JPH0321259B2 - - Google Patents

Info

Publication number
JPH0321259B2
JPH0321259B2 JP18343687A JP18343687A JPH0321259B2 JP H0321259 B2 JPH0321259 B2 JP H0321259B2 JP 18343687 A JP18343687 A JP 18343687A JP 18343687 A JP18343687 A JP 18343687A JP H0321259 B2 JPH0321259 B2 JP H0321259B2
Authority
JP
Japan
Prior art keywords
mold
ceramic
casting
copper
metal
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Expired
Application number
JP18343687A
Other languages
Japanese (ja)
Other versions
JPS6427743A (en
Inventor
Kunio Koyama
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Nippon Steel Corp
Original Assignee
Nippon Steel Corp
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Nippon Steel Corp filed Critical Nippon Steel Corp
Priority to JP18343687A priority Critical patent/JPS6427743A/en
Publication of JPS6427743A publication Critical patent/JPS6427743A/en
Publication of JPH0321259B2 publication Critical patent/JPH0321259B2/ja
Granted legal-status Critical Current

Links

Landscapes

  • Continuous Casting (AREA)

Description

【発明の詳細な説明】[Detailed description of the invention]

産業上の利用分野 本発明は鉄等の金属材の製造における連続鋳造
に使用する鋳型に関するものである。 従来の技術 金属材の製造において、溶融した金属を連続し
て鋳造するいわゆる連続鋳造が、省工程、省エネ
ルギーの面から急速に発達した。 第2図に連続鋳造の一例として水平連続鋳造の
概要を図示する。鋳造は銅製鋳型1を使用して、
その鋳型内にタンデイシユ5からノズル4を使用
し溶融金属6を注入して鋳造する。このとき鋳片
7と鋳型1の潤滑をよくする等を目的として鋳型
1あるいは鋳片7をオシレーシヨンしながら鋳造
する。しかしこの方法で鋳造した鋳片にはオシレ
ーシヨンに基づくコールドシヤツトマークが鋳片
表面に発生し、これによる欠陥発生の欠点があ
る。そして表面欠陥は削りとるなどの対策がとら
れている。 このためコールドシヤツトマークに起因する欠
陥の発生防止に過去多くの提案がされている。そ
の一方法として連続鋳造に使用する鋳型にセラミ
ツク等を使用し、金属を緩冷却しコールドシヤツ
トマークに起因する欠陥を防止する方法がある。 例えば特開昭52−50929号公報に耐火物と黒鉛
管を内装した鋳型、また特開昭58−1519399号公
報に耐熱・潤滑・耐食性サーメツト導管−鋳型で
銅の製造の可能性があることが開示されている。
これらの方法によれば三菱製鋼技術Vol.19、No.
1、2、(1985)に記載されているコールドシヤ
ツトマークが低減する。 しかしこれらの方法でもセラミツクは熱伝導度
が小さく引抜に耐ええる凝固速度を確保するため
にはセラミツクの厚みが制限される。そしてセラ
ミツクは耐熱衝撃性が小さい、あるいは耐熱衝撃
性のあるものは柔らかく耐侵食性が弱い等で現在
まだ十分なものは見あたらない。 発明が解決しよとする問題点 本発明は、鋳片表面欠陥を防止するために使用
するセラミツク材の熱衝撃割れによる損傷を防止
する鋳型を提供するものである。 問題点を解決するための手段 本発明の要旨とするところは、セラミツクを内
装した金属の連続鋳造用鋳型において、水冷銅鋳
型と該銅鋳型に内装されるセラミツク材と該セラ
ミツクの円周方向に圧縮応力を加えるよう接合さ
れた外側材とからなることを特徴とする金属の連
続鋳造用鋳型にある。 作 用 金属の連続鋳造の鋳片表面欠陥防止に、先に述
べたようにセラミツクあるいはサーメツトを銅鋳
型内に内装する方法が提案されている。しかしこ
れに使用するセラミツク等には溶融金属の侵食に
耐えうる耐浸食性、高温に耐えうる耐熱性、急速
加熱等に耐えうる耐熱衝撃性、あるいは凝固した
金属(鋳片)との、潤滑性、また適正な金属の凝
固をさせるための適正な熱伝導度等多くの特性が
要求される。このため近年数多くの新セラミツク
等が開発されているがこれら特性を十分満足する
ものはまだ見あたらない。 セラミツクは一般的に気孔を多くし、かさを大
きくすれば耐熱衝撃性は向上するが耐浸食性が低
下する、逆にち密にすると耐浸食性は向上するが
耐熱衝撃性は低下する傾向があり、これを両立し
た特性の確保は難しい。さらに潤滑性、熱伝導度
等の性能が要求されるので実用化には多くの問題
がある。 そこで耐熱衝撃性と耐浸食性の両立を検討した
結果、耐浸食性の高い材料(耐熱衝撃性が低い)
に耐熱衝撃性の高い材料を重ね、これにより両特
性を確保するものである。しかしたんに2つの材
料を重ねたあるいは接合したのでは十分な特性は
確保できない。そこで種々検討の結果、耐浸食性
の高い材料に円周方向から均一な圧縮応力が加わ
るよう、その外側に耐熱衝撃性の高い材料を接合
することにより2つの特性が確保できることを見
出したものである。 第1図にセラミツクを内装した鋳型(例)の概
要を図示する。水冷銅鋳型1に内装されたセラミ
ツク材2は一端は溶融金属内まで挿入され、他方
外面は水冷された銅板に接し冷却されるため溶銅
の場合は1000℃以上の温度勾配が付く。また鋳造
始時は加熱された溶融金属が流れこみ、あらかじ
め予熱しておいたとしても急激に加熱される。こ
のため多くのセラミツクは熱衝撃による割れを生
じ、損傷する。 このためセラミツク材にあらかじめ圧縮応力を
加えておけば加熱による膨張を低減し割れ発生を
低減できる。また割れを生じたとしてもこの割れ
が開口することはなく、開口がなければ溶融金属
の浸透凝固によるひつかかりでのブレークアウト
等の問題は発生しない。また均一な圧縮応力を加
えるように外側材3を外周に接合することによ
り、この接合面間の熱伝導度を良くすることがで
き、その分セラミツク材を厚くできるあるいはセ
ラミツクの温度を低くできる等によりセラミツク
の割れ低減ができる。 この均一な圧縮応力を加えた接合方法としては
焼きばめ、鋳込みあるいは熱間静水圧加圧接合等
が好ましく、たんに2分割した材料をネジ等で締
め固定する方法では均一な圧縮応力を加えること
は困難で十分でない。 焼きばめとしては、通常銅鋳型表面は鋳造操業
において300℃程度まで加熱されるため、この温
度でも圧縮応力を確保するには300℃以上に加熱
しての焼きばめが必要である。 鋳込み接合としてはセラミツク材周辺にセラミ
ツク材より低融点の溶融金属等を流し込み凝固さ
せる接合方法で凝固収縮時の応力を加える。また
この接合方法はセラミツク材の若干の凹凸等も無
視できる。 熱間静水圧加圧接合はセラミツク材より降伏荷
重の小さい材料あるいは降伏温度の低い材料を外
側に置き、これに熱間で静水圧を加え接合するも
のであり、加熱温度は300℃以上で材料の溶融温
度以下、そして加圧力は外側材の降伏条件以上と
する。これにより外側材がセラミツクに密着した
接合が確保できる。 またセラミツク材としては先に記したように三
菱製鋼技報Vol.19、No.1、2(1985)等に記載さ
れているBN、TiB2、Si3N4もあるが、好ましい
実施態様としては溶融金属とのぬれが小さく、溶
融金属の浸食が小さいジルコニアあるいはジルコ
ニユウム化合物を含むセラミツクがある。 セラミツクの外側に接合する外側材としては熱
衝撃性が高く、熱伝導度の高いものが好ましい。
例えば銅あるいは銅合金あるいは鉄等の金属、ま
たMo−ZrO2のサーメツト等も熱衝撃性がZrO2
ラミツクより高く使用できる。 なお内装するセラミツクは必ずしも銅鋳型全長
の必要はない。金属の凝固がおこなわれシエルが
形成された以降は凝固した金属の温度が低下し、
浸食性の低下等でカーボンあるいは銅等の補助材
10でもよい。従つて本発明のセラミツク材も必
ずしも銅鋳型全長にわたる必要はなく、タンデイ
シユ接合部から凝固の行なわれシエルの形成され
る100mm程度の範囲にあればよい。ただしこれは
鋳造速度の鋳造条件により異り、鋳造速度が高い
あるいはセラミツクが厚く冷却力が弱い等のとき
は100mm以上必要な場合もある。 なおタンデイシユとの接続も必ずしも第1図に
示したように一体もので接続する必要はなく、第
2図に示したように、ブレークリング等を使用し
て接続することも、セラミツク材上で金属の凝固
が開始するような鋳造条件であれば可能である。 本発明は丸型ビレツト、線材等の水平連続鋳造
に特に有効である。また縦型での鋳造、あるいは
丸以外の型にも利用できる。 実施例 使用した鋳造設備の概要は第2図に示したもの
と同様で、これに第1図に示した鋳型を取付け鋳
造した。鋳型の構造材質はそれぞれの実施例で示
す。鋳造金属はステンレス(SUS304)銅、タン
デイシユ内温度は中周波加熱により1500〜1520℃
に保持した。鋳型内径は10mm、鋳造速度は0.8〜
1.6m/分、オシレーシヨンは40〜80回/分、1
サイクルの引張長さ20mmで行なつた。 第1表に実施例の概要を記す。実施No.1、2は
比較例で、実施No.3〜5は本発明である。 実施No.1は3mm厚のBN焼結管を銅鋳型内面に
ロウ付けし鋳造した。鋳造した鋳片外観は、三菱
製鋼技報Vol.19、1、2、(1985)に記載されて
いるようにコールドシヤツトマーク等の表面欠損
がなく、非常になめなかな鋳片が得られた。しか
し鋳造は10m程で停止した。停止後の鋳型内残留
鋳片は鋳型内が摩耗し外径11mm程になつており、
このため鋳型出口でひつかかり停止したものであ
る。 実施No.2は1mm厚のジルコニアセラミツク管を
銅鋳型で挟み込み鋳造した。実施No.1と同様に表
面欠陥のない滑らかな鋳片が得られたが、12m程
の鋳造で停止した。停止後の鋳型内残留鋳片には
バリ発生が認められ、ジルコニアセラミツクがひ
び割れし、これに溶融金属が浸透凝固したため拘
束され停止したものである。 実施No.3は本発明例で1mm厚のジルコニア−ア
ルミナセラミツク管に温度差300℃になるよう加
熱した3mm厚の鉄管を焼きばめし、その後鉄外径
を16mm(鉄厚2mm)に切削加工し、これを銅鋳型
で挟み込み鋳造した。40分程(50m程)鋳造で
き、鋳片表面にはコールドシヤツトマーク等の方
面欠損がなく、非常に滑らかな鋳片が得られた。
鋳造後のセラミツクは若干のヒビ割れが認められ
たが、これが開口している様子はなかつた。 実施No.4も本発明例で1.5mm厚のジルコニアセ
ラミツク管を3mm厚の銅管に入れ、これを1150℃
に加熱し銅を溶解、その後温度を下げ凝固させ凝
固収縮による圧縮応力をセラミツクに加えた。そ
の後銅外径を16mmに研削し、これを銅鋳型で挟み
込み鋳造した。実施No.3と同様に50分間程(60m
程)鋳造でき、表面欠陥のない鋳片が得られた。
鋳造後のセラミツクはヒビ割れ等の損傷は認めら
れなかつた。 実施No.5も本発明例で0.5mm厚のジルコニアセ
ラミツク管を2.5mm厚の50%モリブデン−ジルコ
ニアサーメツト管に差込み、これを1500℃、1600
気圧の条件で熱間静水圧加圧処理をおこない接合
した。これを銅鋳型で挟み込み鋳造した。実施No.
3、4と同様に50分間程(55m程)鋳造でき、表
面欠陥のない鋳片が得られた。鋳造後のセラミツ
クの損傷は認められなかつた。
INDUSTRIAL APPLICATION FIELD The present invention relates to a mold used for continuous casting in the production of metal materials such as iron. BACKGROUND ART In the production of metal materials, so-called continuous casting, in which molten metal is continuously cast, has rapidly developed from the viewpoint of process and energy savings. FIG. 2 shows an outline of horizontal continuous casting as an example of continuous casting. For casting, use copper mold 1.
Molten metal 6 is injected into the mold using the nozzle 4 from the tundish 5 to perform casting. At this time, the mold 1 or the slab 7 is cast while being oscillated in order to improve the lubrication between the slab 7 and the mold 1. However, the slab cast by this method has the disadvantage that cold shot marks are generated on the surface of the slab due to oscillation, and defects occur due to this. Measures are taken to remove surface defects, such as removing them. For this reason, many proposals have been made in the past to prevent defects caused by cold shot marks. One method is to use ceramic or the like for the mold used in continuous casting and cool the metal slowly to prevent defects caused by cold shot marks. For example, JP-A No. 52-50929 discloses a mold with a refractory and graphite pipe inside, and JP-A No. 58-1519399 describes the possibility of producing copper using a heat-resistant, lubricating, and corrosion-resistant cermet conduit-mold. Disclosed.
According to these methods, Mitsubishi Steel Technology Vol.19, No.
1, 2, (1985) are reduced. However, even with these methods, ceramic has a low thermal conductivity, and the thickness of the ceramic is limited in order to ensure a solidification rate that can withstand drawing. Ceramics have low thermal shock resistance, or those that do have thermal shock resistance are soft and have weak corrosion resistance, so there is currently no suitable material available. Problems to be Solved by the Invention The present invention provides a mold that prevents damage due to thermal shock cracking of ceramic materials used to prevent surface defects in slabs. Means for Solving the Problems The gist of the present invention is to provide a metal continuous casting mold with a ceramic interior, a water-cooled copper mold, a ceramic material inside the copper mold, and and an outer member joined to apply compressive stress. Function: As mentioned above, a method has been proposed in which ceramic or cermet is placed inside a copper mold to prevent defects on the surface of a slab during continuous metal casting. However, the ceramics used for this have corrosion resistance that can withstand the erosion of molten metal, heat resistance that can withstand high temperatures, thermal shock resistance that can withstand rapid heating, etc., and lubricity with solidified metal (slabs). In addition, many properties are required, such as appropriate thermal conductivity for proper metal solidification. For this reason, many new ceramics have been developed in recent years, but none have yet been found that fully satisfy these characteristics. In general, ceramics tend to have more pores and larger bulk, which improves thermal shock resistance but lowers erosion resistance.Conversely, making ceramics more dense improves erosion resistance but tends to reduce thermal shock resistance. , it is difficult to secure characteristics that satisfy both of these requirements. Furthermore, since performance such as lubricity and thermal conductivity is required, there are many problems in putting it into practical use. As a result of considering how to achieve both thermal shock resistance and erosion resistance, we found that materials with high corrosion resistance (low thermal shock resistance)
This is achieved by layering a material with high thermal shock resistance on top of the material, thereby ensuring both properties. However, sufficient properties cannot be ensured simply by stacking or joining two materials. As a result of various studies, we discovered that two properties can be achieved by joining a material with high thermal shock resistance to the outside of a material with high corrosion resistance so that uniform compressive stress is applied from the circumferential direction. be. FIG. 1 shows an outline of a mold (example) with ceramic inside. One end of the ceramic material 2 housed in the water-cooled copper mold 1 is inserted into the molten metal, and the other outer surface is cooled by contacting the water-cooled copper plate, so in the case of molten copper, a temperature gradient of 1000° C. or more is created. Furthermore, at the beginning of casting, heated molten metal flows in and heats up rapidly even if it has been preheated. As a result, many ceramics crack and become damaged due to thermal shock. For this reason, if compressive stress is applied to the ceramic material in advance, expansion due to heating can be reduced and the occurrence of cracks can be reduced. Further, even if a crack occurs, the crack will not open, and if there is no opening, problems such as breakout due to immersion and solidification of the molten metal will not occur. Furthermore, by bonding the outer material 3 to the outer periphery so as to apply uniform compressive stress, the thermal conductivity between the bonded surfaces can be improved, and the ceramic material can be made thicker or the temperature of the ceramic can be lowered. This can reduce cracking of ceramic. Shrink fitting, casting, hot isostatic pressure bonding, etc. are preferred as bonding methods that apply uniform compressive stress, whereas methods of simply tightening and fixing two pieces of material with screws, etc. apply uniform compressive stress. It is difficult and not enough. For shrink fitting, the surface of the copper mold is usually heated to about 300°C during casting operations, so it is necessary to heat the mold to 300°C or higher to ensure compressive stress even at this temperature. Cast joining is a joining method in which molten metal or the like having a lower melting point than the ceramic material is poured around the ceramic material and allowed to solidify, applying stress during solidification shrinkage. Furthermore, with this joining method, slight irregularities in the ceramic material can be ignored. Hot isostatic pressure welding involves placing a material with a lower yield load or lower yield temperature than the ceramic material on the outside and applying hot hydrostatic pressure to it. below the melting temperature of the material, and the applied pressure is above the yield condition of the outer material. This ensures that the outer material is tightly bonded to the ceramic. As mentioned above, ceramic materials include BN, TiB 2 and Si 3 N 4 , which are described in Mitsubishi Steel Technical Report Vol. 19, No. 1, 2 (1985), etc., but as a preferred embodiment, There are ceramics containing zirconia or zirconium compounds that have little wettability with molten metal and are less eroded by molten metal. The outer material to be bonded to the outside of the ceramic preferably has high thermal shock resistance and high thermal conductivity.
For example, metals such as copper, copper alloys, or iron, as well as Mo--ZrO 2 cermets, etc., can be used because they have higher thermal shock resistance than ZrO 2 ceramics. Note that the ceramic interior does not necessarily need to be a full-length copper mold. After the metal solidifies and a shell is formed, the temperature of the solidified metal decreases,
An auxiliary material 10 such as carbon or copper may be used to reduce erodibility. Therefore, the ceramic material of the present invention does not necessarily have to extend over the entire length of the copper mold, but may be within a range of about 100 mm from the tundish joint where solidification takes place and a shell is formed. However, this varies depending on the casting speed and casting conditions, and if the casting speed is high or the ceramic is thick and the cooling power is weak, 100 mm or more may be required. It should be noted that the connection to the tundish does not necessarily have to be made in one piece as shown in Figure 1. It is also possible to connect it using a break ring, etc. as shown in Figure 2, or to connect it with metal on ceramic material. This is possible as long as the casting conditions are such that solidification starts. The present invention is particularly effective for horizontal continuous casting of round billets, wire rods, etc. It can also be used for vertical casting or for molds other than round. EXAMPLE The outline of the casting equipment used was the same as that shown in Fig. 2, and the mold shown in Fig. 1 was attached thereto for casting. The structural material of the mold is shown in each example. The casting metal is stainless steel (SUS304) copper, and the temperature inside the tundish is 1500 to 1520℃ due to medium frequency heating.
was held at Mold inner diameter is 10mm, casting speed is 0.8~
1.6m/min, oscillations 40-80 times/min, 1
The cycle was carried out with a tensile length of 20 mm. Table 1 provides an overview of the examples. Examples Nos. 1 and 2 are comparative examples, and Examples Nos. 3 to 5 are those of the present invention. In implementation No. 1, a 3 mm thick BN sintered tube was brazed to the inner surface of a copper mold and cast. As described in Mitsubishi Steel Technical Report Vol. 19, 1, 2, (1985), the appearance of the cast slab has no surface defects such as cold shot marks, and a very smooth slab has been obtained. Ta. However, casting stopped after about 10m. After stopping, the remaining slab in the mold had an outer diameter of about 11 mm due to wear inside the mold.
As a result, the mold got stuck at the exit of the mold and stopped. In Example No. 2, a 1 mm thick zirconia ceramic tube was sandwiched between copper molds and cast. As in Example No. 1, a smooth slab with no surface defects was obtained, but casting stopped after approximately 12 m. After the mold was stopped, burrs were observed in the slab remaining in the mold, and the zirconia ceramic was cracked, and the molten metal penetrated and solidified, which caused the mold to be restrained and stopped. Implementation No. 3 is an example of the present invention, in which a 3 mm thick iron tube heated to a temperature difference of 300°C is shrink-fitted to a 1 mm thick zirconia-alumina ceramic tube, and then the iron outer diameter is cut to 16 mm (iron thickness 2 mm). This was then inserted between copper molds and cast. It was possible to cast for about 40 minutes (approximately 50 m), and a very smooth slab was obtained with no directional defects such as cold shot marks on the surface of the slab.
Although some cracks were observed in the ceramic after casting, there were no signs that the cracks had opened. Implementation No. 4 is also an example of the present invention, in which a 1.5 mm thick zirconia ceramic tube is placed in a 3 mm thick copper tube, and the tube is heated to 1150°C.
The copper was melted by heating, and then the temperature was lowered to solidify and compressive stress due to solidification shrinkage was applied to the ceramic. After that, the outer diameter of the copper was ground to 16 mm, and this was sandwiched between copper molds and cast. Same as implementation No. 3, about 50 minutes (60m
) It was possible to cast a slab with no surface defects.
No cracks or other damage was observed in the ceramic after casting. Implementation No. 5 is also an example of the present invention, in which a zirconia ceramic tube with a thickness of 0.5 mm is inserted into a 50% molybdenum-zirconia cermet tube with a thickness of 2.5 mm, and this is heated at 1500℃ and 1600℃.
They were joined by hot isostatic pressing under atmospheric pressure conditions. This was sandwiched between copper molds and cast. Implementation No.
Similar to 3 and 4, casting was possible for about 50 minutes (about 55 m), and a slab with no surface defects was obtained. No damage to the ceramic was observed after casting.

【表】 発明の効果 本発明によれば、金属の連続鋳造した鋳片の表
面欠陥発生の防止ができ、鋳造後の鋳片の手入れ
が必要なく、鋳造歩留まりの向上、手入れコスト
の低減ができ産業の発達に寄与するものである。
[Table] Effects of the Invention According to the present invention, it is possible to prevent the occurrence of surface defects in continuously cast metal slabs, eliminate the need for maintenance of the slabs after casting, improve casting yields, and reduce maintenance costs. It contributes to the development of industry.

【図面の簡単な説明】[Brief explanation of the drawing]

第1図はセラミツクを内装した金属の連続鋳造
用鋳型の概要を示す断面図である。第2図は金属
の連続鋳造用設備の概要を示す断面図である。 1……銅鋳型、2……内装したセラミツク材、
3……外側材、4……タンデイシユとの接続ノズ
ル、5……タンデイシユ、6……溶融金属、7…
…凝固金属(鋳片)、8……鋳片引抜装置、9…
…ブレークリング、10……カーボンあるいは銅
等の補助材、A……鋳片引抜方向。
FIG. 1 is a sectional view showing an outline of a metal continuous casting mold having a ceramic interior. FIG. 2 is a sectional view showing an outline of equipment for continuous metal casting. 1...Copper mold, 2...Interior ceramic material,
3... Outer material, 4... Connection nozzle with tundish, 5... tundish, 6... Molten metal, 7...
... Solidified metal (slab), 8... Slab drawing device, 9...
...Break ring, 10... Auxiliary material such as carbon or copper, A... Direction of drawing of slab.

Claims (1)

【特許請求の範囲】 1 セラミツクを内装した金属の連続用鋳型にお
いて、水冷銅鋳型と該銅鋳型に内装されるセラミ
ツク材と該セラミツクに円周方向に圧縮応力を加
えるよう接合された外側材とからなることを特徴
とする金属の連続鋳造用鋳型。 2 内装されたセラミツク材と外側材との接合は
焼きばめあるいは鋳込みあるいは熱間静水圧加圧
処理でなされたことを特徴とする特許請求の範囲
第1項記載の金属の連続鋳造用鋳型。 3 内装されたセラミツク材はジルコニアあるい
はジルコニユウム化合物を含むセラミツクである
ことを特徴とする特許請求の範囲第1項または第
2項記載の金属の連続鋳造用鋳型。
[Scope of Claims] 1. A metal continuous mold with a ceramic interior, comprising a water-cooled copper mold, a ceramic material inside the copper mold, and an outer material joined to apply compressive stress to the ceramic in the circumferential direction. A mold for continuous metal casting, characterized by comprising: 2. The mold for continuous metal casting according to claim 1, wherein the inner ceramic material and the outer material are joined by shrink fitting, casting, or hot isostatic pressure treatment. 3. The mold for continuous casting of metal according to claim 1 or 2, wherein the ceramic material contained therein is a ceramic containing zirconia or a zirconium compound.
JP18343687A 1987-07-24 1987-07-24 Mold for continuously casting metal Granted JPS6427743A (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP18343687A JPS6427743A (en) 1987-07-24 1987-07-24 Mold for continuously casting metal

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP18343687A JPS6427743A (en) 1987-07-24 1987-07-24 Mold for continuously casting metal

Publications (2)

Publication Number Publication Date
JPS6427743A JPS6427743A (en) 1989-01-30
JPH0321259B2 true JPH0321259B2 (en) 1991-03-22

Family

ID=16135738

Family Applications (1)

Application Number Title Priority Date Filing Date
JP18343687A Granted JPS6427743A (en) 1987-07-24 1987-07-24 Mold for continuously casting metal

Country Status (1)

Country Link
JP (1) JPS6427743A (en)

Families Citing this family (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH05212500A (en) * 1992-02-05 1993-08-24 Sumitomo Metal Ind Ltd Device for continuous casting
KR102024378B1 (en) * 2018-12-03 2019-09-24 주식회사 코로이 Continuous casting system

Also Published As

Publication number Publication date
JPS6427743A (en) 1989-01-30

Similar Documents

Publication Publication Date Title
CN106735003B (en) A kind of non-vacuum melting horizontal casting production technology of high-strength highly-conductive Cu-Cr-Zr alloy bar materials
US4635701A (en) Composite metal articles
CN201150980Y (en) Composite crystallizer device for continuous casting of titanium-nickel alloy
JP4548483B2 (en) Casting method for molten alloy
CN100406161C (en) Oriented freezing cast method
JP2014500801A (en) How to increase the self-feeding capacity of large section cast blanks
US4349145A (en) Method for brazing a surface of an age hardened chrome copper member
JPH06320252A (en) Manufacture of forming die having heating and cooling water line
JPH0321259B2 (en)
US6250365B1 (en) Die casting process
JPS5838654A (en) Casting method for composite member
CN108655357A (en) A kind of metal melting continuous casing
JP2580249B2 (en) Heating mold for continuous casting
CN111468703A (en) Casting method of double-liquid composite hammer head
JPS6055211B2 (en) Horizontal continuous casting method
CN109261913B (en) Method for improving ingot casting solidification quality of vacuum induction furnace
JP3214657B2 (en) Piston for internal combustion engine and method of manufacturing the same
JPS59227781A (en) Ceramic metal bonding method
JPH0464772B2 (en)
JPH09155523A (en) Sleeve of die casting machine and production thereof
KR960015802B1 (en) Jointing method for different kind metal of cylinder
JPH07227653A (en) Method and device for reducing shrinkage hole in continuous casting
JPH05123831A (en) Method for continuously casting composite cast billet
JPH028817B2 (en)
SU1696129A1 (en) Method of manufacture of cast-in slabs