JPH03218031A - Semiconductor integrated circuit device and preform bonding material used in the same - Google Patents

Semiconductor integrated circuit device and preform bonding material used in the same

Info

Publication number
JPH03218031A
JPH03218031A JP2013317A JP1331790A JPH03218031A JP H03218031 A JPH03218031 A JP H03218031A JP 2013317 A JP2013317 A JP 2013317A JP 1331790 A JP1331790 A JP 1331790A JP H03218031 A JPH03218031 A JP H03218031A
Authority
JP
Japan
Prior art keywords
thermal conductivity
integrated circuit
high thermal
bonding
semiconductor integrated
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Pending
Application number
JP2013317A
Other languages
Japanese (ja)
Inventor
Hiroshi Akasaki
赤崎 博
Kanji Otsuka
寛治 大塚
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Hitachi ULSI Engineering Corp
Hitachi Ltd
Original Assignee
Hitachi ULSI Engineering Corp
Hitachi Ltd
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Hitachi ULSI Engineering Corp, Hitachi Ltd filed Critical Hitachi ULSI Engineering Corp
Priority to JP2013317A priority Critical patent/JPH03218031A/en
Publication of JPH03218031A publication Critical patent/JPH03218031A/en
Pending legal-status Critical Current

Links

Classifications

    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01LSEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
    • H01L24/00Arrangements for connecting or disconnecting semiconductor or solid-state bodies; Methods or apparatus related thereto
    • H01L24/01Means for bonding being attached to, or being formed on, the surface to be connected, e.g. chip-to-package, die-attach, "first-level" interconnects; Manufacturing methods related thereto
    • H01L24/26Layer connectors, e.g. plate connectors, solder or adhesive layers; Manufacturing methods related thereto
    • H01L24/31Structure, shape, material or disposition of the layer connectors after the connecting process
    • H01L24/32Structure, shape, material or disposition of the layer connectors after the connecting process of an individual layer connector
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01LSEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
    • H01L2224/00Indexing scheme for arrangements for connecting or disconnecting semiconductor or solid-state bodies and methods related thereto as covered by H01L24/00
    • H01L2224/01Means for bonding being attached to, or being formed on, the surface to be connected, e.g. chip-to-package, die-attach, "first-level" interconnects; Manufacturing methods related thereto
    • H01L2224/26Layer connectors, e.g. plate connectors, solder or adhesive layers; Manufacturing methods related thereto
    • H01L2224/2612Auxiliary members for layer connectors, e.g. spacers
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01LSEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
    • H01L2224/00Indexing scheme for arrangements for connecting or disconnecting semiconductor or solid-state bodies and methods related thereto as covered by H01L24/00
    • H01L2224/01Means for bonding being attached to, or being formed on, the surface to be connected, e.g. chip-to-package, die-attach, "first-level" interconnects; Manufacturing methods related thereto
    • H01L2224/26Layer connectors, e.g. plate connectors, solder or adhesive layers; Manufacturing methods related thereto
    • H01L2224/28Structure, shape, material or disposition of the layer connectors prior to the connecting process
    • H01L2224/29Structure, shape, material or disposition of the layer connectors prior to the connecting process of an individual layer connector
    • H01L2224/29001Core members of the layer connector
    • H01L2224/29075Plural core members
    • H01L2224/29076Plural core members being mutually engaged together, e.g. through inserts
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01LSEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
    • H01L2924/00Indexing scheme for arrangements or methods for connecting or disconnecting semiconductor or solid-state bodies as covered by H01L24/00
    • H01L2924/10Details of semiconductor or other solid state devices to be connected
    • H01L2924/11Device type
    • H01L2924/14Integrated circuits
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01LSEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
    • H01L33/00Semiconductor devices having potential barriers specially adapted for light emission; Processes or apparatus specially adapted for the manufacture or treatment thereof or of parts thereof; Details thereof
    • H01L33/48Semiconductor devices having potential barriers specially adapted for light emission; Processes or apparatus specially adapted for the manufacture or treatment thereof or of parts thereof; Details thereof characterised by the semiconductor body packages
    • H01L33/62Arrangements for conducting electric current to or from the semiconductor body, e.g. lead-frames, wire-bonds or solder balls
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01SDEVICES USING THE PROCESS OF LIGHT AMPLIFICATION BY STIMULATED EMISSION OF RADIATION [LASER] TO AMPLIFY OR GENERATE LIGHT; DEVICES USING STIMULATED EMISSION OF ELECTROMAGNETIC RADIATION IN WAVE RANGES OTHER THAN OPTICAL
    • H01S5/00Semiconductor lasers
    • H01S5/02Structural details or components not essential to laser action
    • H01S5/022Mountings; Housings
    • H01S5/0235Method for mounting laser chips
    • H01S5/02355Fixing laser chips on mounts
    • H01S5/0237Fixing laser chips on mounts by soldering
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01SDEVICES USING THE PROCESS OF LIGHT AMPLIFICATION BY STIMULATED EMISSION OF RADIATION [LASER] TO AMPLIFY OR GENERATE LIGHT; DEVICES USING STIMULATED EMISSION OF ELECTROMAGNETIC RADIATION IN WAVE RANGES OTHER THAN OPTICAL
    • H01S5/00Semiconductor lasers
    • H01S5/02Structural details or components not essential to laser action
    • H01S5/024Arrangements for thermal management

Landscapes

  • Engineering & Computer Science (AREA)
  • Computer Hardware Design (AREA)
  • Microelectronics & Electronic Packaging (AREA)
  • Power Engineering (AREA)
  • Die Bonding (AREA)

Abstract

PURPOSE:To make the thermal resistance of a die bonding part low, prevent the deformation of a semiconductor chip, and improve the reliability, by interposing a high thermal conductivity plate composed of high thermal conductivity material in a bonding layer composed of bonding material. CONSTITUTION:A metallized layer 5 is formed on the rear of a semiconductor chip 1 for bonding to the brazing material (bonding material) 4. A metallized layer 6 of three-layered structure is formed on the main surface of a die bonding substrate 2 in the same manner as the chip 1. A high thermal conductivity plate 3 is formed by using high thermal conductivity material having a thermal expansion coefficient nearly equal to the intermediate value between the chip 1 and the substrate 2. Fluid grooves 3a having semicircular sections are formed on both surfaces of the plate 3. The brazing material 4 easily flows in the grooves 3 toward the outer periphery, and can be formed as thin as possible. Thereby the thermal conductivity of the bonding layer can be improved, the heat dissipating efficiency can be enhanced, the deterioration of element characteristics and the decrease of reliability of the bonding layer can be prevented, the thermal conductivity is increased, the deformation of the chip is prevented, and handling properties and reliability can be improved.

Description

【発明の詳細な説明】 [産業上の利用分野コ 本発明は、半導体集積回路装置の製造技術に関し、特に
半導体集積回路装置のダイボンディング技術において、
ダイボンディング部の高熱伝導化および高精度化構造が
可能とされ、放熱効率の向上を図ることができる半導体
集積回路装置およびそれに用いられるプリフォーム接合
材に適用して有効な技術に関する。
DETAILED DESCRIPTION OF THE INVENTION [Field of Industrial Application] The present invention relates to a manufacturing technology for semiconductor integrated circuit devices, and particularly to a die bonding technology for semiconductor integrated circuit devices.
The present invention relates to a technology that is effective when applied to a semiconductor integrated circuit device and a preform bonding material used therein, which enables a die bonding part to have a high thermal conductivity and a highly precise structure, and which can improve heat dissipation efficiency.

[従来の技術] 近年、半導体集積回路装置の高密度化および高集積化に
伴い、消費電力密度の急上昇がもたらされ、電子計算機
などの熱問題は厳しい一面を持つようになってきている
。このような状況の中で、半導体チップ背面からの冷却
技術が重要となりつつあり、ダイボンディング技術にお
ける熱経路での熱抵抗低減が重要課題となっている。ま
た、半導体チップの背面固着時におけるチップ変形の問
題も、寸法精度の向上により顕在化してきている。
[Prior Art] In recent years, as semiconductor integrated circuit devices have become denser and more highly integrated, power consumption density has increased sharply, and heat problems in electronic computers and the like have become more severe. Under these circumstances, cooling technology from the back side of semiconductor chips is becoming important, and reducing thermal resistance in the thermal path in die bonding technology has become an important issue. Furthermore, the problem of chip deformation when the back surface of a semiconductor chip is fixed has become more apparent due to improvements in dimensional accuracy.

また、従来のダイボンディング技術としては、たとえば
株式会社電気書院、1987年発行[LSI設計製作技
術JP118〜P119、または社団法人電子通信学会
、昭和59年11月30日発行rLSIハンドブックJ
P406〜P408などの文献にと載されるように、半
導体チップをダイボンディング基板に接着する接着方法
としては、共晶合合法、はんだ接着法および樹脂接着法
が用いられている。
Conventional die bonding technology includes, for example, LSI Design and Manufacturing Technology JP118-P119 published by Denki Shoin Co., Ltd. in 1987, or rLSI Handbook J published by the Institute of Electronics and Communication Engineers, November 30, 1987.
As described in documents such as P406 to P408, the eutectic bonding method, the solder bonding method, and the resin bonding method are used as bonding methods for bonding a semiconductor chip to a die bonding substrate.

たとえば、共晶合合法は、Au−Si共晶合金の融点が
370℃と比較的低いことから広く用いられている。こ
の共晶合金法は、ダイボンディング時の酸化を防止する
ため、N2 またはN2+H2雰囲気中において400
℃前後に加熱しながら、Auメッキされたグイパッドに
半導体チップ背面を押し付け、Au−Si共晶反応を行
わせて接合する方法である。この時、共晶反応を起こし
易くするために、接合部分に振動を与える方法がとられ
ている。また、この合金層をさらに良好なものにするた
め、半導体チップの背面にAuを蒸着したり、またはA
u箔を挟む方法がとられている。
For example, the eutectic synthesis method is widely used because the melting point of Au-Si eutectic alloy is relatively low at 370°C. This eutectic alloy method uses 400°C in an N2 or N2+H2 atmosphere to prevent oxidation during die bonding.
This is a method of bonding by pressing the back surface of a semiconductor chip onto an Au-plated Gui pad while heating it to around 0.degree. C. to cause an Au-Si eutectic reaction. At this time, in order to facilitate the eutectic reaction, a method of applying vibration to the bonded portion is used. In addition, in order to make this alloy layer even better, Au is vapor-deposited on the back surface of the semiconductor chip, or A
A method of sandwiching U foil is used.

[発明が解決しようとする課題] ところが、前記のような従来技術においては、半導体チ
ップ背面とダイボンディング基板とを固着するダイボン
ディング部の高熱伝導化、および半導体チップの変形の
点について配慮がされておらず、ダイボンディング部の
高熱抵抗化および熱ストレスが発生するという欠点があ
る。
[Problems to be Solved by the Invention] However, in the above-mentioned prior art, consideration has not been given to increasing the thermal conductivity of the die bonding portion that fixes the back surface of the semiconductor chip and the die bonding substrate, and to preventing deformation of the semiconductor chip. However, there is a disadvantage that the die bonding part has high thermal resistance and thermal stress occurs.

従って、従来のダイボンディング技術においては、半導
体集積回路装置におけるダイボンディング部および素子
表面上におけるマイクロ接続部の信頼性が得られないと
いう問題がある。
Therefore, in the conventional die bonding technology, there is a problem in that reliability of the die bonding portion in the semiconductor integrated circuit device and the micro-connection portion on the element surface cannot be obtained.

そこで、本発明の目的は、ダイボンディング部の高熱伝
導化による低熱抵抗化が可能とされ、かつ熱ストレスの
緩和により半導体チップの変形防止および信頼性の向上
が可能とされる半導体集積回路装置およびそれに用いら
れるプリフォーム接合材を提供することにある。
SUMMARY OF THE INVENTION Accordingly, an object of the present invention is to provide a semiconductor integrated circuit device and a semiconductor integrated circuit device, which can reduce thermal resistance by increasing thermal conductivity of a die bonding part, and can prevent deformation of semiconductor chips and improve reliability by alleviating thermal stress. An object of the present invention is to provide a preform bonding material used therefor.

本発明の前記ならびにその他の目的と新規な特微は、本
明細書の記述および添付図面から明らかになるであろう
The above and other objects and novel features of the present invention will become apparent from the description of this specification and the accompanying drawings.

口課題を解決するための手段] 本願において開示される発明のうち、代表的なものの概
要を簡単に説明すれば、下記のとおりである。
Means for Solving the Problems] Among the inventions disclosed in this application, a brief overview of typical inventions is as follows.

すなわち、本発明の半導体集積回路装置は、半導体チッ
プが接合材を介してダイボンディング基板に実装される
半導体集積回路装置であって、前記接合材による接合層
に高熱伝導材料から形成される板状の高熱伝導プレート
が介在されるものである。
That is, the semiconductor integrated circuit device of the present invention is a semiconductor integrated circuit device in which a semiconductor chip is mounted on a die bonding substrate via a bonding material, and the bonding layer made of the bonding material has a plate shape made of a highly thermally conductive material. A high thermal conductivity plate is interposed.

また、前記高熱伝導プレートが、前記半導体チップの熱
膨張係数と、前記ダイボンディング基板の熱膨張係数と
の間の熱膨張係数とされるものである。
Further, the high thermal conductivity plate has a thermal expansion coefficient between that of the semiconductor chip and that of the die bonding substrate.

さらに、前記高熱伝導プレートが、該高熱伝導プレート
の両面に溝、または両面に貫通される複数の貫通孔が形
成されるものである。
Further, the high heat conduction plate has grooves formed on both sides of the high heat conduction plate, or a plurality of through holes extending through both sides.

また、本発明の半導体集積回路装置に用いられるプリフ
ォーム接合材は、前記高熱伝導プレートが、前記半導体
チップと前記ダイボンディング基板との接合層に介在さ
れるものである。
Further, in the preform bonding material used in the semiconductor integrated circuit device of the present invention, the high thermal conductivity plate is interposed in a bonding layer between the semiconductor chip and the die bonding substrate.

[作用コ 前記した半導体集積回路装置によれば、半導体チップと
ダイボンディング基板との接合層に高熱伝導材料から形
成される板状の高熱伝導プレートが介在されることによ
り、高熱伝導化が可能とされる接合層が形成され、半導
体集積回路装置の放熱効率の向上を図ることができる。
[Function] According to the semiconductor integrated circuit device described above, high thermal conductivity can be achieved by interposing a plate-like high thermal conductive plate made of a high thermal conductive material in the bonding layer between the semiconductor chip and the die bonding substrate. A bonding layer is formed to improve the heat dissipation efficiency of the semiconductor integrated circuit device.

また、高熱伝導プレートを、半導体チップの熱膨張係数
と、ダイボンディング基板の熱膨張係数との間の熱膨張
係数とすることにより、半導体チップとダイボンディン
グ基板との熱膨張率差により生じる熱ストレスを緩和す
ることができる。
In addition, by making the high thermal conductivity plate have a thermal expansion coefficient between that of the semiconductor chip and that of the die bonding substrate, thermal stress caused by the difference in thermal expansion coefficient between the semiconductor chip and the die bonding substrate can be avoided. can be alleviated.

さらに、高熱伝導プレートに、その両面に溝、または両
面に貫通される複数の貫通孔を形成することにより、接
合材が溝を通じて外周部に流動されたり、または貫通孔
に流出され、接合層を可能な限り薄くできるので、さら
にダイボンディング層の高熱伝導化が可能である また、前記した半導体集積回路装置に用いられるプリフ
ォーム接合材は、高熱伝導プレートが、半導体チップと
ダイボンディング基板との接合層に介在されて形成され
ることにより、ダイボンディング工程を容易に行うこと
ができる。
Furthermore, by forming grooves on both sides of the high thermal conductivity plate or a plurality of through holes penetrating both sides, the bonding material can flow to the outer periphery through the grooves or flow out into the through holes, forming a bonding layer. Since it can be made as thin as possible, it is possible to further increase the thermal conductivity of the die bonding layer.In addition, the preform bonding material used in the semiconductor integrated circuit device described above has a high thermal conductivity plate that connects the semiconductor chip and the die bonding substrate. By being formed between layers, the die bonding process can be easily performed.

[実施例1コ 第1図は本発明の一実施例である半導体集積回路装置の
要部を示す断面図、第2図(a),(b)および(C)
は本実施例の半導体集積回路装置に用いられる高熱伝導
プレートを示す斜視図、第3図は本実施例の半導体集積
回路装置に最適なプリフォーム接合材を示す断面図であ
る。
[Embodiment 1] Figure 1 is a sectional view showing the main parts of a semiconductor integrated circuit device which is an embodiment of the present invention, and Figures 2 (a), (b) and (C).
3 is a perspective view showing a high thermal conductivity plate used in the semiconductor integrated circuit device of this embodiment, and FIG. 3 is a sectional view showing a preform bonding material most suitable for the semiconductor integrated circuit device of this embodiment.

まず、第1図により本実施例の半導体集積回路装置の構
成を説明する。
First, the configuration of the semiconductor integrated circuit device of this embodiment will be explained with reference to FIG.

本実施例の半導体集積回路装置は、たとえば半導体チッ
プ1がダイボンディング基板2に実装される半導体集積
回路装置とされ、半導体チップ1の背面が高熱伝導プレ
ート3を介在するろう材(接合材)4によってダイボン
ディング基板2の主面上に溶融固着されている。
The semiconductor integrated circuit device of this embodiment is, for example, a semiconductor integrated circuit device in which a semiconductor chip 1 is mounted on a die bonding substrate 2, and the back surface of the semiconductor chip 1 is a brazing material (bonding material) 4 with a high thermal conductivity plate 3 interposed therebetween. is melted and fixed onto the main surface of the die bonding substrate 2.

半導体チップ1は、ろう材4と接合可能にその背面にメ
タライズ層5が形成されている。また、メタライズ層5
は、たとえば下層よりCr,Ti,Wなどの接着層、N
i,Pt,Pd,Cu,Moなどのバリア層、Auなど
の酸化防止層が組み合わされ、三層構造の複合膜から形
成されている。
A metallized layer 5 is formed on the back surface of the semiconductor chip 1 so that it can be joined to a brazing material 4. In addition, the metallized layer 5
For example, from the bottom layer, an adhesive layer such as Cr, Ti, W, etc., N
A composite film with a three-layer structure is formed by combining barrier layers such as i, Pt, Pd, Cu, and Mo, and antioxidation layers such as Au.

ダイボンディング基板2は、半導体チップ1と同様に、
三層構造のメタライズ層6がその主面に形成されている
The die bonding substrate 2, like the semiconductor chip 1,
A metallized layer 6 having a three-layer structure is formed on its main surface.

高熱伝導プレート3は、半導体チップ1とダイボンディ
ング基板2との中間付近の熱膨張率を有する高熱伝導材
料によって形成されている。たとえば、半導体チップ1
がSi(シリコン)、ダイボンディング基板2がAj!
2 03  (アルミナ)で形成される場合には、それ
ぞれの熱膨張率が4.2X 1 0−’+jeg−’、
6. 7 X I Q−’deg−’なので、これらの
中間付近である5. I X 1 0−’deg −’
の熱膨張率を有するMo(モリブデン)などが使用され
る。あるいは、半導体チップ1がGaAs(6.5” 
1 0−’deg −’) 、ダイボンディング基板2
がアルミナ(6. 7 X 1 0−’deg伺)で形
成される場合には、これらと同等の熱膨張率を有するC
u−W複合材料(6. 5 x 1 0−’deg−’
)などが用イラレる。
The high thermal conductivity plate 3 is made of a high thermal conductivity material having a coefficient of thermal expansion near the middle between the semiconductor chip 1 and the die bonding substrate 2. For example, semiconductor chip 1
is Si (silicon), and die bonding substrate 2 is Aj!
203 (alumina), the respective thermal expansion coefficients are 4.2X 10-'+jeg-',
6. 7 X I Q-'deg-', so 5. I X 1 0-'deg-'
Mo (molybdenum) or the like is used, which has a coefficient of thermal expansion of . Alternatively, the semiconductor chip 1 may be made of GaAs (6.5”
1 0-'deg-'), die bonding substrate 2
is made of alumina (6.7
u-W composite material (6.5 x 1 0-'deg-'
) etc. are irritating.

また、高熱伝導プレート3は、第2図(a)〜(C)に
示すようにその両面に半円断面の流動溝3aが形成され
ている。そして、この流動溝3aによってろう材4が外
周方向に流動し易い構造とされ、ろう材4を可能な限り
薄くできる構造となっている。
Further, as shown in FIGS. 2(a) to 2(C), the high thermal conductivity plate 3 has flow grooves 3a each having a semicircular cross section formed on both sides thereof. The flow groove 3a allows the brazing filler metal 4 to easily flow in the outer circumferential direction, so that the brazing filler metal 4 can be made as thin as possible.

たとえば、第2図(a)は高熱伝導プレート30両面に
ストライブ状、また第2図ら)は高熱伝導プレート3の
重心から放射状に、さらに第2図(C)においては対角
線方向へストライプ状に流動溝3aが形成され、それぞ
れの両面において流動溝3aの方向および位置がずらさ
れて形成されることによって高熱伝導プレート3自体の
強度が保持される構造とされている。
For example, in FIG. 2(a), there are stripes on both sides of the high thermal conductivity plate 30, and in FIG. Flow grooves 3a are formed, and the direction and position of the flow grooves 3a are shifted from each other on each surface, so that the strength of the high thermal conductivity plate 3 itself is maintained.

ろう材4は、たとえばPb−Sn,Au−Sn,Pb−
Ag系はんだが用いられ、第3図に示すようなろう材4
に高熱伝導プレート3が介在されたプリフォームろう材
7とされている。たとえば、ろう材4がPb−lQ%S
nのプリフォームろう材7の場合には、ダイボンディン
グ層8がろう材4単体く熱伝導率= Q.Q 5 2c
al/cm − sec  − deg)に比べて、M
Oによる高熱伝導プレート3の介在で約6倍、Cu−W
複合材料で約8倍の熱伝導率を持たせることができる。
The brazing filler metal 4 is, for example, Pb-Sn, Au-Sn, Pb-
Ag-based solder is used, and the brazing material 4 as shown in Fig. 3 is used.
The preform brazing material 7 has a high thermal conductivity plate 3 interposed therebetween. For example, if the brazing filler metal 4 is Pb-lQ%S
In the case of the preform brazing filler metal 7 of n, the die bonding layer 8 is the brazing filler metal 4 alone, and the thermal conductivity = Q. Q 5 2c
al/cm - sec - deg), M
With the intervention of the high thermal conductivity plate 3 due to O, the Cu-W
Composite materials can have approximately eight times the thermal conductivity.

次に、本実施例の作用について説明する。Next, the operation of this embodiment will be explained.

以上のように構成される本実施例の半導体集積回路装董
においては、プリフォームろう材7に高熱伝導プレート
3が介在されることにより、ろう材4によるダイボンデ
ィング層8の高熱伝導化を図ることができる。
In the semiconductor integrated circuit device of this embodiment configured as described above, the high thermal conductivity plate 3 is interposed in the preform brazing material 7, thereby increasing the thermal conductivity of the die bonding layer 8 by the brazing material 4. be able to.

この場合に、高熱伝導プレート3の両面に流動溝3aが
形成されることにより、ろう材4を可能な限り薄《でき
るので、さらにダイボンディング層8の高熱伝導化が可
能である。
In this case, by forming the flow grooves 3a on both sides of the high thermal conductivity plate 3, the brazing filler metal 4 can be made as thin as possible, so that the die bonding layer 8 can be made to have a higher thermal conductivity.

また、高熱伝導プレート3が使用されることにより、半
導体チップ1とダイボンディング基板2との熱膨張率差
により生じる熱ストレスを緩和することができる。
Further, by using the high thermal conductivity plate 3, thermal stress caused by the difference in thermal expansion coefficient between the semiconductor chip 1 and the die bonding substrate 2 can be alleviated.

従って、本実施例の半導体集積回路装置によれば、半導
体チップ1の放熱性が向上され、熱ストレスによる素子
特性劣化やダイボンディング層8の信頼性の低下を防止
することができる。
Therefore, according to the semiconductor integrated circuit device of this embodiment, the heat dissipation of the semiconductor chip 1 is improved, and it is possible to prevent deterioration of element characteristics and reliability of the die bonding layer 8 due to thermal stress.

また、本実施例の半導体集積回路装置に第3図のような
プリフォームろう材7が使用されることにより、半導体
チップ1のダイボンディング工程が容易とされ、特に高
熱伝導プレート3が超薄膜化された場合のハンドリング
性の向上が可能である。
Further, by using the preform brazing material 7 as shown in FIG. 3 in the semiconductor integrated circuit device of this embodiment, the die bonding process of the semiconductor chip 1 is facilitated, and in particular, the highly thermally conductive plate 3 is made into an ultra-thin film. It is possible to improve handling performance when

[実施例2] 第4図は本発明の他の実施例である半導体集積回路装萱
の要部を示す断面図である。
[Embodiment 2] FIG. 4 is a sectional view showing a main part of a semiconductor integrated circuit device according to another embodiment of the present invention.

本実施例の半導体集積回路装置は、第4図に示すように
半導体チップ1がダイボンディング基板2に実装される
半導体集積回路装置とされ、実施例1との相違点は半導
体チップ1の背面が高熱伝導プレート3を介在するシリ
コンゴム(接合材)9によってダイボンディング基板2
の主面上に固着されている点である。
The semiconductor integrated circuit device of this embodiment is a semiconductor integrated circuit device in which a semiconductor chip 1 is mounted on a die bonding substrate 2 as shown in FIG. Die bonding substrate 2 by silicon rubber (bonding material) 9 with high thermal conductivity plate 3 interposed
It is a point fixed on the main surface of.

すなわち、本実施例のシリコンゴム9による接合は、ダ
イボンディング基板2が熱膨張率の大きいCu (1 
7.O X I Q−’deg−’)などによって形成
され、S1やGaAsなどの半導体チップ1がダイボン
ディングされる場合に適用される。
That is, in the bonding using the silicone rubber 9 of this embodiment, the die bonding substrate 2 is made of Cu (1
7. OXIQ-'deg-'), etc., and is applied when the semiconductor chip 1 of S1, GaAs, etc. is die-bonded.

また、この場合の高熱伝導プレート3としては、半導体
チップ1とダイボンディング基板2との間の熱膨張率を
有するC u−W (8. 5 X I Q−’deg
−’) , Cu−Mo (8.O X 1 0−@d
eg −’) , Af−S i  (13.5X1 
0−’deg −’) , Ni  (12.8XIO
−’deg −’) ,  Fe (12.OX1 0
−’deg −’),Mo(5.IX1ヒ1deg−1
)などの高熱伝導材料が使用され、実施例1と同様にそ
の両面に流動溝3aが形成されている。
In addition, the high thermal conductivity plate 3 in this case is Cu-W (8.5
-') , Cu-Mo (8.O X 1 0-@d
eg -'), Af-S i (13.5X1
0-'deg-'), Ni (12.8XIO
-'deg -') , Fe (12.OX1 0
-'deg-'), Mo(5.IX1hi1deg-1
) is used, and similarly to the first embodiment, flow grooves 3a are formed on both sides thereof.

さらに、シリコンゴム9自体の熱伝導度を上げるために
、高熱伝導度を有するAg.ダイヤモンド粉末などの各
種フィラーが含有される。
Furthermore, in order to increase the thermal conductivity of the silicone rubber 9 itself, Ag. Contains various fillers such as diamond powder.

従って、本実施例の半導体集積回路装首によれば、特に
半導体チップ1とダイボンディング基板2との熱膨張率
差が大きい場合に、実施例1と同様にダイボンディング
層8の高熱伝導化を図ることができると同時に、半導体
チップ1とダイボンディング基板2との熱膨張率差によ
って生じる熱ストレスの影響を低減することが可能であ
る。
Therefore, according to the semiconductor integrated circuit mounting of this embodiment, especially when the difference in thermal expansion coefficient between the semiconductor chip 1 and the die bonding substrate 2 is large, the die bonding layer 8 can be made to have high thermal conductivity as in the first embodiment. At the same time, it is possible to reduce the influence of thermal stress caused by the difference in thermal expansion coefficient between the semiconductor chip 1 and the die bonding substrate 2.

[実施例3コ 第5図は本発明のさらに他の実施例である半導体集積回
路装置の要部を示す断面図、第6図は本実施例の半導体
集積回路装置に用いられる高熱伝導プレートの断面図で
ある。
[Embodiment 3] Fig. 5 is a sectional view showing the main parts of a semiconductor integrated circuit device according to another embodiment of the present invention, and Fig. 6 is a diagram showing a high thermal conductivity plate used in the semiconductor integrated circuit device of this embodiment. FIG.

本実施例の半導体集積回路装置は、第5図に示すように
半導体チップ1がダイボンディング基板2に実装される
半導体集積回路装置とされ、実施例1および2との相違
点は高熱伝導プレート3に複数の貫通孔3bが形成され
ている点である。
The semiconductor integrated circuit device of this embodiment is a semiconductor integrated circuit device in which a semiconductor chip 1 is mounted on a die bonding substrate 2 as shown in FIG. The point is that a plurality of through holes 3b are formed.

すなわち、本実施例の高熱伝導プレート3は、第6図に
示すようにその両面に貫通される複数の円筒状の貫通孔
3bが形成され、ろう材4またはシリコンゴム9が圧接
されて逃げ場を失った時に、これらの量が貫通孔3bに
流出されることによって調整され、ダイボンディング層
8の高熱伝導化を図るために可能な限り薄くできる構造
とされている。
That is, as shown in FIG. 6, the high thermal conductivity plate 3 of this embodiment has a plurality of cylindrical through holes 3b formed on both sides thereof, and the brazing material 4 or silicone rubber 9 is press-welded to provide an escape area. When lost, these amounts are adjusted by flowing out into the through hole 3b, and the structure is such that the die bonding layer 8 can be made as thin as possible in order to achieve high thermal conductivity.

従って、本実施例の半導体集積回路装置によれば、実施
例1および2のようにろう材4またはシリコンゴム9が
外周方向に流動されることな《、高熱伝導プレート3の
貫通孔3bに流出されることによって高熱伝導プレート
3の大きさの範囲内においてろう材4またはシリコンゴ
ム9を可能な限り薄くすることができる。これにより、
実施例1および2と同様にダイボンディング層8の高熱
伝導化が可能とされ、半導体チップ1の放熱性を向上さ
せることができると同時に、半導体チップ1とダイボン
ディング基板2との熱膨張率差によって生じる熱ストレ
スの影響を低減することができる。
Therefore, according to the semiconductor integrated circuit device of this embodiment, the brazing filler metal 4 or the silicone rubber 9 is not flowed toward the outer periphery as in the first and second embodiments, but flows into the through holes 3b of the high thermal conductivity plate 3. By doing so, the brazing material 4 or the silicone rubber 9 can be made as thin as possible within the size range of the high thermal conductivity plate 3. This results in
As in Examples 1 and 2, the die bonding layer 8 can be made to have high thermal conductivity, and the heat dissipation of the semiconductor chip 1 can be improved, while the difference in thermal expansion coefficient between the semiconductor chip 1 and the die bonding substrate 2 can be improved. It is possible to reduce the effects of heat stress caused by

以上、本発明者によってなされた発明を実施例1〜3に
基づき具体的に説明したが、本発明は前記各実施例に限
定されるものではなく、その要旨を逸脱しない範囲で種
々変更可能であることはいうまでもない。
As above, the invention made by the present inventor has been specifically explained based on Examples 1 to 3. However, the present invention is not limited to the above-mentioned Examples, and can be modified in various ways without departing from the gist thereof. It goes without saying that there is.

たとえば、実施例1および2の半導体集積回路装置につ
いては、高熱伝導プレート3の両面に半円断面の流動溝
3aが第2図(a)〜(C)のような配置に形成される
場合について説明したが、本発明は前記各実施例に限定
されるものではなく、たとえば流動溝3aの形状につい
ては半楕円または多角形断面などの形状についても適用
可能とされ、また流動溝3aの配置についても格子状な
ど、他の種々の変形が可能である。
For example, in the semiconductor integrated circuit devices of Examples 1 and 2, the flow grooves 3a with semicircular cross sections are formed on both sides of the high thermal conductivity plate 3 in the arrangement shown in FIGS. 2(a) to 2(C). Although described above, the present invention is not limited to the above-mentioned embodiments. For example, the shape of the flow groove 3a can be applied to a semi-elliptical or polygonal cross section, and the arrangement of the flow groove 3a can also be applied. Various other deformations such as a lattice shape are also possible.

また、実施例3における高熱伝導プレート3についても
、円筒状の貫通孔3bが形成される場合に限定されず、
たとえば四角柱などの角筒状の貫通孔3bが形成される
高熱伝導プレート3についても適用可能である。
Further, the high thermal conductivity plate 3 in Example 3 is not limited to the case where the cylindrical through hole 3b is formed,
For example, the present invention can also be applied to a high thermal conductivity plate 3 in which a rectangular cylinder-shaped through hole 3b such as a square prism is formed.

[発明の効果] 本願において開示される発明のうち、代表的なものによ
って得られる効果を簡単に説明すれば、下記のとおりで
ある。
[Effects of the Invention] Among the inventions disclosed in this application, the effects obtained by typical inventions are briefly described below.

(1).半導体チップが接合材を介してダイボンディン
グ基板に実装される半導体集積回路装置において、接合
材による接合層に高熱伝導材料から形成される板状の高
熱伝導プレートが介在されることにより、接合層の高熱
伝導化が可能とされるので、半導体集積回路装置の放熱
効率の向上を図ることができる。
(1). In a semiconductor integrated circuit device in which a semiconductor chip is mounted on a die bonding substrate via a bonding material, a plate-like high thermal conductivity plate made of a highly thermally conductive material is interposed in the bonding layer made of the bonding material. Since high thermal conductivity is possible, the heat dissipation efficiency of the semiconductor integrated circuit device can be improved.

(2).高熱伝導プレートが、半導体チップの熱膨張係
数と、ダイボンディング基板の熱膨張係数との間の熱膨
張係数とされることにより、半導体チップとダイボンデ
ィング基板との熱膨張率差により生じる熱ストレスを緩
和することができるので、熱ストレスによる素子特性劣
化や接合層の信頼性の低下を防止することができる。
(2). Since the high thermal conductivity plate has a thermal expansion coefficient between that of the semiconductor chip and that of the die bonding substrate, it can reduce thermal stress caused by the difference in thermal expansion coefficient between the semiconductor chip and the die bonding substrate. Since thermal stress can be relaxed, it is possible to prevent deterioration of device characteristics and decrease in reliability of the bonding layer due to thermal stress.

(3).高熱伝導プレートが、その両面に溝、または両
面に貫通される複数の貫通孔が形成されることにより、
接合材を溝を通じて外周部に流動させたり、または貫通
孔に流出させ、接合層を可能な限り薄くすることができ
るので、半導体集積回路装置のさらに高熱伝導化が可能
である。
(3). By forming grooves or multiple through holes on both sides of the high heat conductive plate,
Since the bonding layer can be made as thin as possible by flowing the bonding material through the groove to the outer periphery or flowing into the through hole, it is possible to further increase the thermal conductivity of the semiconductor integrated circuit device.

(4).半導体集積回路装置に用いられるプリフォーム
接合材において、高熱伝導プレートが、半導体チップと
ダイボンディング基板との接合層に介在されて形成され
ることにより、ダイボンディング工程が容易とされると
同時に、特に高熱伝導プレートが超薄膜化された場合の
ハンドリング性の向上が可能である。
(4). In the preform bonding material used for semiconductor integrated circuit devices, a high thermal conductivity plate is formed interposed in the bonding layer between the semiconductor chip and the die bonding substrate, thereby facilitating the die bonding process and, in particular, It is possible to improve handling properties when the high thermal conductivity plate is made into an ultra-thin film.

〔5).前記(1)〜(4)により、熱ストレスの緩和
による半導体チップの変形防止および信頼住の向上が可
能とされる半導体集積回路装置およびそれに用いられる
プリフォーム接合材を得ることができる。
[5). According to (1) to (4) above, it is possible to obtain a semiconductor integrated circuit device and a preform bonding material used therein, which can prevent deformation of semiconductor chips by alleviating thermal stress and improve reliability.

【図面の簡単な説明】[Brief explanation of drawings]

第1図は本発明の実施例1である半導体集積回路装置の
要部を示す断面図、 第2図(a), (b)および(C)は実施例1の半導
体集積回路装置に用いられる高熱伝導プレートを示す斜
視図、 第3図は実施例1の半導体集積回路装置に最適なプリフ
ォーム接合材を示す断面図、 第4図は本発明の実施例2である半導体集積回路装置の
要部を示す断面図、 第5図は本発胡の実施例3である半導体集積回路装置の
要部を示す断面図、 第6図は実施例3の半導体集積回路装置に用いられる高
熱伝導プレートを示す断面図である。 1・・・半導体チップ、2・・・ダイボンディング基板
、3・・・高熱伝導プレート、3a・・・流動溝、3b
・・・貫通孔、4・・・ろう材(接合材)、5.6・・
・メタライズ層、7・・・プリフォームろう材(プリフ
ォーム接合材)、8・・・ダイボンディング層、9・・
・ンリコンゴム(接合材)。
FIG. 1 is a cross-sectional view showing the main parts of a semiconductor integrated circuit device according to a first embodiment of the present invention, and FIGS. 2(a), (b), and (C) are used in the semiconductor integrated circuit device according to a first embodiment of the present invention. FIG. 3 is a cross-sectional view showing a preform bonding material most suitable for the semiconductor integrated circuit device of Example 1, and FIG. 4 is a main part of the semiconductor integrated circuit device of Example 2 of the present invention. FIG. 5 is a sectional view showing the main parts of a semiconductor integrated circuit device according to the third embodiment of this invention. FIG. FIG. DESCRIPTION OF SYMBOLS 1... Semiconductor chip, 2... Die bonding board, 3... High thermal conductivity plate, 3a... Flow groove, 3b
...Through hole, 4...Brazing material (bonding material), 5.6...
- Metallized layer, 7... Preform brazing material (preform bonding material), 8... Die bonding layer, 9...
・Nilicon rubber (bonding material).

Claims (1)

【特許請求の範囲】 1、半導体チップが接合材を介してダイボンディング基
板に実装される半導体集積回路装置であって、前記接合
材による接合層に高熱伝導材料から形成される板状の高
熱伝導プレートが介在されることを特徴とする半導体集
積回路装置。 2、前記高熱伝導プレートが、前記半導体チップの熱膨
張係数と、前記ダイボンディング基板の熱膨張係数との
間の熱膨張係数であることを特徴とする請求項1記載の
半導体集積回路装置。 3、前記高熱伝導プレートが、該高熱伝導プレートの両
面に溝、または両面に貫通される複数の貫通孔が形成さ
れることを特徴とする請求項1記載の半導体集積回路装
置。 4、前記高熱伝導プレートが、前記半導体チップと前記
ダイボンディング基板との接合層に介在されることを特
徴とする請求項1、2または3記載の半導体集積回路装
置に用いられるプリフォーム接合材。
[Scope of Claims] 1. A semiconductor integrated circuit device in which a semiconductor chip is mounted on a die bonding substrate via a bonding material, wherein the bonding layer formed by the bonding material has a plate-like high thermal conductivity formed from a high thermal conductivity material. A semiconductor integrated circuit device characterized in that a plate is interposed. 2. The semiconductor integrated circuit device according to claim 1, wherein the high thermal conductivity plate has a thermal expansion coefficient between that of the semiconductor chip and that of the die bonding substrate. 3. The semiconductor integrated circuit device according to claim 1, wherein the high heat conduction plate has grooves formed on both sides thereof, or a plurality of through holes extending through both sides of the high heat conduction plate. 4. The preform bonding material used in a semiconductor integrated circuit device according to claim 1, 2 or 3, wherein the high thermal conductivity plate is interposed in a bonding layer between the semiconductor chip and the die bonding substrate.
JP2013317A 1990-01-23 1990-01-23 Semiconductor integrated circuit device and preform bonding material used in the same Pending JPH03218031A (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP2013317A JPH03218031A (en) 1990-01-23 1990-01-23 Semiconductor integrated circuit device and preform bonding material used in the same

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP2013317A JPH03218031A (en) 1990-01-23 1990-01-23 Semiconductor integrated circuit device and preform bonding material used in the same

Publications (1)

Publication Number Publication Date
JPH03218031A true JPH03218031A (en) 1991-09-25

Family

ID=11829796

Family Applications (1)

Application Number Title Priority Date Filing Date
JP2013317A Pending JPH03218031A (en) 1990-01-23 1990-01-23 Semiconductor integrated circuit device and preform bonding material used in the same

Country Status (1)

Country Link
JP (1) JPH03218031A (en)

Cited By (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
WO2014006682A1 (en) * 2012-07-02 2014-01-09 三菱電機株式会社 Semiconductor device and method for manufacturing same
JP2015053379A (en) * 2013-09-06 2015-03-19 トヨタ自動車株式会社 Semiconductor device, and method for manufacturing semiconductor device
US20160218482A1 (en) * 2015-01-27 2016-07-28 Parviz Tayebati Solder-creep management in high-power laser devices
JP6871524B1 (en) * 2020-03-23 2021-05-12 千住金属工業株式会社 Laminated bonding materials, semiconductor packages and power modules
CN113851755A (en) * 2021-09-18 2021-12-28 东软睿驰汽车技术(沈阳)有限公司 Method and device for determining coefficient of heat conducting pad of battery pack and electronic equipment

Cited By (13)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP5532147B1 (en) * 2012-07-02 2014-06-25 三菱電機株式会社 Semiconductor device and manufacturing method thereof
WO2014006682A1 (en) * 2012-07-02 2014-01-09 三菱電機株式会社 Semiconductor device and method for manufacturing same
JP2015053379A (en) * 2013-09-06 2015-03-19 トヨタ自動車株式会社 Semiconductor device, and method for manufacturing semiconductor device
US11196234B2 (en) 2015-01-27 2021-12-07 TeraDiode, Inc. Solder-creep management in high-power laser devices
US20160218482A1 (en) * 2015-01-27 2016-07-28 Parviz Tayebati Solder-creep management in high-power laser devices
US10044171B2 (en) * 2015-01-27 2018-08-07 TeraDiode, Inc. Solder-creep management in high-power laser devices
US20180375297A1 (en) * 2015-01-27 2018-12-27 Parviz Tayebati Solder-creep management in high-power laser devices
JP6871524B1 (en) * 2020-03-23 2021-05-12 千住金属工業株式会社 Laminated bonding materials, semiconductor packages and power modules
JP2021150559A (en) * 2020-03-23 2021-09-27 千住金属工業株式会社 Laminate bonding material, semiconductor package, and power module
US11712760B2 (en) 2020-03-23 2023-08-01 Senju Metal Industry Co., Ltd. Layered bonding material, semiconductor package, and power module
EP4071257A4 (en) * 2020-03-23 2023-11-29 Senju Metal Industry Co., Ltd. Layered bonding material, semiconductor package, and power module
CN113851755A (en) * 2021-09-18 2021-12-28 东软睿驰汽车技术(沈阳)有限公司 Method and device for determining coefficient of heat conducting pad of battery pack and electronic equipment
CN113851755B (en) * 2021-09-18 2023-09-22 东软睿驰汽车技术(沈阳)有限公司 Battery pack heat conduction pad coefficient determination method and device and electronic equipment

Similar Documents

Publication Publication Date Title
JP2616565B2 (en) Electronic component assembly
US20130134572A1 (en) Semiconductor device including cladded base plate
WO2006039176A1 (en) Die exhibiting an effective coefficient of thermal expansion equivalent to a substrate mounted thereon, and processes of making same
JP2006528846A (en) Integrated heat spreader lid
JP2008543055A (en) Integrated circuit die attach using backside heat spreader
US4320412A (en) Composite material for mounting electronic devices
KR20180095590A (en) Method for manufacturing power semiconductor device and power semiconductor device
US9324674B2 (en) Die substrate assembly and method
US7811862B2 (en) Thermally enhanced electronic package
US20020100963A1 (en) Semiconductor package and semiconductor device
US6770513B1 (en) Thermally enhanced flip chip packaging arrangement
JPH03218031A (en) Semiconductor integrated circuit device and preform bonding material used in the same
JPH08222658A (en) Semiconductor element package and production thereof
JPH08115928A (en) Semiconductor device, and its manufacture
US7075174B2 (en) Semiconductor packaging techniques for use with non-ceramic packages
JPS6161449A (en) Multichip ic package
JP4600130B2 (en) Semiconductor device and manufacturing method thereof
JP2003092383A (en) Power semiconductor device and its heat sink
JPH07335792A (en) Package for mounting semiconductor element
JP3044952B2 (en) Semiconductor chip mounting structure
JPH08222670A (en) Package for mounting semiconductor element
JPS6010633A (en) Semiconductor device
JPH0677678A (en) Heat sink structure
JP2001284501A (en) Heat dissipation
JPH03218030A (en) Semiconductor integrated circuit device and preform bonding material used in the same