. This sample was photographed using a scanning electron microscope at a magnification of 5,000 times, and the long axis (maximum length) and particle area of the photograph for each sample 10 field of view were determined using an image analyzer and statistical processing was performed. Therefore, the grain length here is the major axis (maximum length) of the grains in the cross section of the sample, and the ratio represents the grain area ratio.

熱伝導率は理学電機■製レーザーフラッシュ法熱定数測
定装置を用いて測定した。
Thermal conductivity was measured using a laser flash method thermal constant measuring device manufactured by Rigaku Corporation.

4点曲げ強度は、JIS R−1601 rファインセ
ラミックスの曲げ強さ試験法」に従って常温および80
0゜Cて測定した。
The 4-point bending strength is measured at room temperature and at
Measurements were taken at 0°C.

破壊しん性値(K.)は、SEPB法によって測定し、
試料形状は3X4 X20mmで内部スパン5mm,外
部スパン15mmの4点曲げ方法を使用した。このとき
のクロスヘッドスピードは 0.05■/winであっ
た。
The fracture toughness value (K.) was measured by the SEPB method,
The sample shape was 3 x 4 x 20 mm, and a four-point bending method was used with an internal span of 5 mm and an external span of 15 mm. The crosshead speed at this time was 0.05 ■/win.

を求め実施例1のNal7試験体との比を算出した。The ratio with the Nal7 test specimen of Example 1 was calculated.

ここでSは4点曲げ強さ、νはボアソン比、Eはヤング
率、αは線熱膨張係数である。
Here, S is four-point bending strength, ν is Boisson's ratio, E is Young's modulus, and α is linear thermal expansion coefficient.

第1表の結果から、それぞれ所定の平均粒子径D., 
D2を有し、それらの間の比が所定の値である原料lお
よび原料2を使用して製造した実施例嵐1〜7は、いず
れかの点で本発明の要件を満たしていない比較例klO
〜17と比べて高い熱伝導率、高い4点曲げ強度、高い
破壊しん性値(K,c) 、高い耐熱衝撃抵抗係数比を
有することがわかる。また、焼結体の微構造に着目する
と、実施例NcL1〜9は10μm以上の粒長を有する
粒子量および3μm以下の粒長を有する粒子量が所定値
であるのに対し、比較例NalO〜17はいずれかの点
で本発明の要件を満たしていないことかわかる。
From the results in Table 1, it can be seen that each predetermined average particle diameter D. ,
Examples Arashi 1 to 7 produced using raw material 1 and raw material 2 having D2 and the ratio between them being a predetermined value are comparative examples that do not meet the requirements of the present invention in any respect. klO
It can be seen that it has higher thermal conductivity, higher 4-point bending strength, higher fracture toughness value (K, c), and higher thermal shock resistance coefficient ratio compared to No. 17. Also, focusing on the microstructure of the sintered body, in Examples NcL1 to NcL9, the amount of particles having a grain length of 10 μm or more and the amount of particles having a grain length of 3 μm or less is a predetermined value, while in Comparative Examples NcL1 to It can be seen that No. 17 does not meet the requirements of the present invention in some respects.

第1図および第2図に室温における4点曲げ強度および
熱伝導率とD2/D,の値との関係を示す。
Figures 1 and 2 show the relationship between the four-point bending strength and thermal conductivity at room temperature and the value of D2/D.

第1図および第2図の結果より、適切な粒径比を選ぶこ
とにより、高強度および高熱伝導率の焼結体を得ること
かてきることかわかる。
From the results shown in FIGS. 1 and 2, it can be seen that by selecting an appropriate particle size ratio, it is possible to obtain a sintered body with high strength and high thermal conductivity.

実施例2 粒径の異なる2種類の原料1および原料2の混合比の影
響を調べるため、第2表に記載したように原料1および
原料2を種々の混合率で混合して、実施例lと同様に成
形、焼成を行い、実施例Nα2l〜38と比較例陽39
〜50の焼成体を得た。
Example 2 In order to investigate the influence of the mixing ratio of two types of raw material 1 and raw material 2 with different particle sizes, raw material 1 and raw material 2 were mixed at various mixing ratios as shown in Table 2, and Example 1 was prepared. Molding and firing were carried out in the same manner as in Example Nα2l~38 and Comparative Example No.39.
~50 fired bodies were obtained.

得られた焼成体に対し、実施例1と同様にβ化率、熱伝
導率、室温および800゜Cでの4点曲げ強度、破壊し
ん性値、耐熱衝撃抵抗係数比を測定するとともに、微構
造も同様に測定した。結果をあわせて第2表に示す。
The obtained fired body was measured for β conversion rate, thermal conductivity, four-point bending strength at room temperature and 800°C, fracture resistance value, and thermal shock resistance coefficient ratio in the same manner as in Example 1. The structure was also measured in the same way. The results are also shown in Table 2.

第2表の結果から、所定の平均粒子径を有する原料1と
原料2とを、20〜60重量%の原料1と80〜40重
量%の原料2の割合で混合した実施例Nl121〜38
は、混合比か上記範囲を満たさない比較例魚39〜50
と比へて、高い熱伝導率、高い4点曲げ強度、高い破壊
しん性値(K,.) 、高い耐熱衝撃抵抗係数比を有す
ることがわかる。また、焼結体の微構造に着目すると、
実施例Nα21〜38は10μm以上の粒長を有する粒
子量および3μm以下の粒長を有する粒子量か所定値で
あるのに対し、比較例嵐39〜50はいずれかの点て本
発明の要件を満たしていないことかわかる。
From the results in Table 2, Examples Nos. 121 to 38 in which raw materials 1 and 2 having predetermined average particle diameters were mixed at a ratio of 20 to 60% by weight of raw material 1 and 80 to 40% by weight of raw material 2.
is a comparative example fish 39 to 50 that does not meet the mixing ratio or the above range.
In comparison, it can be seen that it has high thermal conductivity, high four-point bending strength, high fracture toughness value (K,.), and high thermal shock resistance coefficient ratio. Also, if we focus on the microstructure of the sintered body,
In Examples Nα21 to 38, the amount of particles having a particle length of 10 μm or more and the amount of particles having a particle length of 3 μm or less is a predetermined value, whereas Comparative Examples Arashi 39 to 50 meet the requirements of the present invention in any respect. I understand that it does not meet the requirements.

第3図および第4図に室温における4点曲げ強度および
熱伝導率と原料1の混合率との関係を示す。第3図およ
び第4図の結果より、適切な混合率を選ぶことにより、
高強度および高熱伝導率の焼結体を得ることかできるこ
とかわかる。
FIG. 3 and FIG. 4 show the relationship between the four-point bending strength and thermal conductivity at room temperature and the mixing ratio of raw material 1. By selecting an appropriate mixing ratio based on the results shown in Figures 3 and 4,
It can be seen that it is possible to obtain a sintered body with high strength and high thermal conductivity.

実施例3 本発明の実施例における焼成温度の変化の影響を調へる
ため、第3表に示す原料1、原料2を使用し、第3表に
示す焼成温度で実施例1と同様に焼成して実施例Nα5
l〜59と比較例Na60〜65の焼成体を得た。
Example 3 In order to investigate the influence of changes in firing temperature in the examples of the present invention, raw materials 1 and 2 shown in Table 3 were used and fired in the same manner as in Example 1 at the firing temperatures shown in Table 3. Example Nα5
Fired bodies of Na1-59 and Comparative Example Na60-65 were obtained.

得られた焼成体に対し、実施例1と同様にβ化率、熱伝
導率、室温およびsoo”cでの4点曲げ強度、破壊し
ん性値、耐熱衝撃抵抗係数比を測定するとともに、微構
造も同様に測定した。結果をあわせて第3表に示す。
The obtained fired body was measured for β conversion rate, thermal conductivity, 4-point bending strength at room temperature and soo''c, fracture toughness value, and thermal shock resistance coefficient ratio in the same manner as in Example 1. The structure was also measured in the same manner.The results are also shown in Table 3.

第3表の結果から、焼成温度か低いほど高い強度を得ら
れるか熱伝導率は低いのに対し、焼成温度が高いほど高
い熱伝導率を得られるが強度は低くなり、第5図および
第6図に示すように、室温における4点曲げ強度および
熱伝導率と焼成温度を選ぶことにより、バランスのとれ
た高い強度と高い熱伝導率の焼結体を得ることかできる
ことがわかる。
From the results in Table 3, it can be seen that the lower the firing temperature, the higher the strength and the lower the thermal conductivity, whereas the higher the firing temperature, the higher the thermal conductivity, but the lower the strength. As shown in Figure 6, it is possible to obtain a sintered body with well-balanced high strength and high thermal conductivity by selecting the four-point bending strength and thermal conductivity at room temperature and the firing temperature.

実施例4 本発明の実施例における助剤調含量の変化の影響を調べ
るため、第4表に示す原料l1原料2を使用し、第4表
に示す助剤の割合で実施例1と同様に焼成して実施例N
α71〜73および比較例74. 75の焼成体を得た
Example 4 In order to investigate the effect of changing the auxiliary agent content in the examples of the present invention, raw materials 11 and 2 shown in Table 4 were used, and the same procedure as in Example 1 was carried out at the auxiliary ratio shown in Table 4. Example N after firing
α71-73 and Comparative Example 74. 75 fired bodies were obtained.

得られた焼成体に対し、実施例lと同様にβ化率、熱伝
導率、室温および800゜Cての4点曲げ強度、破壊し
ん性値、耐熱衝撃抵抗係数比を測定するとともに、微構
造も同様に測定した。結果をあわせて第4表に示す。
The obtained fired body was measured for β conversion rate, thermal conductivity, four-point bending strength at room temperature and 800°C, fracture resistance value, and thermal shock resistance coefficient ratio in the same manner as in Example 1. The structure was also measured in the same way. The results are also shown in Table 4.

第4表の結果から、助剤調含量が多少変化しても本発明
範囲内のものは、高い強度および高い熱伝導特性を示す
ことがわかる。
From the results in Table 4, it can be seen that even if the auxiliary agent content changes somewhat, those within the range of the present invention exhibit high strength and high thermal conductivity.

(発明の効果) 以上の説明から明らかなように、本発明によれば、粒径
の大きな原料と粒径の小さな原料とを混合し、所定の製
造法で焼結体を得ることにより、粒長10μm以上の大
きい粒子と粒長3μm以下の小さい粒子とを所定の割合
とした微構造により、従来の窒化珪素焼結体では得られ
なかった高強度・高じん性・高熱伝導率を達成すること
かできる。
(Effects of the Invention) As is clear from the above description, according to the present invention, a raw material with a large particle size and a raw material with a small particle size are mixed and a sintered body is obtained by a predetermined manufacturing method. The microstructure has a predetermined ratio of large particles with a length of 10 μm or more and small particles with a grain length of 3 μm or less, achieving high strength, high toughness, and high thermal conductivity that cannot be obtained with conventional silicon nitride sintered bodies. I can do it.

そのため、本発明の窒化珪素焼結体は従来のセラミック
スと比較して高温構造材料として好適であり、セラミッ
クスローター、副燃焼室、バルブ、ピストンヘッド、プ
レート等に使用した場合、熱応力を低減し、セラミック
スの信頼性を改善することかできる。
Therefore, the silicon nitride sintered body of the present invention is more suitable as a high-temperature structural material than conventional ceramics, and reduces thermal stress when used in ceramic rotors, secondary combustion chambers, valves, piston heads, plates, etc. , the reliability of ceramics can be improved.

【図面の簡単な説明】[Brief explanation of drawings]

第1図は本発明の実施例における室温強度とD2/D,
との関係を示すグラフ、 第2図は本発明の実施例における熱伝導率とD2/D,
との関係を示すグラフ、 第3図は本発明の実施例における室温強度とw1との関
係を示すグラフ、 第4図は本発明の実施例における熱伝導率とW.どの関
係を示すグラフ、 第5図は本発明の実施例における室温強度と焼成温度と
の関係を示すグラフ、 第6図は本発明の実施例における熱伝導率と焼成温度と
の関係を示すグラフである。 第1図 第3図 第4図 Wl(w1%)
Figure 1 shows room temperature strength and D2/D,
FIG. 2 is a graph showing the relationship between the thermal conductivity and D2/D in the example of the present invention,
FIG. 3 is a graph showing the relationship between room temperature strength and W1 in the example of the present invention, and FIG. 4 is a graph showing the relationship between the thermal conductivity and W1 in the example of the present invention. Figure 5 is a graph showing the relationship between room temperature strength and firing temperature in an example of the present invention. Figure 6 is a graph showing the relationship between thermal conductivity and firing temperature in an example of the present invention. It is. Figure 1 Figure 3 Figure 4 Wl (w1%)

Claims (1)

【特許請求の範囲】 1. 10μm以上の粒長を有する粒子の割合が20〜
50%であるとともに、3μm以下の粒長を有する粒子
の割合か20〜50%である微構造を有し、熱伝導率か
0.13〜0.16cal/cm・sec・℃、4点曲
げ強さが室温で800MPa以上の特性を有することを
特徴とする窒化珪素焼結体。 2. 純度99wt%以上、α化率95wt%以上の窒
化珪素粉末原料であって、以下のように粒径の異なる原
料1および原料2を準備し、 (1) 原料1 平均粒子径D_1(0.1〜0.5μm) (2) 原料2 平均粒子径D_2(0.3〜1.0μm) (3) 原料1と原料2の関係 2≦D_2/D_1≦6 準備した原料1と原料2とを、20〜60重量%の原料
1と80〜40重量%の原料2の割合で混合し、 混合した混合原料に助剤を所定量加えて調合、成形し、
1800〜1900℃の温度で加圧焼成することを特徴
とする窒化珪素焼結体の製造方法。
[Claims] 1. The proportion of particles with a particle length of 10 μm or more is 20 ~
50%, the proportion of particles with a grain length of 3 μm or less is 20-50%, and the thermal conductivity is 0.13-0.16 cal/cm・sec・℃, 4-point bending. A silicon nitride sintered body characterized by having a strength of 800 MPa or more at room temperature. 2. Prepare raw material 1 and raw material 2, which are silicon nitride powder raw materials with a purity of 99 wt% or more and a gelatinization rate of 95 wt% or more, and have different particle sizes as shown below. (1) Raw material 1 Average particle size D_1 (0.1 ~0.5 μm) (2) Raw material 2 average particle diameter D_2 (0.3 to 1.0 μm) (3) Relationship between raw material 1 and raw material 2 2≦D_2/D_1≦6 Prepared raw material 1 and raw material 2, Mix 20 to 60% by weight of raw material 1 and 80 to 40% by weight of raw material 2, add a predetermined amount of auxiliary agent to the mixed raw material, prepare and mold,
A method for producing a silicon nitride sintered body, which comprises performing pressure firing at a temperature of 1800 to 1900°C.
JP2011779A 1990-01-23 1990-01-23 Silicon nitride sintered body and method for producing the same Expired - Lifetime JP2661761B2 (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP2011779A JP2661761B2 (en) 1990-01-23 1990-01-23 Silicon nitride sintered body and method for producing the same

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP2011779A JP2661761B2 (en) 1990-01-23 1990-01-23 Silicon nitride sintered body and method for producing the same

Publications (2)

Publication Number Publication Date
JPH03218974A true JPH03218974A (en) 1991-09-26
JP2661761B2 JP2661761B2 (en) 1997-10-08

Family

ID=11787440

Family Applications (1)

Application Number Title Priority Date Filing Date
JP2011779A Expired - Lifetime JP2661761B2 (en) 1990-01-23 1990-01-23 Silicon nitride sintered body and method for producing the same

Country Status (1)

Country Link
JP (1) JP2661761B2 (en)

Cited By (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US5616527A (en) * 1993-09-13 1997-04-01 Isuzu Motors Limited Composite ceramic
JPH1160338A (en) * 1997-08-20 1999-03-02 Fine Ceramics Gijutsu Kenkyu Kumiai High heat conduction and high strength silicon nitride sintered compact and its production
JP2000247748A (en) * 1999-02-22 2000-09-12 Kyocera Corp High-toughness silicon nitride-based sintered compact
JP2019052072A (en) * 2017-09-19 2019-04-04 株式会社Maruwa Silicon nitride sintered substrate, electronic apparatus, and method for manufacturing the silicon nitride sintered substrate

Citations (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS6321254A (en) * 1986-07-11 1988-01-28 日本碍子株式会社 Manufacture of silicon nitride ceramics

Patent Citations (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS6321254A (en) * 1986-07-11 1988-01-28 日本碍子株式会社 Manufacture of silicon nitride ceramics

Cited By (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US5616527A (en) * 1993-09-13 1997-04-01 Isuzu Motors Limited Composite ceramic
JPH1160338A (en) * 1997-08-20 1999-03-02 Fine Ceramics Gijutsu Kenkyu Kumiai High heat conduction and high strength silicon nitride sintered compact and its production
JP2000247748A (en) * 1999-02-22 2000-09-12 Kyocera Corp High-toughness silicon nitride-based sintered compact
JP2019052072A (en) * 2017-09-19 2019-04-04 株式会社Maruwa Silicon nitride sintered substrate, electronic apparatus, and method for manufacturing the silicon nitride sintered substrate

Also Published As

Publication number Publication date
JP2661761B2 (en) 1997-10-08

Similar Documents

Publication Publication Date Title
EP0589411B1 (en) Silicon nitride sintered body and process for producing the same
JPS5823345B2 (en) Method for manufacturing ceramic sintered bodies
JPS6168373A (en) Silicon nitride sintered body and manufacture
SE465366B (en) HOMOGENE, SINTERED SILICON NITRID BODY WITH A GRAIN BASED PHASE AND PROCEDURE FOR ITS PREPARATION
EP0629181B1 (en) SiA1ON COMPOSITES AND METHOD OF PREPARING THE SAME
US5472919A (en) β-silicon nitride sintered body
JPH06227867A (en) Sintered compact of silicon mitride and its production
US5449649A (en) Monolithic silicon nitride having high fracture toughness
JPH03218974A (en) Silicon nitride sintered body and production thereof
JP2518630B2 (en) Silicon nitride sintered body and method for producing the same
JP2697759B2 (en) Silicon nitride sintered body and method for producing the same
TW202028154A (en) Mullite-base sintered compact and method for producing same
JPH0834670A (en) Silicon nitride sintered compact and its production
JP4931298B2 (en) Manufacturing method of artificial joint made of high-strength zirconia sintered body
JP3454994B2 (en) Silicon nitride sintered body and method for producing the same
JPH08208317A (en) Alumina sintered body and production thereof
JPH02302368A (en) Silicon carbide sintered compact having high toughness and its production thereof
JP3023784B1 (en) High strength, high toughness aluminum oxide sintered body and method for producing the same
JPS63151680A (en) High-strength normal pressure-sintering silicon nitride sintered body and manufacture
JPH05117030A (en) Complex ceramic and its production
JP2892186B2 (en) Method for producing silicon nitride-silicon carbide composite sintered body
JP2004091243A (en) Method for manufacturing sintered compact of silicon nitride, and sintered compact of silicon nitride
JP2684275B2 (en) Silicon nitride sintered body
JP2024001919A (en) Aluminum nitride sintered compact
JPH11130543A (en) Beta-type silicon nitride crystal and its production and production of silicon nitride-based sintered compact

Legal Events

Date Code Title Description
FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20080613

Year of fee payment: 11

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20090613

Year of fee payment: 12

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20100613

Year of fee payment: 13

EXPY Cancellation because of completion of term
FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20100613

Year of fee payment: 13