JPH0320119B2 - - Google Patents

Info

Publication number
JPH0320119B2
JPH0320119B2 JP57084493A JP8449382A JPH0320119B2 JP H0320119 B2 JPH0320119 B2 JP H0320119B2 JP 57084493 A JP57084493 A JP 57084493A JP 8449382 A JP8449382 A JP 8449382A JP H0320119 B2 JPH0320119 B2 JP H0320119B2
Authority
JP
Japan
Prior art keywords
signal
vehicle
self
propelled vehicle
circuit
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Expired
Application number
JP57084493A
Other languages
Japanese (ja)
Other versions
JPS58201111A (en
Inventor
Takashi Noda
Masaru Kawamata
Susumu Yoshida
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Toyota Industries Corp
Meidensha Corp
Original Assignee
Meidensha Corp
Toyoda Jidoshokki Seisakusho KK
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Meidensha Corp, Toyoda Jidoshokki Seisakusho KK filed Critical Meidensha Corp
Priority to JP57084493A priority Critical patent/JPS58201111A/en
Publication of JPS58201111A publication Critical patent/JPS58201111A/en
Publication of JPH0320119B2 publication Critical patent/JPH0320119B2/ja
Granted legal-status Critical Current

Links

Classifications

    • GPHYSICS
    • G05CONTROLLING; REGULATING
    • G05DSYSTEMS FOR CONTROLLING OR REGULATING NON-ELECTRIC VARIABLES
    • G05D1/00Control of position, course, altitude or attitude of land, water, air or space vehicles, e.g. using automatic pilots
    • G05D1/02Control of position or course in two dimensions
    • G05D1/021Control of position or course in two dimensions specially adapted to land vehicles
    • G05D1/0259Control of position or course in two dimensions specially adapted to land vehicles using magnetic or electromagnetic means
    • G05D1/0265Control of position or course in two dimensions specially adapted to land vehicles using magnetic or electromagnetic means using buried wires
    • GPHYSICS
    • G05CONTROLLING; REGULATING
    • G05DSYSTEMS FOR CONTROLLING OR REGULATING NON-ELECTRIC VARIABLES
    • G05D1/00Control of position, course, altitude or attitude of land, water, air or space vehicles, e.g. using automatic pilots
    • G05D1/02Control of position or course in two dimensions
    • G05D1/021Control of position or course in two dimensions specially adapted to land vehicles
    • G05D1/0259Control of position or course in two dimensions specially adapted to land vehicles using magnetic or electromagnetic means
    • G05D1/0261Control of position or course in two dimensions specially adapted to land vehicles using magnetic or electromagnetic means using magnetic plots

Landscapes

  • Physics & Mathematics (AREA)
  • Engineering & Computer Science (AREA)
  • Electromagnetism (AREA)
  • Aviation & Aerospace Engineering (AREA)
  • Radar, Positioning & Navigation (AREA)
  • Remote Sensing (AREA)
  • General Physics & Mathematics (AREA)
  • Automation & Control Theory (AREA)
  • Steering Controls (AREA)
  • Control Of Conveyors (AREA)
  • Control Of Position, Course, Altitude, Or Attitude Of Moving Bodies (AREA)
  • Selective Calling Equipment (AREA)

Description

【発明の詳細な説明】 本発明は車輛走行装置に係り、特にフオークリ
フトトラツク等のように倉庫、工場などで荷役作
業をする場合に有用な無人車輛の走行制御方法に
関する。
DETAILED DESCRIPTION OF THE INVENTION The present invention relates to a vehicle traveling system, and more particularly to a traveling control method for an unmanned vehicle such as a forklift truck, which is useful for cargo handling work in warehouses, factories, etc.

一般に冷凍庫などのように悪条件下において荷
役作業を行なうために無人荷役装置が用いられ
る。この場合、無人車輛の自動運転を行うため
に、地上側よりアクセル、ブレーキ、ステアリン
グおよび荷役を行うものについて制御するものが
ある。
Generally, unmanned cargo handling equipment is used to carry out cargo handling operations under adverse conditions, such as in freezers. In this case, in order to automatically drive an unmanned vehicle, there are systems that control the accelerator, brakes, steering, and cargo handling from the ground side.

このような方式によれば、地上に誘導線を配設
し、この誘導線に供給する信号を切換えることに
より目的点の方向に車輛を誘導しながら、自走車
側では所定のステアリング制御を行う。また、ア
クセル、ブレーキおよび荷役の制御は、地上に送
信用のコイルと受信用のコイルを布設し、車輛の
送信アンテナと受信アンテナを通して誘導無線に
より信号の伝送を行う。さらに、無人車の正確な
停止又は変速位置は地上に位置検出コイルを布設
するか、リード接点とマグネツトによるもの、電
磁又は光センサを用いた位置センサによるものが
ある。かかる車輛誘導装置の代表的なシステム構
成例を示したのが第1図及び第2図で、第1図は
複数のステーシヨンと車両との対応配置関係を示
し、第2図は第1図でA方向より車両をみた場合
の車両とステーシヨンとの具体的な構成関係を示
したものである。
According to this method, a guide wire is placed on the ground, and the vehicle is guided in the direction of the destination by switching the signals supplied to the guide wire, while the self-propelled vehicle performs predetermined steering control. . In addition, to control the accelerator, brake, and cargo handling, transmitting coils and receiving coils are installed on the ground, and signals are transmitted by guided radio through the vehicle's transmitting and receiving antennas. Furthermore, the accurate stopping or shifting position of an unmanned vehicle can be determined by installing a position detection coil on the ground, by using a lead contact and a magnet, or by using a position sensor using an electromagnetic or optical sensor. FIGS. 1 and 2 show typical system configuration examples of such a vehicle guidance device. FIG. 1 shows the corresponding arrangement relationship between a plurality of stations and a vehicle, and FIG. This figure shows the specific structural relationship between the vehicle and the station when the vehicle is viewed from direction A.

これら第1図及び第2図で1はフオークリフト
等の如き被誘導車輛、2は地上又は地中に布設さ
れた誘導ケーブルである。3a,3bはステアリ
ングコイル、4aは車輛側の送信コイル、4bは
車輛側の受信コイルである。地上の各ステーシヨ
ンST1,ST2,ST3にはそれぞれ送信コイル
5aおよび受信コイル5bが配設されている。誘
導ケーブル2および送・受信コイル5a,5bに
はそれぞれ所定周波数の信号電源(図示せず)か
ら制御信号が供給される。車輛1には送信回路、
受信回路およびその他所要の動作を行うための各
種回路からなる第1の制御ユニツト6が搭載され
ており、地上側には送信コイル5aに所定の周波
数信号を供給するための送信回路、受信コイル5
bの信号を受信するための受信回路やその他所要
の動作制御を行うための回路などからなる第2の
制御ユニツト7が設けられている。
In FIGS. 1 and 2, 1 is a guided vehicle such as a forklift, and 2 is a guiding cable laid on the ground or underground. 3a and 3b are steering coils, 4a is a transmission coil on the vehicle side, and 4b is a reception coil on the vehicle side. Each of the stations ST1, ST2, and ST3 on the ground is provided with a transmitting coil 5a and a receiving coil 5b, respectively. Control signals are supplied to the induction cable 2 and the transmitting/receiving coils 5a and 5b from signal power sources (not shown) each having a predetermined frequency. Vehicle 1 includes a transmitting circuit,
A first control unit 6 consisting of a receiving circuit and various other circuits for performing other necessary operations is mounted, and on the ground side there are a transmitting circuit for supplying a predetermined frequency signal to the transmitting coil 5a, and a receiving coil 5.
A second control unit 7 is provided, which includes a receiving circuit for receiving the signal b and other circuits for performing other necessary operational controls.

このような従来の車輛誘導装置においては、自
走車は各ステーシヨン毎に布設された近接スイツ
チ10と1組の送−受信コイルにより自走車の位
置関係を知り、これら近接スイツチよりの位置検
出信号さらには送−受信コイルを介して行なう所
定信号の授受等により、例えば電源断、停車、発
車等の一連の制御が行なわれる。また信号伝送機
能としては、地上側の制御ユニツト7より送信コ
イル5aを介して所定の加速指令、減速指令、制
御指令等の所定の指令信号を自走車1に与えて、
各指令信号に対して自走車1よりの応答信号を送
信コイル4a→受信コイル5b→制御ユニツト7
の経路で受信して指令信号に対する応答信号を判
別することによつて地上側で自走車1の動作態様
等を管理する。
In such a conventional vehicle guidance system, a self-propelled vehicle learns the positional relationship of the self-propelled vehicle through a proximity switch 10 installed at each station and a set of transmitting/receiving coils, and detects the position using these proximity switches. A series of controls such as turning off the power, stopping the vehicle, and starting the vehicle are performed by transmitting and receiving signals and predetermined signals via the transmitting and receiving coils. Further, as a signal transmission function, predetermined command signals such as predetermined acceleration commands, deceleration commands, control commands, etc. are given to the self-propelled vehicle 1 from the control unit 7 on the ground side via the transmission coil 5a,
A response signal from the self-propelled vehicle 1 is sent to each command signal from the transmitting coil 4a→receiving coil 5b→control unit 7.
The operation mode of the self-propelled vehicle 1 is managed on the ground side by determining the response signal to the command signal received along the route.

このような従来の装置にあつては、誘導ケーブ
ル2に供給する信号を切換えることにより目的点
の方向に車輛を誘導しながらステアリング制御を
行なう。自走車1は電動機またはエンジンによつ
て走行駆動される。また、ステアリング機能とし
ては、よく知られているように床面に埋設された
誘導ケーブル2に所定周波数の電流を流すと、誘
導磁界が発生する。この磁界をステアリングコイ
ルで電圧に変換し、この電圧によりサーボモータ
等を駆動することによつて、誘導ケーブルに沿つ
て自走車を誘導走行させるものである。
In such a conventional device, steering control is performed while guiding the vehicle in the direction of the destination point by switching the signal supplied to the guidance cable 2. The self-propelled vehicle 1 is driven by an electric motor or an engine. Further, as a steering function, as is well known, when a current of a predetermined frequency is passed through the induction cable 2 buried in the floor surface, an induced magnetic field is generated. This magnetic field is converted into voltage by a steering coil, and this voltage drives a servo motor, etc., thereby guiding the self-propelled vehicle along the guidance cable.

このような所定の動作を行なう従来の走行制御
方法において、自走車1側と地上側とで所定の信
号を授受し合う伝送時の動作モードを示したのが
第3図のタイムチヤート図で、このタイムチヤー
ト図でA〜Cは地上側に設けられた各部の動作状
態を示し、DとEは自走車1に搭載された第1の
制御ユニツトの動作状態を示すものである。また
第3図において、t1〜t4は時刻を示す。
In the conventional travel control method that performs such predetermined operations, the time chart in Figure 3 shows the operation mode during transmission of predetermined signals between the self-propelled vehicle 1 side and the ground side. In this time chart, A to C show the operating states of each part provided on the ground side, and D and E show the operating states of the first control unit mounted on the self-propelled vehicle 1. Moreover, in FIG. 3, t1 to t4 indicate time.

さて第1図に示す如く自走車1がステーシヨン
ST1にあり、この自走車1をステーシヨンST1
らST3まで誘導すると仮定した場合、先ず第3図
のt1点でAに示すような1回の指令信号S1を自走
車1に向けて送信する。この指令信号S1を自走車
側ではコイル5a(5b)→受信アンテナコイル
4a(4b)の経路で受信する。第1の制御ユニ
ツト6は第3図Eに示す受信信号S5の内容を解読
して、信号S5に応じてアクセル回路(図示せず)
又はブレーキ回路(図示せず)を制御して信号S5
が「前進3速」の命令コードであればアクセル回
路を介して車速を前進3速とすべくアクセル操作
する。このように自走車1が地上側より送信され
る指令信号に基づき「前進3速」の位置にアクセ
ル操作をしたものとすれば、自走車側より時刻t3
点で応答信号S4を地上側に送信して、地上側の第
2の制御ユニツト7では応答信号S4に基づく第3
図Bの受信出力信号S2が、「前進3速」の命令コ
ードと一致すれば直ちに自走車側に対して始動命
令を与え発進−加速させる。なお第3図Cの信号
S3は自走車1がステーシヨンST1にあることを表
わしている。
Now, as shown in Figure 1, the self-propelled vehicle 1 is at the station.
Assuming that the self-propelled vehicle 1 is to be guided from station ST 1 to station ST 3 , first, at point t 1 in FIG. Send to. This command signal S1 is received on the self-propelled vehicle side through a route from coil 5a (5b) to receiving antenna coil 4a (4b). The first control unit 6 decodes the content of the received signal S5 shown in FIG.
or control the brake circuit (not shown) to generate signal S 5
If the instruction code is "3rd forward speed", the accelerator is operated via the accelerator circuit to bring the vehicle speed to 3rd forward speed. In this way, if the self-propelled vehicle 1 operates the accelerator to the "3rd forward speed" position based on the command signal transmitted from the ground side, then the self-propelled vehicle 1 determines that time t 3 is reached by the self-propelled vehicle.
The second control unit 7 on the ground side transmits a third response signal S4 based on the response signal S4 .
If the received output signal S2 in FIG. B matches the command code of "3rd forward speed", a starting command is immediately given to the self-propelled vehicle to start and accelerate. In addition, the signal in Figure 3 C
S3 indicates that the self-propelled vehicle 1 is at station ST1 .

かかる伝送時の動作モードに於て、自走車を発
進させる場合はほとんど問題はないが、例えば加
速制御時にある自走車を中間点のステーシヨン
ST2で車速指令信号を「3速指令」より「2速指
令」に切換えて、「2速指令」でステーシヨン
ST3側へ走行させる場合に問題となる。即ちステ
ーシヨンST2は走行時の途中に位置するものであ
つて、且つ当該ステーシヨンでは加速状態にあ
る。従つて地上側の送−受信コイル5a,5bと
自走車側の送−受信コイル4a,4bとの対応位
置関係に於て、例えば自走車の送−受信コイルの
一部のみが地上側の送−受信コイルと当接したよ
うな場合、指令信号或いは応答信号を受信する受
信コイルの出力信号レベルが極端に低下して受信
不能の状態に陥つてしまう。このように受信不能
に陥ると、自走車は最高速度の「前進3速」のま
まで目標点のステーシヨンST3まで走行し、これ
によつて目標点を通り過ぎてしまうオーバーシユ
ートを生じたり制動時の動作そのものが非常に不
安定となる。さらに重要なことは、自走車側と地
上側との両コイルの対応位置関係が受信可能な位
置関係であつても、自走車は加速状態にあるの
で、床面の状況や積荷の状況さらには車速の状態
等によつて受信出力の信号レベルが大きく変動
し、正確に信号を相手側へ伝送されずにアクセル
位置の誤操作や応答信号の誤解読など伝送時の動
作そのものが非常に不安定となつて、高精度の走
行制御が行なえないことである。
In such an operation mode during transmission, there is almost no problem when starting a self-propelled vehicle, but for example, when a self-propelled vehicle is moved to an intermediate station during acceleration control,
In ST 2 , switch the vehicle speed command signal from "3rd speed command" to "2nd speed command", and set the station to "2nd speed command".
This becomes a problem when driving towards the ST 3 side. That is, the station ST 2 is located midway through the travel, and is in an accelerating state. Therefore, in the corresponding positional relationship between the transmitting and receiving coils 5a and 5b on the ground side and the transmitting and receiving coils 4a and 4b on the self-propelled vehicle side, for example, only a part of the transmitting and receiving coils on the self-propelled vehicle are on the ground side. In such a case, the output signal level of the receiving coil that receives the command signal or the response signal will be extremely reduced, and the receiving coil will be unable to receive the command signal or the response signal. If reception is lost in this way, the self-propelled vehicle will continue to drive to the target point, station ST 3 , at its maximum speed of 3rd forward speed, resulting in an overshoot where the vehicle passes the target point. The braking operation itself becomes very unstable. More importantly, even if the correspondence positions of the coils on the self-propelled vehicle side and the ground side are such that reception is possible, since the self-propelled vehicle is in an accelerating state, the condition of the floor surface and cargo Furthermore, the signal level of the received output fluctuates greatly depending on the state of the vehicle speed, etc., and the signal is not accurately transmitted to the other party, making the transmission operation itself extremely unstable, such as erroneous operation of the accelerator position or misunderstanding of the response signal. The problem is that the vehicle becomes unstable and highly accurate driving control cannot be performed.

本発明は上述の点に鑑みてなされたものでその
目的は、地上側と自走車との交信を所要回数だけ
繰返し指令信号通りに自走車の状態がない場合と
か、応答信号が全くない場合、直ちに誘導ケーブ
ルに供給する信号を遮断して自走車を停止するこ
とにより、自走車の暴走をなくして安全性を高
め、且つ高性能にして高信頼性の無人車の走行制
御方法を提供することである。
The present invention has been made in view of the above points, and its purpose is to repeat communication between the ground side and the self-propelled vehicle a required number of times in accordance with the command signal when the self-propelled vehicle is not in a state or there is no response signal at all. A driving control method for an unmanned vehicle that eliminates runaway behavior of a self-propelled vehicle and increases safety by immediately stopping the self-propelled vehicle by immediately interrupting the signal supplied to the induction cable in the case of an unmanned vehicle. The goal is to provide the following.

以下に、本発明の実施例に係る無人車の走行制
御方法について、第4図〜第7図を参照しながら
説明する。
A driving control method for an unmanned vehicle according to an embodiment of the present invention will be described below with reference to FIGS. 4 to 7.

第4図は本発明の走行制御方法において用いる
自走車側の回路構成を示し、9は受信回路8aの
受信信号を入力とする操作制御部、10はステア
リングコイル(ピツクアツプコイルとも呼称され
ている)3aと3bの誘導信号を入力としこれら
の誘導信号に応じて所定のステアリング制御を行
ない、さらには誘導信号のあり−なしを意味する
「1」、「0」の出力信号を操作制御部9に入力す
るステアリング制御回路である。操作制御部9、
ステアリング制御回路10、アクセル操作回路1
1およびブレーキ操作回路12によつて第1の制
御ユニツト6が構成される。
FIG. 4 shows a circuit configuration on the self-propelled vehicle side used in the traveling control method of the present invention, where 9 is an operation control unit which inputs the received signal of the receiving circuit 8a, and 10 is a steering coil (also called a pick-up coil). ) The guidance signals 3a and 3b are input, and predetermined steering control is performed according to these guidance signals, and output signals of "1" and "0", which mean the presence/absence of the guidance signals, are sent to the operation control section 9. This is a steering control circuit that inputs to the operation control unit 9;
Steering control circuit 10, accelerator operation circuit 1
1 and the brake operation circuit 12 constitute a first control unit 6.

第5図は地上側に設けられた第2の制御ユニツ
ト7の回路構成を示し、13は制御指令部、14
aは送信回路、14bは受信回路、15は送・受
信切換回路である。なお第5図の点線で示すよう
に、送信コイル5aと受信コイル5bの代りに1
個のループコイルを用いて、これに送・受信双方
の機能を持たせるようにしてもよい。
FIG. 5 shows the circuit configuration of the second control unit 7 provided on the ground side, where 13 is a control command section, 14
a is a transmitting circuit, 14b is a receiving circuit, and 15 is a transmitting/receiving switching circuit. In addition, as shown by the dotted line in FIG.
It is also possible to use two loop coils to provide both transmitting and receiving functions.

第6図は制御指令部13のさらに具体的な回路
構成を示したもので、16は受信回路14bの受
信出力信号を入力とする復調回路、17は復調回
路16からの復調信号S7と車速設定器18の設定
信号S8との一致、不一致を判定する判定回路、1
9は不一致カウンタ、20はプリセツト値を設定
するプリセツト設定器であつて、不一致カウンタ
19は判定回路17の判定信号S9(不一致を意味
する信号)を順次入力してカウントし、計数値が
プリセツト値と一致すると自動的にリセツトして
0に戻し、出力信号S11を次記するスイツチ操作
回路21へ与える。21は不一致カウンタ19の
出力信号S11或いは判定回路17よりの出力信号
S9によつて作動するスイツチ操作回路で、このス
イツチ操作回路21はスイツチ回路22をオフに
して信号源23から誘導ケーブル2への信号の供
給を断にする。
FIG. 6 shows a more specific circuit configuration of the control command unit 13, in which 16 is a demodulation circuit that receives the received output signal of the reception circuit 14b, and 17 is a demodulation signal S 7 from the demodulation circuit 16 and the vehicle speed. A determination circuit that determines whether the setting signal S8 of the setting device 18 matches or does not match, 1
9 is a mismatch counter, and 20 is a preset setting device for setting a preset value.The mismatch counter 19 sequentially inputs and counts the judgment signal S9 (signal indicating mismatch) from the judgment circuit 17, and counts the counted value until the preset value is reached. When it matches the value, it is automatically reset to 0, and the output signal S11 is given to the switch operation circuit 21, which will be described below. 21 is the output signal S11 of the discrepancy counter 19 or the output signal from the determination circuit 17
The switch operating circuit 21 is activated by S9 , and the switch operating circuit 21 turns off the switch circuit 22 to cut off the signal supply from the signal source 23 to the induction cable 2.

上記構成において、いま第1図に示すように自
走車1がステーシヨンST1上に停止しておりステ
ーシヨンST3に向つて発進する場合、第4図に示
すように自走車1は位置信号を送信回路8aから
送信アンテナ4aを通して地上側に発信している
ので、この位置信号を第5図の地上側の受信コイ
ル5b→送受信切換回路15→受信回路14b→
制御指令部13の経路で受信し、自走車1がステ
ーシヨンST1に位置していることを検出確認す
る。
In the above configuration, when the self-propelled vehicle 1 is stopped on the station ST 1 and starts toward the station ST 3 as shown in FIG. 1, the self-propelled vehicle 1 receives the position signal as shown in FIG. is transmitted from the transmitting circuit 8a to the ground side through the transmitting antenna 4a, so this position signal is sent to the receiving coil 5b on the ground side in FIG.
It is received through the route of the control command unit 13 and detects and confirms that the self-propelled vehicle 1 is located at the station ST1 .

かかる動作時において、地上側の送−受信回路
14aまたは14bはそれぞれ異なる2つの周波
数f1,f2を別個に発信又は受信するように予め各
周波数f1,f2は規定されており、また送・受信回
路14a,14bは制御指令部13からのプログ
ラム指令に応じて所定のタイミングモードで送受
切換が行なわれる。
During such operation, the frequencies f 1 and f 2 are predefined so that the ground-side transmitting/receiving circuit 14a or 14b separately transmits or receives two different frequencies f 1 and f 2 , and The transmitting/receiving circuits 14a, 14b are switched between transmitting and receiving in a predetermined timing mode in accordance with a program command from the control command section 13.

ステアリング機能は自走車1としての主機能で
あり、第4図に示すように、床面に埋設された誘
導ケーブル2に所定周波数の電流を流すと誘導ケ
ーブル2の廻りに誘導磁界が発生する。この磁界
を誘導ケーブル2を挟んだ一対のステアリングコ
イル3a,3bで電圧に変換し、両ステアリング
コイルに発生する電圧レベルを差動アンプなどを
有するステアリング制御回路10に入力してステ
アリングモータ例えばサーボモータを駆動する。
サーボモータが駆動すると、前輪の向が変わり一
対のステアリングコイル3a,3bはその中間点
が誘導ケーブル2の真上になり、差動アンプの出
力差はゼロとなりサーボモータの回転は停止しバ
ランス状態となる。カーブにさしかかるとこのバ
ランスは崩れ前述の動作を繰り返して自動走行す
る。
The steering function is the main function of the self-propelled vehicle 1, and as shown in Figure 4, when a current of a predetermined frequency is passed through the induction cable 2 buried in the floor, an induced magnetic field is generated around the induction cable 2. . This magnetic field is converted into voltage by a pair of steering coils 3a and 3b sandwiching an induction cable 2, and the voltage level generated in both steering coils is inputted to a steering control circuit 10 having a differential amplifier etc. to control a steering motor, for example, a servo motor. to drive.
When the servo motor is driven, the direction of the front wheels changes and the midpoint of the pair of steering coils 3a and 3b becomes directly above the induction cable 2, and the output difference of the differential amplifier becomes zero, and the servo motor stops rotating, creating a balanced state. becomes. When the vehicle approaches a curve, this balance is disrupted and the vehicle repeats the above-mentioned actions and travels automatically.

また、ステアリング制御回路10はステアリン
グコイル3a,3bからの入力電圧があれば信号
「1」を発し、これとは反対に入力電圧がなけれ
ば信号「0」を発する。ステアリング制御回路1
0から操作制御部9に信号「1」が入力されると
該操作制御部9は所定のステアリング制御が行な
われている旨を判別−確認し、又、信号「0」が
入力されると異常時である旨を判定してブレーキ
回路12を制御して自走車を非常停止する。
Further, the steering control circuit 10 emits a signal "1" if there is an input voltage from the steering coils 3a, 3b, and, on the contrary, emits a signal "0" if there is no input voltage. Steering control circuit 1
When a signal "1" is input from 0 to the operation control section 9, the operation control section 9 determines and confirms that the prescribed steering control is being performed, and when a signal "0" is input, an abnormality is detected. It is determined that the time is right and the brake circuit 12 is controlled to bring the self-propelled vehicle to an emergency stop.

以上のような所定の動作を行なう本実施例につ
いて、特に従来装置で問題とされた走行時に於け
る伝送モードに関して第7図のタイムチヤート図
を参照し乍ら詳述する。
This embodiment, which performs the above-mentioned predetermined operations, will be described in detail with reference to the time chart of FIG. 7, particularly regarding the transmission mode during driving, which has been a problem with the conventional device.

第7図のタイムチヤート図でA〜Dは地上側に
設けられた各部の動作態様を示し、同様にEとF
は自走車に搭載された第1の制御ユニツト6の動
作態様を示している。今、自走車がステーシヨン
ST1よりST3のステーシヨンに向け発進−加速制
御され、最高速度の「前進3速」の車速を以つて
ステーシヨンST2に急接近したものと仮定する。
ステーシヨンST2に位置センサーが配置してあれ
ば、この位置センサーよりの信号を以つて第6図
に示す地上側の制御指令部13で自走車がST2
ステーシヨンに到達した旨を判定−確認する。
又、位置センサーがなく第5図に示す如く1組の
ループコイルで送−受信を兼ねたタイプのもので
あれば、地上側の制御指令部13よりの指令信号
で既にステーシヨンST2のループコイルを選択し
てあり、第5図に示すループコイル−送・受信切
換回路15−制御指令部13とはそれぞれ接続状
態にある。従つて自走車がステーシヨンST2のル
ープコイルの一端にかかつて受信可能なエリアに
入ると、自走車側より地上側の制御指令部13に
向け所定の信号が送信され、この受信出力とST2
のループコイルが選択してなる旨の論理積条件で
制御指令部13の判定回路17で、自走車がステ
ーシヨンST2に到達した旨を判定−確認する。
In the time chart of Fig. 7, A to D indicate the operation mode of each part installed on the ground side, and similarly E and F.
1 shows the operation mode of the first control unit 6 mounted on the self-propelled vehicle. Self-driving cars are now stations
It is assumed that the vehicle is started and accelerated from ST 1 toward station ST 3 and rapidly approaches station ST 2 at the maximum speed of "3rd forward speed."
If a position sensor is installed at station ST 2 , the signal from this position sensor is used to determine that the self-propelled vehicle has arrived at the station ST 2 at the control command unit 13 on the ground side shown in Fig. 6. confirm.
In addition, if the type does not have a position sensor and uses one set of loop coils for both transmission and reception as shown in Fig. 5, a command signal from the control command section 13 on the ground side can already be sent to the loop coil of station ST2 . is selected, and the loop coil, transmission/reception switching circuit 15, and control command section 13 shown in FIG. 5 are connected to each other. Therefore, when a self-propelled vehicle enters an area where reception is possible at one end of the loop coil of station ST 2 , a predetermined signal is transmitted from the self-propelled vehicle to the control command unit 13 on the ground side, and this reception output and ST 2
The determination circuit 17 of the control command unit 13 determines and confirms that the self-propelled vehicle has reached the station ST 2 under the AND condition that the loop coil is selected.

以上のようなステツプを経て自走車がステーシ
ヨンST2に到達した旨を確認すると、先ず地上側
の制御指令部13より第7図の時刻t1点で、車速
指令を「前進3速」より「前進2速」に切換える
べく「前進2速」の車速指令信号S1a(第7図−A
に示す)を第5図の送信回路14a→送−受信切
換回路15→送信コイル5a(又はループコイル)
の経路で送信する。なお「前進2速」の車速指令
信号が送信されると、第6図の制御指令部13で
はクロツク回路24を動作開始させ、車速指令に
対する自走車よりの応答信号が送信され受信する
までの応答時間を計時する。従つて上記経路で送
信された「前進2速」の車速指令信号を、第4図
に示す受信コイル4b→受信回路8b→操作制御
部9の経路を通して受信し、この受信出力S5a(第
7図−Fに示す)の命令コードを操作制御部9で
解読して「前進2速」を意味する旨の車速指令で
あれば、操作制御部9より第4図のアクセル操作
回路11に対して所定の指令信号を与えて、アク
セル操作回路11で自走車のアクセル位置を「前
進2速」の位置に操作し、アクセル操作が完了し
た旨を示す信号S4a(第7図のEに示す)を第4図
の操作制御部9→送信回路8a→送信コイル4a
の経路を通して地上側へ送信する。この応答信号
S4aを第6図の受信回路14b→復調回路16で
受信し復調して、この受信出力S2a(第7図のBに
示す)を判定回路17に導びき設定器18より与
えられる「前進2速」の車速指令信号と一致して
いるか否かを判定する。かかる判定結果で受信出
力S2aと車速指令信号とが不一致である旨を判定
すると、第7図−Cのt4時点で示す不一致信号
S6aを不一致カウンタ19に入力してカウントさ
せる。なお第6図のクロツク回路24では前述し
たように車速指令が送信されると同時に計時を開
始するので、受信回路14bより導びかれる応答
信号S2a(第7図のBに示す)で計時を停止させ、
応答信号が受信されるまでの時間が予じめ前以つ
て設定された時間内であればクロツク回路24を
リセツトして、次回の計時に備えさせる。さて不
一致である旨が判定されると、第6図の制御指令
部13では再度「前進2速」の車速指令信号S1b
(第7図−Aの時刻t5に示す)を自走車側に与え
て、所定のアクセル操作を行なわせる。この車速
指令信号S1bに対する自走車側よりの応答信号が
第7図−Eの時刻t7点で示すS4b信号であれば、
クロツク回路24の計時を停止させると同時に、
第7図の時刻t7〜t8間に示す応答信号S4bに対する
受信出力信号S2bと車速指令信号S1bとの一致、不
一致を判定させる。この判定結果が不一致であれ
ば不一致信号S6b(第7図−Cに示す)を不一致カ
ウンタ19に出力してカウント数を進ませ、この
動作と並行して制御指令部13より再び前回と同
一の車速指令信号S1c(第7図のAに示す)を自走
車側へ送信して、所定のアクセル操作を行なわ
せ、自走車側よりの応答信号と車速指令信号との
一致、不一致を監視させ判定させる。従つて第6
図の制御指令部13側で不一致カウンタ19のプ
リセツト値を「3」と設定してあれば、第3発目
の不一致信号S6c(第7図のCに示す)が不一致カ
ウンタ19に入力されカウントされた時点で、不
一致カウンタ19よりスイツチ操作回路21に対
して誘導ケーブルの信号源23を遮断すべき旨の
信号が送出されると同時に、不一致カウンタ19
がリセツトされ初期値「0」に戻る。しかしてス
イツチ操作回路21に遮断指令信号が送出された
ことにより、操作回路21よりの信号を以つてス
イツチ回路22を回路し信号源23を遮断する。
このように誘導ケーブルに流れる信号電流が遮断
されると、自走車側では前述した如く第4図のス
テアリングコイル3a,3bに誘導される各誘起
電圧の差電圧を零とするように、10のステアリ
ング制御回路10を介して図示しないサーボモー
タを駆動するものであるから、信号電流が遮断さ
れたことにより誘起電圧が零となり、ステアリン
グ制御回路10より操作制御部9に対して誘導電
圧が零である旨を示す信号「0」を送出し、操作
制御部9を介してブレーキ操作回路12に非常停
止指令信号を与えることによつて、自走車を直ち
に停止させる。
When it is confirmed that the self-propelled vehicle has reached station ST 2 through the steps described above, the control command unit 13 on the ground side first changes the vehicle speed command from "3rd forward speed" at time t1 in Figure 7. In order to switch to "forward 2nd speed", the vehicle speed command signal S 1a for "forward 2nd speed" (Fig. 7-A
) shown in FIG.
Send via the following route. Note that when the vehicle speed command signal for "2nd forward speed" is transmitted, the control command unit 13 in FIG. Time the response time. Therefore, the vehicle speed command signal for "2nd forward speed" transmitted through the above path is received through the path of receiving coil 4b -> receiving circuit 8b -> operation control unit 9 shown in FIG . If the command code (shown in Fig. A predetermined command signal is given, the accelerator operation circuit 11 operates the accelerator position of the self-propelled vehicle to the "2nd forward speed" position, and a signal S 4a (shown in E in Fig. 7) indicating that the accelerator operation is completed is generated. ) in Fig. 4 from the operation control unit 9 → transmission circuit 8a → transmission coil 4a
It is transmitted to the ground side through the route. This response signal
S 4a is received and demodulated from the reception circuit 14b in FIG. 6 to the demodulation circuit 16, and this received output S 2a (shown as B in FIG. It is determined whether the vehicle speed command signal matches the vehicle speed command signal for "2nd speed". If it is determined that the received output S 2a and the vehicle speed command signal do not match based on the determination result, a discrepancy signal shown at time t 4 in FIG. 7-C is generated.
S 6a is input to the discrepancy counter 19 and counted. Note that since the clock circuit 24 in FIG. 6 starts timing at the same time as the vehicle speed command is transmitted as described above, the clock circuit 24 in FIG. stop it,
If the time until the response signal is received is within a preset time, the clock circuit 24 is reset to prepare for the next time measurement. Now, if it is determined that there is a mismatch, the control command unit 13 in FIG.
(shown at time t5 in FIG. 7-A) is given to the self-propelled vehicle to cause it to perform a predetermined accelerator operation. If the response signal from the self-propelled vehicle side to this vehicle speed command signal S 1b is the S 4b signal shown at time t 7 in Fig. 7-E, then
At the same time as stopping the clock circuit 24,
It is determined whether the received output signal S 2b and the vehicle speed command signal S 1b correspond to the response signal S 4b shown between times t 7 and t 8 in FIG. 7, and whether they match or do not match. If this judgment result does not match, a discrepancy signal S 6b (shown in Fig. 7-C) is output to the discrepancy counter 19 to advance the count, and in parallel with this operation, the control command unit 13 again sends a signal that is the same as the previous one. The vehicle speed command signal S 1c (shown as A in Figure 7) is sent to the self-propelled vehicle to cause it to perform a predetermined accelerator operation, and the response signal from the self-propelled vehicle is matched or mismatched with the vehicle speed command signal. be monitored and judged. Therefore, the sixth
If the preset value of the mismatch counter 19 is set to "3" on the side of the control command unit 13 in the figure, the third mismatch signal S6c (shown as C in FIG. 7) is input to the mismatch counter 19. At the time of counting, the mismatch counter 19 sends a signal to the switch operation circuit 21 to indicate that the signal source 23 of the induction cable should be cut off, and at the same time, the mismatch counter 19
is reset and returns to the initial value "0". Since the cutoff command signal is sent to the switch operation circuit 21, the switch circuit 22 is circuited by the signal from the operation circuit 21, and the signal source 23 is cut off.
When the signal current flowing through the induction cable is cut off in this way, the self-propelled vehicle side generates 10 Since the servo motor (not shown) is driven via the steering control circuit 10 of The self-propelled vehicle is immediately stopped by sending out a signal "0" indicating that the vehicle is running and giving an emergency stop command signal to the brake operation circuit 12 via the operation control unit 9.

以上の説明は自走車の送−受信コイルと地上側
の送−受信コイル(又はループコイル)との対応
位置関係が受信可能なエリア内にある場合でも、
受信出力がノイズ等によつて大きく変動し車速指
令信号さらには応答信号が相手側へ正確に伝送さ
れない場合とか、自走車側で事故を生じ車速指令
信号に対する所定のアクセル操作が正確に行なわ
れない場合とか、さらにはアクセル操作が何ら行
なわれない場合等の異常時に於ける動作説明であ
るが、次に自走車側の送−受信コイルと地上側の
送−受信コイル(又はループコイル)との対応位
置関係が所定の位置関係にはなく、全く受信不可
能な場合の異常時の動作説明を行なう。前述した
ように所要の車速指令信号が自走車側へ送信され
ると、送信開始と同時に第6図のクロツク回路2
4ではクロツク信号を順次入力して、自走車側よ
りの応答信号が受信される迄の所要時間を計測す
る。かかる計測時に際して信号の伝送時間、アク
セル操作等の操作時間等は設計の段階で予じめ前
以つて把握しているデータであるので、前記所要
時間は既知のデータであり任意に設定できる。従
つて第6図のクロツク回路24で設定した所要時
間内で自走車よりの応答信号がなければ、“受信
不能”である旨を判定してスイツチ操作回路21
に信号源23の遮断指令信号を送出して、誘導ケ
ーブル2の信号源23を強制的に遮断させる。な
お信号源23を遮断して自走車を非常停止させる
場合は、上記方法のように単に1発目の“受信不
能”の判定信号を以つて行なうのではなく、受信
不能を数回検出した時点で行なつてもよい。かか
る方法であれば無用の非常停止をさけることがで
きシステムそのものの信頼性を高めると云う利点
がある。
The above explanation applies even if the corresponding positional relationship between the transmitting-receiving coil of the self-propelled vehicle and the transmitting-receiving coil (or loop coil) on the ground side is within the receivable area.
When the received output fluctuates greatly due to noise, etc., and the vehicle speed command signal and even the response signal are not accurately transmitted to the other party, or when an accident occurs on the self-propelled vehicle and the specified accelerator operation in response to the vehicle speed command signal is not performed correctly. This is an explanation of the operation in abnormal situations, such as when there is no accelerator or no accelerator operation is performed. An explanation will be given of the operation in an abnormal situation where the corresponding positional relationship with the receiver is not in the predetermined positional relationship and reception is not possible at all. As mentioned above, when the required vehicle speed command signal is transmitted to the self-propelled vehicle, the clock circuit 2 in FIG.
In step 4, clock signals are sequentially input and the time required until a response signal is received from the self-propelled vehicle is measured. At the time of such measurement, the signal transmission time, the operation time such as accelerator operation, etc. are data that is known in advance at the design stage, so the required time is known data and can be set arbitrarily. Therefore, if there is no response signal from the self-propelled vehicle within the required time set by the clock circuit 24 in FIG.
A signal source 23 cutoff command signal is sent to forcefully cut off the signal source 23 of the induction cable 2. In addition, when shutting off the signal source 23 to bring the self-propelled vehicle to an emergency stop, it is not done by simply receiving the first "unreceivable" judgment signal as in the above method, but by detecting the unreceivable signal several times. It can be done at the same time. This method has the advantage of avoiding unnecessary emergency stops and increasing the reliability of the system itself.

以上説明したように、本発明は地上側からの指
令信号と自走車から地上側への返信信号の送受信
を所要回数行なわせて、これら信号の一致、不一
致を地上側の制御指令部で判定し、この動作と並
行して指令信号が送信された時点より応答信号が
受信されるまでの所要時間を監視して、この判定
結果に基づいて自走車を制御する。したがつて、
本発明によれば受信不能さらには受信出力信号レ
ベルが大きく変動して正確に相手側へ信号を伝送
されない異常時であつても、直ちに自走車を停止
するので誤操作に起因する暴走、さらには目標点
に停止できないなどの不具合を一挙に解決でき、
自走車の安全走行を遂行できるもので、その効果
は大である。
As explained above, the present invention transmits and receives a command signal from the ground side and a return signal from the self-propelled vehicle to the ground side a required number of times, and determines whether these signals match or differ by the control command unit on the ground side. However, in parallel with this operation, the time required from the time the command signal is transmitted until the response signal is received is monitored, and the self-propelled vehicle is controlled based on this determination result. Therefore,
According to the present invention, even in the event of an abnormality in which reception is not possible or the received output signal level fluctuates greatly and the signal is not accurately transmitted to the other party, the self-propelled vehicle is immediately stopped, thereby preventing runaway due to erroneous operation. Problems such as not being able to stop at the target point can be resolved all at once.
It enables safe driving of self-propelled vehicles, and its effects are great.

【図面の簡単な説明】[Brief explanation of the drawing]

第1図は従来の無人車の走行制御方法を示した
側面図、第2図はその正断面図、第3図は従来の
制御方法のタイムチヤート、第4図は本発明の走
行制御方法において用いる自走車側の制御ユニツ
トのブロツク図、第5図は同じく本発明の走行制
御方法において用いる地上側の制御ユニツトのブ
ロツク図、第6図は第5図の制御ユニツトのさら
に要部を示すブロツク図、第7図は本発明の制御
方法のタイムチヤートである。 1……自走車、2……誘導ケーブル、4a,5
a……送信コイル、4b,5b……受信コイル、
6……第1の制御ユニツト、7……第2の制御ユ
ニツト、8a,14a……送信回路、8b,14
b……受信回路、9……操作制御部、11……ア
クセル回路、12……ブレーキ回路、13……制
御指令部、15……送受切換回路、16……復調
回路、17……判定回路、19……不一致カウン
タ、21……スイツチ操作回路、22……スイツ
チ回路、23……信号源。
Fig. 1 is a side view showing the conventional driving control method for an unmanned vehicle, Fig. 2 is a front cross-sectional view thereof, Fig. 3 is a time chart of the conventional control method, and Fig. 4 is the driving control method of the present invention. FIG. 5 is a block diagram of the control unit on the side of the self-propelled vehicle used, FIG. 5 is a block diagram of the control unit on the ground side used in the travel control method of the present invention, and FIG. 6 shows further essential parts of the control unit of FIG. 5. The block diagram, FIG. 7, is a time chart of the control method of the present invention. 1...Self-propelled vehicle, 2...Induction cable, 4a, 5
a...Transmission coil, 4b, 5b...Reception coil,
6...First control unit, 7...Second control unit, 8a, 14a...Transmission circuit, 8b, 14
b... Receiving circuit, 9... Operation control unit, 11... Accelerator circuit, 12... Brake circuit, 13... Control command unit, 15... Transmission/reception switching circuit, 16... Demodulation circuit, 17... Judgment circuit , 19... Discrepancy counter, 21... Switch operation circuit, 22... Switch circuit, 23... Signal source.

Claims (1)

【特許請求の範囲】[Claims] 1 走行コースに沿つて布設された誘導ケーブル
に基づいて車輛を誘導させるとともに前記走行コ
ースの各ステーシヨンに配設された送・受信コイ
ルを介して自走車と地上側間で交信して該自走車
の制御を行う車輛制御装置において、前記地上側
の制御ユニツトからの指令信号に対する自走車か
らの応答信号が当該指令信号と複数回にわたつて
不一致である条件と、前記応答信号と指令信号と
の不一致時には前記地上側の制御ユニツトから再
度指令信号を送出し、前記指令信号が送信された
時点より前記応答信号が受信されるまでの所要時
間が設定時間よりも長いという条件とをオア条件
として前記自走車の走行を停止させることを特徴
とする無人車の走行制御方法。
1. Guides the vehicle based on a guidance cable laid along the traveling course, and communicates between the self-propelled vehicle and the ground side via transmitting/receiving coils installed at each station on the traveling course. In a vehicle control device that controls a running vehicle, there is a condition in which a response signal from the self-propelled vehicle in response to a command signal from the ground side control unit does not match the command signal multiple times, and a condition in which the response signal and the command are If there is a discrepancy with the signal, the control unit on the ground side sends the command signal again, and the condition is set that the time required from the time the command signal is sent until the response signal is received is longer than the set time. A method for controlling the running of an unmanned vehicle, characterized in that, as a condition, the running of the self-propelled vehicle is stopped.
JP57084493A 1982-05-19 1982-05-19 Controlling method of traveling for unmanned car Granted JPS58201111A (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP57084493A JPS58201111A (en) 1982-05-19 1982-05-19 Controlling method of traveling for unmanned car

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP57084493A JPS58201111A (en) 1982-05-19 1982-05-19 Controlling method of traveling for unmanned car

Publications (2)

Publication Number Publication Date
JPS58201111A JPS58201111A (en) 1983-11-22
JPH0320119B2 true JPH0320119B2 (en) 1991-03-18

Family

ID=13832170

Family Applications (1)

Application Number Title Priority Date Filing Date
JP57084493A Granted JPS58201111A (en) 1982-05-19 1982-05-19 Controlling method of traveling for unmanned car

Country Status (1)

Country Link
JP (1) JPS58201111A (en)

Families Citing this family (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2005283195A (en) * 2004-03-29 2005-10-13 Olympus Corp Position detection system and imaging apparatus
CN105549582A (en) * 2015-07-23 2016-05-04 黄中一 Intelligent car with somatosensory control function

Also Published As

Publication number Publication date
JPS58201111A (en) 1983-11-22

Similar Documents

Publication Publication Date Title
US4215759A (en) Guidance control system for a traction vehicle
US3147817A (en) Guidance systems
JPH0525126B2 (en)
JPH0320119B2 (en)
JPH07120202B2 (en) Operation control device for unmanned vehicles
JPH08221124A (en) Track type self-travelling vehicle device
JPH0789295B2 (en) Travel control equipment for mobile vehicles
JPH0398406A (en) Automatic operation controller for train
JPH046008B2 (en)
JPS58201112A (en) Travel controller of unmanned car
KR20180125806A (en) Automated guided vehicle system based on beacon and method for operating the same
JPH09142302A (en) Train control device
JPH0850513A (en) Autonomous driving method for automated guided vehicle
JP2643512B2 (en) Transfer Communication Equipment for Unmanned Vehicle
JPS62254211A (en) Operation controller for unmanned vehicle
KR920006931B1 (en) Unmanned vehicle system
JP2696866B2 (en) Driving system for unmanned vehicles
JP3241508B2 (en) Automatic guided vehicle position detection method
JPH03282802A (en) Unattended running vehicle system
JPS62189511A (en) Travel control equipment for moving vehicle
JPS62187911A (en) Travel control equipment for moving car
JPS6160105A (en) Controller for stop at fixed position of trackless truck
JP2581088B2 (en) Unmanned vehicle system for multiple stations and multiple windows
JPH1035496A (en) Track vehicle running controller
JPS58192112A (en) Inductive device of unattended car