JPH03210467A - Apparatus for simultaneously and automatically measuring acidity of fermented milk and concentration of l-lactic acid - Google Patents

Apparatus for simultaneously and automatically measuring acidity of fermented milk and concentration of l-lactic acid

Info

Publication number
JPH03210467A
JPH03210467A JP2005989A JP598990A JPH03210467A JP H03210467 A JPH03210467 A JP H03210467A JP 2005989 A JP2005989 A JP 2005989A JP 598990 A JP598990 A JP 598990A JP H03210467 A JPH03210467 A JP H03210467A
Authority
JP
Japan
Prior art keywords
acidity
lactic acid
sample
sample liquid
acid concentration
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Pending
Application number
JP2005989A
Other languages
Japanese (ja)
Inventor
Yasushi Haketa
靖 羽毛田
Ryoichi Motohashi
本橋 亮一
Tadami Morimura
森村 忠美
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
SHOKUHIN SANGYO ONRAIN SENSOR GIJUTSU KENKYU KUMIAI
Original Assignee
SHOKUHIN SANGYO ONRAIN SENSOR GIJUTSU KENKYU KUMIAI
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by SHOKUHIN SANGYO ONRAIN SENSOR GIJUTSU KENKYU KUMIAI filed Critical SHOKUHIN SANGYO ONRAIN SENSOR GIJUTSU KENKYU KUMIAI
Priority to JP2005989A priority Critical patent/JPH03210467A/en
Publication of JPH03210467A publication Critical patent/JPH03210467A/en
Pending legal-status Critical Current

Links

Landscapes

  • Investigating Or Analyzing Materials By The Use Of Electric Means (AREA)

Abstract

PURPOSE:To simultaneously and automatically measure the acidity of fermented milk and the concn. of L-lactic acid by mounting a sample flow passage, an acidity measuring cell, a buffer solution supply passage, an L-lactic acid concn. measuring cell and an operational processor. CONSTITUTION:The acidity measuring cell 13 provided on the way of a sample flow passage 12 has volume larger than that of an injected sample solution 1 and can dilute the sample solution 1 and a carrier liquid 2 in a predetermined ratio. A buffer solution supply passage 17 supplying a pH buffer solution meets with the downstream part of the acidity measuring cell 13 of the sample flow passage 12 and, on the downstream side of this this confluent part, an L-lactic acid concn. measuring cell 19 is arranged through a mixer 18. An operational processor 23 calculates the acidity of the sample solution 1 from the measured conductivity of the sample solution and calculates the concn. of L-lactic acid in the sample solution from the measured concn. of hydrogen peroxide therein.

Description

【発明の詳細な説明】 〔産業上の利用分野〕 本発明は、ヨーグルト等の発酵乳の酸度とL−乳酸濃度
を同時に測定する装置に関する。
DETAILED DESCRIPTION OF THE INVENTION [Field of Industrial Application] The present invention relates to an apparatus for simultaneously measuring the acidity and L-lactic acid concentration of fermented milk such as yogurt.

〔従来の技術〕[Conventional technology]

ヨーグルト等の発酵乳は、調乳や脱脂粉乳を乳酸菌等で
発酵させて製造するが、発酵工程及び品質の管理のため
に酸度とL−乳酸濃度の測定が不可欠とされている。
Fermented milk such as yogurt is produced by fermenting formula or skim milk powder with lactic acid bacteria, but it is essential to measure acidity and L-lactic acid concentration to control the fermentation process and quality.

酸度とL−乳酸濃度の測定が重要なのは、酸度とL−乳
酸濃度により発酵乳製品の品質が大きく左右されるから
である。つまり、発酵乳の酸度は調乳に含まれているク
エン酸と発酵に伴ない生成する乳酸の濃度に依存し、発
酵乳製品の酸味に大きく関与する。又、発酵乳に含まれ
る乳酸にはL−型とD−型の二つの光学異性体があり、
人体に有用なものはL−乳酸であるが、両者の匍合は発
酵に用いる乳酸菌の種類や割合並びに発酵過程により異
なることが知られている。
The measurement of acidity and L-lactic acid concentration is important because the quality of fermented dairy products is greatly influenced by acidity and L-lactic acid concentration. In other words, the acidity of fermented milk depends on the concentration of citric acid contained in the milk formula and lactic acid produced during fermentation, and is greatly involved in the sourness of fermented milk products. In addition, the lactic acid contained in fermented milk has two optical isomers, L-type and D-type.
Although L-lactic acid is useful for the human body, it is known that the compatibility between the two differs depending on the type and proportion of lactic acid bacteria used for fermentation and the fermentation process.

発酵乳の酸度は、食品分析法により発酵乳10〇−を中
和するのに要するI M NaOHの量(■)から換算
した乳酸濃度(燭として定義され、従来がら手分析によ
りpH試薬を用いた中和滴定や、電位差法による電位差
滴定により測定されていた。
The acidity of fermented milk is determined by the lactic acid concentration (defined as a candle) calculated from the amount of I M NaOH (■) required to neutralize 100% of fermented milk using a food analysis method. It was measured by neutralization titration or potentiometric titration using the potentiometric method.

L−乳酸濃度は、手分析によりL−乳酸脱水素酵素やL
−乳酸酸化酵素を用いてL−乳酸を分解し、吸光度測定
法等により測定するか、又はプラスチック膜等にL−乳
酸酸化酵素を固定化した固定化酵素膜を具えた過酸化水
素電極により測定されていた。
L-lactic acid concentration was determined by manual analysis of L-lactate dehydrogenase and L-lactate concentration.
- Decompose L-lactic acid using lactate oxidase and measure by absorbance measurement, or measure using a hydrogen peroxide electrode equipped with an immobilized enzyme membrane in which L-lactate oxidase is immobilized on a plastic membrane, etc. It had been.

即ち、下記酵素反応により発生する過酸化水素濃度を測
定し、これからL−乳酸濃度を求めていた; L−乳酸酸化酵素 り−乳酸+02         ピルビン酸+H0し
かし上記した従来の測定方法では、発酵槽又は発酵乳カ
ップからサンプルをピペットや天秤等により定量ずつ分
取し、酸度とL−乳酸濃度とを人手により別々に測定し
なければならず、操作が煩雑で多くの時間と人手を要す
るばかりか、人為的誤差を与えやすい等の問題があった
。又、発酵乳の酸度とL−乳酸濃度は発酵時間と共に変
化するので、はぼ同時に採取したサンプルについて酸度
とL−乳酸濃度を測定し管理するのが望ましいが、その
ためには従来の分析方法では更に多くの人手が必要とな
り管理コストを上昇させる要因となっていた。
That is, the hydrogen peroxide concentration generated by the following enzymatic reaction was measured, and the L-lactic acid concentration was determined from this; It is necessary to take a sample from a fermented milk cup in quantitative quantities using a pipette or balance, and manually measure the acidity and L-lactic acid concentration separately, which not only is a complicated operation and requires a lot of time and manpower. There were problems such as being susceptible to human error. In addition, since the acidity and L-lactic acid concentration of fermented milk change with fermentation time, it is desirable to measure and control the acidity and L-lactic acid concentration of samples taken at about the same time. This required more manpower, which caused an increase in management costs.

〔発明が解決しようとする課題〕[Problem to be solved by the invention]

本発明はかかる従来の事情に鑑み、発酵乳の酸度とL−
乳酸濃度をほぼ同時に、しかも自動的に測定する装置を
提供することを目的とする。
In view of such conventional circumstances, the present invention has been developed to improve the acidity of fermented milk and L-
It is an object of the present invention to provide a device that can measure lactic acid concentration almost simultaneously and automatically.

〔課題を解決するための手段〕[Means to solve the problem]

上記且的を達成するため、本発明の発酵乳の酸度とL−
乳酸濃度の同時自動測定装置は、流れ分析装置において
、発酵乳のサンプル液をキャリア液に注入するサンプル
液供給路と、キャリア液に注入されたサンプル液を移送
するサンプル流路と、サンプル流路の途中に設けられ、
攪拌装置と電導度電極を備えた注入サンプル液よりも大
容量の酸度測定セルと、酸度測定セルより下流でサンプ
ル流路にpH緩衝液を注入する緩衝液供給路と、緩衝液
供給路の合流点より下流で混合器を経てサンプル流路の
途中に設けられ、L−乳酸酸化酵素の固定化酵素膜を有
する過酸化水素電極を備えたL−乳酸濃度測定セルと、
前記電導度電極と過酸化水素電極とに接続され、測定電
導度からサンプル液の酸度の算出及び測定過酸化水素濃
度からサンプル液のL−乳酸濃度の算出を行なう演算処
理装置とを具えたことを特徴とする。
In order to achieve the above objectives, the acidity and L-
The simultaneous automatic measurement device for lactic acid concentration is a flow analyzer that includes a sample liquid supply path for injecting the fermented milk sample liquid into the carrier liquid, a sample flow path for transferring the sample liquid injected into the carrier liquid, and a sample flow path. It is set up in the middle of
An acidity measurement cell with a larger capacity than the injected sample liquid equipped with a stirring device and a conductivity electrode, a buffer supply path for injecting a pH buffer into the sample flow path downstream of the acidity measurement cell, and a confluence of the buffer supply path. an L-lactic acid concentration measuring cell provided in the middle of the sample flow path after passing through a mixer downstream from the point and equipped with a hydrogen peroxide electrode having an enzyme membrane with immobilized L-lactic acid oxidase;
and an arithmetic processing device connected to the conductivity electrode and the hydrogen peroxide electrode, which calculates the acidity of the sample liquid from the measured conductivity and calculates the L-lactic acid concentration of the sample liquid from the measured hydrogen peroxide concentration. It is characterized by

又、サンプル液供給路の途中に切替バルブを設け、切替
バルブによりサンプル液供給路に校正液供給路を切替可
能に接続すれば、測定前の装置の校正も自動的に行なう
ことが出来る。
Further, if a switching valve is provided in the middle of the sample liquid supply path, and the calibration liquid supply path is switchably connected to the sample liquid supply path by the switching valve, it is possible to automatically calibrate the apparatus before measurement.

〔作用〕[Effect]

本発明では、流れ分析法を採用して装置化することによ
り、一定量のサンプル液を迅速に採取して移送しながら
、まず酸度を希釈電導度法により電導度電極を用いて測
定し、次にL−乳酸濃度をL−乳酸酸化酵素の固定化酵
素膜を有する過酸化水素電極を用いて測定する。従って
、発酵乳の酸度とL−乳酸濃度の二つの測定を連続して
ほぼ同時に、しかも自動的に実施することが可能である
In the present invention, by adopting the flow analysis method and making it into an apparatus, while rapidly collecting and transferring a certain amount of sample liquid, the acidity is first measured using a conductivity electrode using the dilution conductivity method, and then The L-lactic acid concentration is measured using a hydrogen peroxide electrode having an enzyme membrane with immobilized L-lactate oxidase. Therefore, it is possible to carry out two measurements of the acidity and L-lactic acid concentration of fermented milk continuously, almost simultaneously, and automatically.

特に、酸度の測定に関しては、一般の希釈電導度法の考
えに従い、発酵乳を適度に希釈すれば酸度と電導度との
間に直線で表わされる相関関係が得られることに着目し
、予め滴定法で求めた酸度と電導度電極で求めた電導度
との相関関係式を求めておき、サンプルにつき測定され
た電導度と相関関係式とから酸度を求めるという流れ分
析に最適な手法を開発し、本発明装置に採用しである。
In particular, regarding the measurement of acidity, we followed the idea of the general dilution conductivity method and focused on the fact that a linear correlation between acidity and conductivity can be obtained by diluting fermented milk appropriately. We have developed an optimal method for flow analysis in which a correlation equation is calculated between the acidity determined by the method and the conductivity determined by the conductivity electrode, and then the acidity is determined from the conductivity measured for the sample and the correlation equation. , adopted in the device of the present invention.

但し、酸度と電導度の相関関係式は発酵乳の種類により
異なるため、個々の発酵乳毎に相関関係式を求めておく
必要がある。
However, since the correlation equation between acidity and electrical conductivity differs depending on the type of fermented milk, it is necessary to obtain a correlation equation for each individual fermented milk.

〔実施例〕〔Example〕

本発明装置の具体例を第1図により説明する。 A specific example of the device of the present invention will be explained with reference to FIG.

この装置は、発酵乳のサンプル液1をポンプ5により切
替バルブ11を経て移送し、インジェクター10により
キャリア液2に注入するサンプル液供給路9と、ポンプ
6により移送されるキャリア液2にインジェクター10
がら注入された一定量ノサンプル液1を移送するサンプ
ル流M12.!:を備えている。又、切替バルブ11に
は校正液供給路22が接続してあり、切替バルブ11の
切り替えで校正液3をサンプル液供給路9の一部を経て
インジェクター10に供給出来る。
This device includes a sample liquid supply path 9 in which a sample liquid 1 of fermented milk is transferred via a switching valve 11 by a pump 5, and injected into a carrier liquid 2 by an injector 10, and an injector 10 injected into the carrier liquid 2 transferred by a pump 6.
Sample flow M12. ! : Equipped with: Further, a calibration liquid supply path 22 is connected to the switching valve 11, and by switching the switching valve 11, the calibration liquid 3 can be supplied to the injector 10 through a part of the sample liquid supply path 9.

サンプル流路12の途中には酸度測定セル13が設けら
れ、酸度測定セル13はインジェクター10により注入
されるサンプル液1よりも大容量であって、サンプル液
lをキャリア液2で所定の割合に希釈できるようになっ
ている。酸度測定セル13はpt極を用いたデイツプ型
の電導度電極14を有し、攪拌子15とマグネチックス
ターラ−16からなる攪拌装置とを備えている。又、サ
ンプル流路12の酸度測定セル13より下流には、ポン
プ8によりpH緩衝液4を供給する緩衝液供給路17が
合流し、その合流点より下流には混合器18を経てL−
乳酸濃度測定セル19が設置しである。L−乳酸濃度測
定セル19は、陽極にpt及び陰極にAgを用いた過酸
化水素電極21を備え、過酸化水素電極21はプラスチ
ック膜にL−乳酸酸化酵素を固定化した固定化酵素膜2
0を介してサンプル液1に接し、酵素反応によりL−乳
酸が酸化されて発生するHO濃度を測定する。
An acidity measuring cell 13 is provided in the middle of the sample flow path 12, and the acidity measuring cell 13 has a larger capacity than the sample liquid 1 injected by the injector 10, and adjusts the sample liquid 1 to a predetermined ratio with the carrier liquid 2. It can be diluted. The acidity measuring cell 13 has a dip-type conductivity electrode 14 using a PT electrode, and is equipped with a stirring device consisting of a stirring bar 15 and a magnetic stirrer 16. Further, downstream of the acidity measurement cell 13 in the sample flow path 12, a buffer supply path 17 for supplying pH buffer 4 by a pump 8 joins, and downstream from the confluence, a mixer 18 passes through the L-
A lactic acid concentration measuring cell 19 is installed. The L-lactic acid concentration measuring cell 19 is equipped with a hydrogen peroxide electrode 21 using PT as an anode and Ag as a cathode, and the hydrogen peroxide electrode 21 is an immobilized enzyme membrane 2 in which L-lactate oxidase is immobilized on a plastic membrane.
The sample liquid 1 is contacted through the sample liquid 1, and the HO concentration generated when L-lactic acid is oxidized by an enzymatic reaction is measured.

酸度測定セル13の電導度電極14とL−乳酸濃度測定
セル19の過酸化水素電極21は演算処理装置23に夫
々接続され、校正時の電導度及び過酸化水素濃度と比較
しながら、サンプル液1の測定型導度からその酸度を算
出し、及びサンプル液1の測定過酸化水素濃度からその
L−乳酸濃度を算出するようになっている。
The conductivity electrode 14 of the acidity measurement cell 13 and the hydrogen peroxide electrode 21 of the L-lactic acid concentration measurement cell 19 are respectively connected to a processing unit 23, and the sample liquid is compared with the conductivity and hydrogen peroxide concentration at the time of calibration. The acidity is calculated from the measured conductivity of sample liquid 1, and the L-lactic acid concentration is calculated from the measured hydrogen peroxide concentration of sample liquid 1.

実施例1 第1図の測定装置を使用し、L−乳酸溶液の酸度出力と
L−乳酸濃度出力を求めた。
Example 1 Using the measuring device shown in FIG. 1, the acidity output and L-lactic acid concentration output of an L-lactic acid solution were determined.

サンプル液1としてのし一乳酸溶液は、L−乳酸5.O
Ogをイオン交換水100−に溶解し、適宜希釈して各
種の濃度に調整したものを用いた。キャリア液2は電導
度1μ3/c、m以下のイオン交換水、p H緩衝液4
はo、i%安息香酸と1 no//、/のKCIを含む
pH7,5の1 mol/l ’Jン酸溶液、及び校正
液3は0.5%L−乳酸溶液を夫々用いた。
The lactic acid solution as sample solution 1 contains L-lactic acid 5. O
Og was dissolved in 100% of ion-exchanged water, diluted as appropriate, and adjusted to various concentrations. Carrier liquid 2 is ion-exchanged water with an electrical conductivity of 1μ3/c or less, and pH buffer 4.
For the calibration solution 3, a 1 mol/l'J acid solution with a pH of 7.5 containing o, i% benzoic acid and 1 no//, / KCI was used, and a 0.5% L-lactic acid solution was used as the calibration solution 3.

まず、L−乳酸について通常の滴定法により酸度を及び
電導度電極で電導度を夫々測定し、両者の相関関係式を
求め、演算処理装置23により測定型導度から酸度を算
出できるようにした。
First, the acidity and conductivity of L-lactic acid were measured using a conventional titration method and a conductivity electrode, respectively, a correlation equation between the two was obtained, and the acidity could be calculated from the measured conductivity using the arithmetic processing unit 23. .

次に、サンプル液供給路9でインジェクター10(容量
20μl)に供給したサンプル液1をインジェクター1
0を回転させて切取って採取し、サンプル流路12を満
たしたキャリア液2に挟んで流速10嚇/minで酸度
測定セル13′テ容量τ′ゼYztに供給した。酸度測
定セル13でサンプル液1はキャリア液2により希釈さ
れ、電導度電極14により希釈サンプル液の電導度が測
定された。次に、希釈サンプル液1は電導度測定セル1
3を出て、緩衝液供給部17から流速1 mirnim
で連続的に供給されているpH緩衝液4と混合され、L
−乳酸濃度測定セル19(容量100μりにおいて過酸
化水素電極21によりHO濃度が測定された。尚、上2
  ! 記測定に先立って校正液3による校正を行なった。
Next, the sample liquid 1 supplied to the injector 10 (capacity 20 μl) through the sample liquid supply path 9 is transferred to the injector 10.
The samples were rotated and cut out, sandwiched between the carrier liquid 2 filling the sample channel 12, and supplied to the acidity measurement cell 13' with a flow rate of 10 mm/min. The sample liquid 1 was diluted with the carrier liquid 2 in the acidity measurement cell 13, and the conductivity of the diluted sample liquid was measured by the conductivity electrode 14. Next, the diluted sample liquid 1 is added to the conductivity measurement cell 1.
3 and from the buffer supply section 17 at a flow rate of 1 milnim.
mixed with pH buffer 4 which is continuously supplied at L
- The HO concentration was measured by the hydrogen peroxide electrode 21 in the lactic acid concentration measurement cell 19 (capacity 100μ).
! Prior to this measurement, calibration using calibration solution 3 was performed.

第2図は、サンプル液1をインジェクター10で二回連
続して採取することにより、二回連続測定して得られた
上記サンプル液についての酸度の出力とL−乳酸濃度の
出力の応答曲線であり、ビークASB、 C,DSEは
夫々濃度0.5%、0.4%、0゜3%、0.2%、0
゜1%のL−乳酸溶液の酸度出力に対応し、又ビークF
% GSH1工、Jは夫々濃度0.5%、0.4%、0
.3%、0.2%、0.1%のL−乳酸溶液のL−乳酸
濃度出力に対応する。
Figure 2 shows the response curve of the acidity output and the L-lactic acid concentration output for the sample liquid obtained by two consecutive measurements by sampling the sample liquid 1 twice with the injector 10. Yes, beak ASB, C, and DSE have concentrations of 0.5%, 0.4%, 0°3%, 0.2%, and 0, respectively.
゜It corresponds to the acidity output of 1% L-lactic acid solution, and also the beak F
% GSH1 engineering and J have concentrations of 0.5%, 0.4%, and 0, respectively.
.. It corresponds to the L-lactic acid concentration output of 3%, 0.2%, and 0.1% L-lactic acid solutions.

サンプル液の具体的な酸度とL−乳酸濃度はこれらの各
出力のピーク高さから求められるが、各ピーク高さはサ
ンプル液の予め調整したL−乳酸濃度に良く比例してい
ること、又酸度とL−乳酸濃度の測定が各サンプル液に
ついて約5程度度の短時間で実行出来ることが第2図か
ら判る。
The specific acidity and L-lactic acid concentration of the sample liquid can be determined from the peak height of each of these outputs, and it is important to note that each peak height is well proportional to the pre-adjusted L-lactic acid concentration of the sample liquid, and It can be seen from FIG. 2 that the measurement of acidity and L-lactic acid concentration can be carried out for each sample solution in a short time of about 5 degrees.

実施例2 第1図の測定装置を使用し、発酵開始後一定時間毎の発
酵乳をサンプル液とし、その酸度とL−乳酸濃度を測定
した。
Example 2 Using the measuring device shown in FIG. 1, fermented milk was used as a sample solution at fixed intervals after the start of fermentation, and its acidity and L-lactic acid concentration were measured.

尚発酵には、菌体としてLa\tobaci//us 
Bu/ga−ricusと5tsrptocoacus
 Thermophiluaの共生菌体を用い、培地と
して脱脂粉乳10.51%と砂糖9.0%を水道水に溶
かした溶液を用いた。
In addition, for fermentation, La\tobaci//us is used as a bacterial cell.
Bu/ga-ricus and 5tsrptocoacus
Thermophilua symbiotic cells were used, and a solution of 10.51% skim milk powder and 9.0% sugar dissolved in tap water was used as a culture medium.

最初に、上記発酵乳の種々の濃度における酸度と電導度
を電位差滴定装置と電導度電極を用いて各々測定し、そ
の結果から酸度と電導度の間には相関係数0.997で
第3図に示す相関関係が得られた。第3図から求めた酸
度(X)と電導度(Y)の相関関係式は、Y −69,
25x + 63.18であった。
First, the acidity and conductivity of the fermented milk at various concentrations were measured using a potentiometric titration device and a conductivity electrode, and the results showed that the correlation coefficient between acidity and conductivity was 0.997. The correlation shown in the figure was obtained. The correlation equation between acidity (X) and conductivity (Y) obtained from Figure 3 is Y -69,
It was 25x + 63.18.

実施例1と間様の測定条件と操作により発酵乳のサンプ
ル液を分析し、測定電導度(閣から上記相関関係式を用
いて酸度(X)を求め、測定したL−乳酸濃度と、発酵
槽に取付けたpH電極により求めたpHの関係を第4図
に示した。
A sample liquid of fermented milk was analyzed under the same measurement conditions and operations as in Example 1, and the acidity (X) was determined using the above correlation formula from the measured electrical conductivity, and the measured L-lactic acid concentration and fermentation Figure 4 shows the pH relationship determined by the pH electrode attached to the tank.

第4図から判るように、発酵時間の経過に伴なって酸度
は上昇し且つpHは低下する。L−判御濃度は発酵開始
3時間位までは増加するが、それ以後はほぼ一定値とな
る。L−乳酸濃度がほぼ一定になった後も酸度が更に増
加するのはD−乳酸の生成のためである。
As can be seen from FIG. 4, as the fermentation time progresses, the acidity increases and the pH decreases. The L-bango concentration increases until about 3 hours after the start of fermentation, but remains approximately constant thereafter. The reason why the acidity further increases even after the L-lactic acid concentration becomes almost constant is due to the production of D-lactic acid.

〔発明の効果〕〔Effect of the invention〕

本発明によれば、発酵乳からサンプル液を採取し、何等
前処理を必要とせずに、その酸度とL−乳酸濃度を極め
て短い時間内にほぼ同時に、しかも自動的に測定出来る
According to the present invention, a sample liquid can be collected from fermented milk and its acidity and L-lactic acid concentration can be measured almost simultaneously and automatically within an extremely short period of time without requiring any pretreatment.

従って、本発明は、例えばヨーグルト製造の為の乳酸発
酵等において発酵の工程をリアルタイムに監視する場合
や発酵乳製品の品質管理等に非常に有効である。
Therefore, the present invention is very effective for real-time monitoring of the fermentation process in lactic acid fermentation for yogurt production, for example, and for quality control of fermented dairy products.

【図面の簡単な説明】[Brief explanation of drawings]

第1図は本発明装置の一具体例を示す概略構成図である
。第2図は実施例1で得た酸度とL−乳酸濃度の出力の
応答曲線であり、第3図は実施例2で求めた酸度と電導
度の相関関係を示すグラフであり、第4図は実施例2で
得た酸度とL−乳酸濃度及びpHの関係を示すグラフで
ある。 1・・サンプル液   2・・キャリア液3・・校正液
     4・・pH緩衝液5.6.7.8・・ポンプ 9・・サンプル液供給路 10・・インジェクター 11・・切替バルブ12・・
サンプル流路  13・・酸度測定セル14・・電導度
電極   15・・攪拌子16・・マグネチックスター
ラ 17・・緩衝液供給路  18・・混合器19・・L−
乳酸濃度測定セル 20・・固定化酵素膜  21・・過酸化水素電極22
・・校正液供給路  23・・演算処理装置第2図 Δ 哨 間 (分) 第3図 改 度 (%)
FIG. 1 is a schematic diagram showing a specific example of the apparatus of the present invention. Fig. 2 is a response curve of output of acidity and L-lactic acid concentration obtained in Example 1, Fig. 3 is a graph showing the correlation between acidity and conductivity obtained in Example 2, and Fig. 4 is a graph showing the correlation between acidity and conductivity obtained in Example 2. is a graph showing the relationship between acidity, L-lactic acid concentration, and pH obtained in Example 2. 1... Sample liquid 2... Carrier liquid 3... Calibration solution 4... pH buffer solution 5.6.7.8... Pump 9... Sample liquid supply path 10... Injector 11... Switching valve 12...
Sample channel 13... Acidity measurement cell 14... Conductivity electrode 15... Stirrer 16... Magnetic stirrer 17... Buffer supply channel 18... Mixer 19... L-
Lactic acid concentration measurement cell 20...immobilized enzyme membrane 21...hydrogen peroxide electrode 22
... Calibration liquid supply path 23 ... Arithmetic processing unit Fig. 2 ∆ time (minutes) Fig. 3 Revision (%)

Claims (2)

【特許請求の範囲】[Claims] (1)流れ分析装置において、発酵乳のサンプル液をキ
ャリア液に注入するサンプル液供給路と、キャリア液に
注入されたサンプル液を移送するサンプル流路と、サン
プル流路の途中に設けられ、攪拌装置と電導度電極を備
えた注入サンプル液よりも大容量の酸度測定セルと、酸
度測定セルより下流でサンプル流路にpH緩衝液を注入
する緩衝液供給路と、緩衝液供給路の合流点より下流で
混合器を経てサンプル流路の途中に設けられ、L−乳酸
酸化酵素の固定化酵素膜を有する過酸化水素電極を備え
たL−乳酸濃度測定セルと、前記電導度電極と過酸化水
素電極とに接続され、測定電導度からサンプル液の酸度
の算出及び測定過酸化水素濃度からサンプル液のL−乳
酸濃度の算出を行なう演算処理装置とを具えたことを特
徴とする発酵乳の酸度とL−乳酸濃度の同時自動測定装
置。
(1) In the flow analysis device, a sample liquid supply path for injecting the sample liquid of fermented milk into the carrier liquid, a sample flow path for transferring the sample liquid injected into the carrier liquid, and a sample flow path provided in the middle of the sample flow path, An acidity measurement cell with a larger capacity than the injected sample liquid equipped with a stirring device and a conductivity electrode, a buffer supply path for injecting a pH buffer into the sample flow path downstream of the acidity measurement cell, and a confluence of the buffer supply path. An L-lactic acid concentration measuring cell is provided in the sample flow path after passing through a mixer downstream from the point, and is equipped with a hydrogen peroxide electrode having an enzyme membrane immobilized with L-lactate oxidase, Fermented milk characterized by comprising: an arithmetic processing device connected to a hydrogen oxide electrode, which calculates the acidity of the sample liquid from the measured conductivity and calculates the L-lactic acid concentration of the sample liquid from the measured hydrogen peroxide concentration. Simultaneous automatic measurement device for acidity and L-lactic acid concentration.
(2)サンプル液供給路の途中に設けた切替バルブと、
切替バルブによりサンプル液供給路に切替可能に接続し
た校正液供給路とを更に具えたことを特徴とする、請求
項(1)に記載の発酵乳の酸度とL−乳酸濃度の同時自
動測定装置。
(2) A switching valve installed in the middle of the sample liquid supply path,
The device for simultaneous automatic measurement of fermented milk acidity and L-lactic acid concentration according to claim (1), further comprising a calibration solution supply path switchably connected to the sample solution supply path by a switching valve. .
JP2005989A 1990-01-12 1990-01-12 Apparatus for simultaneously and automatically measuring acidity of fermented milk and concentration of l-lactic acid Pending JPH03210467A (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP2005989A JPH03210467A (en) 1990-01-12 1990-01-12 Apparatus for simultaneously and automatically measuring acidity of fermented milk and concentration of l-lactic acid

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP2005989A JPH03210467A (en) 1990-01-12 1990-01-12 Apparatus for simultaneously and automatically measuring acidity of fermented milk and concentration of l-lactic acid

Publications (1)

Publication Number Publication Date
JPH03210467A true JPH03210467A (en) 1991-09-13

Family

ID=11626206

Family Applications (1)

Application Number Title Priority Date Filing Date
JP2005989A Pending JPH03210467A (en) 1990-01-12 1990-01-12 Apparatus for simultaneously and automatically measuring acidity of fermented milk and concentration of l-lactic acid

Country Status (1)

Country Link
JP (1) JPH03210467A (en)

Cited By (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2004506185A (en) * 2000-08-07 2004-02-26 シーヴァーズ インスツルメンツ,インク. Low level boron detection and measurement

Cited By (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2004506185A (en) * 2000-08-07 2004-02-26 シーヴァーズ インスツルメンツ,インク. Low level boron detection and measurement

Similar Documents

Publication Publication Date Title
US5503720A (en) Process for the quantitative determination of electrochemically reducible or oxidizable substances, particularly peracetic acid mixed with other oxidizing substances
EP3786278A1 (en) Identification of calibration deviations of ph-measuring devices
US5438002A (en) Colorimetric processes for the determination and control of the peracid content in a solution, in the presence of hydrogen peroxide
Kriz et al. Real-time detection of L-ascorbic acid and hydrogen peroxide in crude food samples employing a reversed sequential differential measuring technique of the SIRE-technology based biosensor
JP4901956B2 (en) Substrate concentration measuring method and substrate concentration measuring apparatus
JPH03210467A (en) Apparatus for simultaneously and automatically measuring acidity of fermented milk and concentration of l-lactic acid
DD301250A7 (en) Measuring apparatus and method for automatically determining the concentration of biocatalyst substrates
US20080118942A1 (en) Method of Determining Level of Specified Component in Blood Sample and Apparatus for Level Determination
CN115184441B (en) Multi-channel enzyme electrode on-line detection device and method in fermentation production process
US20150369775A1 (en) Electroanalitical system
JP3422092B2 (en) Liquid sample continuous measuring device and measuring method
JP2001013102A (en) Fractionately measuring method for peracetic acid and hydrogen peroxide
JP2010286423A (en) Potential difference measuring method
Váradi et al. Application of biosensor with amperometric detection for determining ethanol
JP2010187594A (en) Culture-monitoring device and culture apparatus having the culture-monitoring device
Niehoff et al. The use of an automatic on-line system for monitoring penicillin cultivation in a bubble-colum loop reactor
JP2015089548A (en) Sludge activity measuring apparatus and method for measuring sludge activity
KR101491646B1 (en) Method and apparatus for determining substrate concentration and reagent for determining substrate concentration
AraÚJO et al. A new approach to dialysis in sequential injection systems: spectrophotometric determination of L (+)-lactate in wines
US20080184810A1 (en) Calibratable Flow Detector
KR100259469B1 (en) Method for measuring biochemical oxygen demand of biological waste water and apparatus thereof
JPH05126819A (en) Method and apparatus for measuring acidity and lactic-acid concentration of fermented milk
Iciek et al. Continuous Control of Microbiological Contamination of Juice in a Sugar Extractor
DE3843607C2 (en) Procedure for calibrating oxygen electrodes
JPH01265150A (en) Biosensor