JPH03196983A - Control method for human type robot finger mechanism - Google Patents

Control method for human type robot finger mechanism

Info

Publication number
JPH03196983A
JPH03196983A JP33124589A JP33124589A JPH03196983A JP H03196983 A JPH03196983 A JP H03196983A JP 33124589 A JP33124589 A JP 33124589A JP 33124589 A JP33124589 A JP 33124589A JP H03196983 A JPH03196983 A JP H03196983A
Authority
JP
Japan
Prior art keywords
joint
fingertip
finger
human
force
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Granted
Application number
JP33124589A
Other languages
Japanese (ja)
Other versions
JPH0673828B2 (en
Inventor
Takeo Omichi
武生 大道
Tomokichi Ibe
井辺 智吉
Akihisa Okino
晃久 沖野
Naoto Kawauchi
直人 川内
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Mitsubishi Heavy Industries Ltd
Original Assignee
Mitsubishi Heavy Industries Ltd
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Mitsubishi Heavy Industries Ltd filed Critical Mitsubishi Heavy Industries Ltd
Priority to JP33124589A priority Critical patent/JPH0673828B2/en
Publication of JPH03196983A publication Critical patent/JPH03196983A/en
Publication of JPH0673828B2 publication Critical patent/JPH0673828B2/en
Anticipated expiration legal-status Critical
Expired - Fee Related legal-status Critical Current

Links

Landscapes

  • Manipulator (AREA)

Abstract

PURPOSE:To enable it to assign a human type robot fingertip to the extent of human 4-degree-of-freedom by making a first joint, or a joint at the most fingertip side in human type robot fingers, control a joint rigidity or inner force sense-contact force sense, while making the rest joints perform position control where a virtual fingertip is set up. CONSTITUTION:A first joint 1 in human fingers is much in case of interlocking with a second joint, and such a requirement that a first joint angle theta4 of a robot finger is strictly specified is considered as not so much necessary even in consideration of the highly functional working property of the human finger. Accordingly, positioning of this first joint 1 is not performed, and only rigidity of the joint doing in consideration of force control of the fingertip based on force information being secured from an inner force or contact force sensor attached to the fingertip, or 'surface hardness' in a holding object is controlled, so that each fingertip position is determined from remaining joints 2-4, namely, respective angles theta1-theta3 of these residual joints 2-4 are determined from the fingertip part overrode the rotation.

Description

【発明の詳細な説明】 〈産業上の利用分野〉 本発明は人間形ロボット指機構の制御方法に関し、仮想
指先の概念を導入することにより容易に位置決め制御を
なし得るよう工夫したものである。
DETAILED DESCRIPTION OF THE INVENTION <Industrial Application Field> The present invention relates to a method for controlling a humanoid robot finger mechanism, and is devised to facilitate positioning control by introducing the concept of virtual fingertips.

〈従来の技術〉 ロボット指機構の技術は、まだグリッパ(1自由度程度
)の域をでておらず、人間の指構造を持つものは少ない
。高機能ロボット指機構としては、米国ユタ大学ハンド
、 JPL/スタンフォードハンド等があり、また日本
では工技院電子技術総合研究所(3本指ハンド)2機械
技術研究所(5本指ハンド)、早稲用大学(Eユージシ
ャンロボット、5本指ハンド)、三菱重工極限作業ロボ
ットハンド(4本指)等がある。
<Prior Art> The technology of robot finger mechanisms has not yet gone beyond grippers (about one degree of freedom), and there are few robot finger mechanisms that have a human finger structure. High-performance robot finger mechanisms include the University of Utah hand in the United States, the JPL/Stanford hand, and in Japan, the Institute of Electronics and Technology (3-finger hand), the Institute of Mechanical Technology (5-finger hand), and the Institute of Mechanical Engineering (5-finger hand). These include the Waseda University (E-Usician robot, five-fingered hand) and the Mitsubishi Heavy Industries extreme work robot hand (four-fingered).

上記ロボットハンドの構造は、電動モータや油圧もしく
は空圧シリンダをアクチュエータとし、ワイヤ・プーリ
系にて指の駆動を行ない、自由度構成は、人間の指とほ
ぼ同等である。
The structure of the robot hand is such that the actuator is an electric motor or a hydraulic or pneumatic cylinder, the fingers are driven by a wire pulley system, and the degree of freedom configuration is almost the same as that of a human finger.

〈発明が解決しようとする課題〉 上述の如き、ロボット指機構の中で、力覚。<Problem that the invention seeks to solve> Force sense in the robot finger mechanism as mentioned above.

圧覚等のセンサを備えているものは少く、その制御は位
置、速度の制御が中心である。
Few machines are equipped with pressure sensors or other sensors, and their control is centered on position and speed control.

また、従来のロボット指機構の研究対象は3本なり4本
、5本の指を用いて握る対象へのアクセス方法、すなわ
ち、いかにして各指を協調させて、制御するかといった
ものでありどちらかというと、腕の制御手法として論し
られていることが多い。
In addition, the research target of conventional robot finger mechanisms is how to access the object to be grasped using three, four, or five fingers, that is, how to coordinate and control each finger. Rather, it is often discussed as a method of controlling the arm.

更に詳言すると、人間の指構造を模倣したロボット指は
、第1図に示すように、その関節構造が4自由度となる
。そこで、3次元空間にわいて、指先の回転による姿勢
を無視し、単純に指先位置(P、、 P、、 Pつ)よ
り、各関節の角度を決定しようとすると、 Si==om6 i   Ci=cmθIC1j=ca
o(θ1+θJ)など この場合、指先の位置と各関節角度の関係は式(1)の
ようになる。すなわち、P、=・・P−・  P=・・
という3つの式より、各関節角度θ1.θ2.θ2.θ
4と4つの変数を決定しなくてはならず、−意に関節角
度θ、〜θ4を決定する乙とは不可能となる。よって、
指を指先位置(P、、 P、、 P、 )に加えて指定
して各関節角度θ、〜θ4を求めざるを得ない。
More specifically, a robot finger that imitates the human finger structure has a joint structure with four degrees of freedom, as shown in FIG. Therefore, in a three-dimensional space, if we ignore the posture caused by the rotation of the fingertips and try to determine the angle of each joint simply from the fingertip positions (P, , P, , P), Si==om6 i Ci =cmθIC1j=ca
o(θ1+θJ), etc. In this case, the relationship between the fingertip position and each joint angle is as shown in equation (1). That is, P, =...P-, P=...
From the three equations, each joint angle θ1. θ2. θ2. θ
4 and four variables must be determined, making it impossible to arbitrarily determine the joint angles θ, ˜θ4. Therefore,
It is necessary to specify the finger in addition to the fingertip position (P, , P, , P, ) to find each joint angle θ, ~θ4.

すなわち、複雑な計算をより多くする必要が生じろ上、
回転による姿勢を考慮することは、指先指定(ティーチ
ング、作業計画)において著しく直観性を損なうもので
ある。
In other words, it becomes necessary to perform more complex calculations, and
Taking into account the orientation due to rotation significantly impairs intuitiveness in fingertip designation (teaching, work planning).

したがって、指の本数が3本、4本と増えるに従って、
指全体の位置決めに対して、回転による姿勢が必要とな
り、位置指定も増々、複雑かっ、直観性のないものとな
る。
Therefore, as the number of fingers increases from three to four,
In order to position the entire finger, a rotational posture is required, and the position specification becomes increasingly complicated and unintuitive.

したがって、ロボット指の作業の機能性を失わせろこと
なく回転姿勢による複雑さを解決すれば、指先の位置を
1本指当り、単純に(xp ys z)のみの指定にて
決定でき、位置決め制御の単純化が図れる。
Therefore, if the complexity caused by rotational posture is resolved without losing the functionality of robot fingers, the position of each fingertip can be determined by simply specifying (xp ys z), and positioning control can be performed. can be simplified.

更に、例えば第3図に示すように、円柱25を指20,
21,22,23で持って回転させようとすると、円柱
(対象物)25の“かたさ″゛表面摩擦”等を考慮して
指先位置を設定する必要があり厳密な位置指定は不可能
である。
Furthermore, as shown in FIG.
If you try to rotate it by holding it with 21, 22, or 23, it is necessary to set the fingertip position taking into consideration the "hardness" and surface friction of the cylinder (object) 25, and it is impossible to specify the exact position. .

本発明は、上記従来技術に鑑み、制御を容易に行なうこ
とができるようになる人間形ロボット指8ji#i4の
制御方法を提供することを目的とする。
In view of the above-mentioned prior art, the present invention aims to provide a method for controlling the humanoid robot finger 8ji#i4, which allows easy control.

く課題を解決するための手段〉 上記目的を達成する本発明の構成は下記の知見を基礎と
するものである。
Means for Solving the Problems> The structure of the present invention that achieves the above object is based on the following knowledge.

すなわち、人間の指における第1関節(θ4に相当)は
、第2関節(6つ)と連動して動くことが多く、ロボッ
ト指の第1関節角度(θ4)を厳密に指定することは、
人間の指の高機能な作業性を考えても、さほど必要はな
いと思われる。
In other words, the first joint (corresponding to θ4) in a human finger often moves in conjunction with the second joints (six), and it is difficult to precisely specify the first joint angle (θ4) of a robot finger.
Considering the highly functional workability of human fingers, this seems not to be very necessary.

そこで、本発明ではこの第1関節(θ4)の位置決めは
行わず、指先に付属した力覚もしくは圧覚センサより得
られる力情報を基にした指先の力制御もしくは、把持す
る対象物の“表面のかたさ(剛性)″を考慮して行う関
節の剛性を制御するのみにし、θ4.θ2.θ3から指
先位置を決定、すなわち回転を無視した指先位置(xp
 yp z)よりθ、〜θ、を決定し、(Xy y#Z
)平面での指のもつ回転姿勢の禎雑さの解決を実現する
Therefore, in the present invention, the positioning of this first joint (θ4) is not performed, and the force control of the fingertips is performed based on force information obtained from the force sense or pressure sensor attached to the fingertips. The stiffness of the joints is only controlled by considering the stiffness (rigidity), and θ4. θ2. Determine the fingertip position from θ3, that is, the fingertip position ignoring rotation (xp
yp z), determine θ, ~θ, and (Xy y#Z
) Achieving a solution to the roughness of the rotational posture of fingers on a plane.

そこで、本発明の構成は、力制御が可能なアクチュエー
タにより駆動され、最高4自由度をもつ人間形ロボット
指81構の制御方法であって、人間形ロボット指におけ
る最も指先側の関節である第1関節は関節剛性若しくは
力覚、圧覚を制御するとともに、残りの関節は仮想の指
先を設定した位置制御を行なうようにしたことを特撮と
する。
Therefore, the configuration of the present invention is a method for controlling a humanoid robot finger 81 structure that is driven by an actuator capable of force control and has a maximum of four degrees of freedom. The special effects feature is that one joint controls joint stiffness, force sense, and pressure sense, and the remaining joints perform position control by setting virtual fingertips.

く作   用〉 上記構成の本発明によれば、未知数が最大3個の関節角
度θ、〜θ3となるので、指先位置(P、、 P、、 
P、 )を指定することで指先の位置制御が行なわれる
According to the present invention having the above configuration, the unknowns are the maximum of three joint angles θ, ~θ3, so the fingertip positions (P, , P, ,
By specifying P, ), the position of the fingertip is controlled.

く実 施 例〉 以下本発明の実施例を回目に基づき詳細に説明する。Example of implementation Hereinafter, embodiments of the present invention will be described in detail based on the number of times.

本実施例は、第1図に示すように第1〜第4関節1〜4
を有する4自由度のロボット指に適用するもので、この
ロボット指において、下式(3)から指先位置(PX、
 P、、 P□)を指定することで、各関節角度θ、〜
θ3を決定するものである。
In this embodiment, as shown in FIG.
This is applied to a robot finger with 4 degrees of freedom that has 4 degrees of freedom.For this robot finger, the fingertip position (PX,
By specifying P,, P□), each joint angle θ, ~
This is to determine θ3.

とこで、仮想の指先位置を 1”=l +a −1・・・(4) 0<a<1 として決定する。By the way, the virtual fingertip position is 1”=l+a-1...(4) 0<a<1 Determine as.

ここで、−二は単純には指リンク13と14の合成長さ
であるが、αという重み係数を用い、前記式(4)で与
えられる。前記aの値は作業の種類により重み付けを行
ない、例えば下表のようにあらかじめ決定し、作業の種
類毎に値を定めておく。
Here, -2 is simply the combined height of the finger links 13 and 14, but it is given by the above equation (4) using a weighting coefficient α. The value of a is weighted according to the type of work and is determined in advance, for example, as shown in the table below, and the value is determined for each type of work.

作業動作と重み係数α すなわち、このaの値により指先の把持対象物への仮想
の接触点を指定するものと考える。この時第1関節は、
対象物への押し付はカ一定等、力に関する情報(剛性で
も可)を制御しておけばよい。
Work Motion and Weighting Coefficient α In other words, it is assumed that the value of a specifies the virtual contact point of the fingertip to the grasped object. At this time, the first joint is
It is sufficient to control information regarding force (rigidity is also possible), such as a constant force when pressing the object against the object.

ロボット指におけろ作業動作を、前記aの関係表におけ
る作業に対応させて第2図〜第5図に示す。
The working motions of the robot fingers are shown in FIGS. 2 to 5 in correspondence with the tasks in the relationship table a.

(al  にぎり(第2図;親指202人指し指21、
中指22.薬指23で円柱25をにぎる場合) 第2関節部のリンク (指のvi)が円柱25に接触し
ていることが多いと考えられる。第2図(aL (bl
に示すように、にぎった際に大体接触すると青火られる
点を指定すればよい。
(Al Nigiri (Figure 2; Thumb 202, index finger 21,
Middle finger 22. When gripping the cylinder 25 with the ring finger 23) It is considered that the link (vi of the finger) of the second joint is often in contact with the cylinder 25. Figure 2 (aL (bl
As shown in the figure below, you can specify the point where the object will ignite when it comes into contact with it.

例えば第1関節部は常に一定力(fco、、t)で押し
付けていれば円柱25との接触は常に保たれることにな
る。
For example, if the first joint is always pressed with a constant force (fco, t), the contact with the cylinder 25 will always be maintained.

(b)つまみ(第3図;親指20.大指し指21、中指
22.薬指23で円柱25をつまみ、回転する場合) 第1関節部のリンク(指の腹)が円柱25と接触してい
る。位置指定は先のにぎりに従うこととし、例えば、第
3図(a)、 Tblに示すように、円柱25を回転さ
せようとした場合、単純にPi  (i=o、1,2,
3)をPi’に0を中心に回転させた位置に指定してお
けば、指のねじれ等を考慮せずとも常に円柱25との接
触を保ったままの動きが実現できる。引きこすり(第4
図)、押しこすり(第5図)も同様の考え方でよい。
(b) Pinch (Fig. 3; When rotating the cylinder 25 by pinching it with the thumb 20, big finger 21, middle finger 22, and ring finger 23) The link of the first joint (the pad of the finger) is in contact with the cylinder 25. There is. The position specification follows the above-mentioned rule. For example, if you try to rotate the cylinder 25 as shown in Figure 3(a), Tbl, simply Pi (i=o, 1, 2,
If 3) is designated as a position rotated around 0 for Pi', movement can be realized while always maintaining contact with the cylinder 25 without considering twisting of the finger. Pull (4th)
The same concept can be used for pressing and rubbing (Fig. 5).

人間形ロボット指機構で三角柱を回転させる場合(つま
み動作を伴なう場合)を例に採り、本実施例を第6図(
al、 (b)に基づき、更に詳細に説明する。
Taking as an example a case where a triangular prism is rotated by a humanoid robot finger mechanism (a case involving a pinching operation), this example is shown in Fig. 6 (
A more detailed explanation will be given based on al, (b).

本例では説明を簡単にするため、三角柱24をx、y平
面内に2軸回りに回転させる。この場合、XpY平面内
での指先(親指20゜人指し指21.中指22.薬指2
3)の位置は、 Pi(xi、yi)→P’i(x’i、 y’i)→P
’i (x’i、 y’i)というように順次変化して
いく。
In this example, in order to simplify the explanation, the triangular prism 24 is rotated around two axes within the x and y planes. In this case, the fingertips in the XpY plane (thumb 20 degrees, index finger 21, middle finger 22, ring finger 2
The position of 3) is Pi (xi, yi) → P'i (x'i, y'i) → P
'i (x'i, y'i).

一方、指先と三角柱24の接触は第7図(a)に示す通
りである。同図において、第1関節1の関節角度θ41
よ153密に規定する必要はなく指の腹部分が三角柱2
4に触れてさえいればよい(To点)。また、第7図(
blは、第2関節2より長さl、+al、先にある仮想
指先をT′点(仮想接触点)に設定すると、第1関節1
が一定力(fc。。、、)で押し付けるような力制御を
していれば、必ず三角柱24との接触点Tが実現できる
ことの説明図である。従って、第4図体)と同様の作用
が得られ、Z軸上の座標も決まる。
On the other hand, the contact between the fingertip and the triangular prism 24 is as shown in FIG. 7(a). In the figure, the joint angle θ41 of the first joint 1
153 It is not necessary to define it closely, and the pad of the finger should be a triangular prism 2.
All you have to do is touch 4 (To point). Also, Figure 7 (
bl is a length l, +al, and if the virtual fingertip located ahead of the second joint 2 is set to point T' (virtual contact point), the first joint 1
This is an explanatory diagram illustrating that if the force is controlled such that the contact point T is pressed with a constant force (fc. . . . ), the contact point T with the triangular prism 24 can always be achieved. Therefore, the same effect as in Figure 4) can be obtained, and the coordinates on the Z axis are also determined.

このようにして決定されたX、 y、Z空間中ての位V
!lPi (xi、 yi、 zi )から、式(3)
の連立方程式を解いて、各関節角度θ、〜θ。
The position V in the X, y, Z space determined in this way
! From lPi (xi, yi, zi), equation (3)
Solve the simultaneous equations for each joint angle θ, ~θ.

を算出し、各関節駆動のアクチュエータへ出力する。is calculated and output to the actuator driving each joint.

囚に、第7図(a)のTo点もTo (x、 yp Z
)で決まっているのであるが、前記〈発明が解決しよう
とする課題〉の項でも述べた通り、4関節の場合、式(
1)により、各関節角度01〜θ4を求めようとしても
3元連立に4つの変数をもっているため、解が得られな
い。そこで、乙の場合には回転による姿勢C口〜ル・ピ
ッチ・ヨーやオイラ角等の指定方式)を指定する必要が
ある〔式(2)〕。
Similarly, the To point in Figure 7(a) is also To (x, yp Z
), but as mentioned in the <Problem to be Solved by the Invention> section above, in the case of four joints, the formula (
According to 1), even if an attempt is made to find each joint angle 01 to θ4, a solution cannot be obtained because the three-dimensional system has four variables. Therefore, in the case of B, it is necessary to specify a method for specifying the attitude C mouth by rotation, pitch, yaw, Euler angle, etc. [Formula (2)].

かかる手法は、すでに確立されているもので10点を決
定することはできるが、物体との摩擦による指のねじれ
等を考慮する必要があり、特に物体の操りを扱う場合非
常に複雑化する難点がある。
Although this method is already established and can determine 10 points, it is necessary to take into account twisting of the fingers due to friction with the object, and the problem is that it becomes extremely complicated, especially when dealing with object manipulation. There is.

第8図は本実施例を適用するロボット指機構の駆動系の
一例を示す説明図である。同図に示すように、乙の駆動
系は、電気モータ10をン゛クチュエータとし、ワイヤ
12を介して指関節を構成する指リンク駆動プーリ17
をgjA動することて、指の動きを実現するものである
。このとき、位置制御は、電気モータ10の回転角を検
出する位置センサ11もしくは、関節の回転角を検出す
る位Uセンサ15等の情報を利用して行う。要するに、
指関節の回転角を自在に操れる手法であれば良い。また
、力制御は指リンク16に取りつけな力センサ13もし
くは、指リンク駆動プーリ17にかけられたワイヤ12
に設置した張力センサ14等の情報を利用して行う。こ
れも位置1iIlfilの場合と同様で力を自在に操れ
るものであれば良い。関節の剛性制御は位置フィードバ
ックゲインもしくは、カフィードバックゲイン等を可変
にすることで実施すれば良い。要するにいずれも従来の
制御手法を利用することで実現し得る。
FIG. 8 is an explanatory diagram showing an example of a drive system of a robot finger mechanism to which this embodiment is applied. As shown in the figure, the drive system B uses an electric motor 10 as an inductor, and connects a finger link drive pulley 17 that constitutes a finger joint via a wire 12.
Moving gjA realizes the movement of the fingers. At this time, position control is performed using information such as the position sensor 11 that detects the rotation angle of the electric motor 10 or the position U sensor 15 that detects the rotation angle of the joint. in short,
Any method that allows the rotation angle of the finger joints to be controlled freely is fine. In addition, force control is performed by a force sensor 13 attached to the finger link 16 or a wire 12 connected to the finger link drive pulley 17.
This is done using information from the tension sensor 14 etc. installed in the This is also the same as in the case of position 1iIlfil, so long as the force can be freely manipulated. Joint stiffness control may be performed by varying the position feedback gain, the feedback gain, or the like. In short, both can be realized by using conventional control techniques.

〈発明の効果〉 以上実施例とともに具体的に説明したように、本発明に
よれば、一般に、x、y、z3次次元間での位置決めは
、X#V# zの位置と、各軸回りの回転、計6つの変
数により指定し、各関節角度を決定しなければならない
のに対し、i?ffIQ性の良いx、y、z3つの位置
により、人間形4自由度迄の人間形ロボット詣の指先の
指定ができるばかりでなく、回転の姿勢を考慮した効果
と同等もしくはそれ以上の効果が期待できる。
<Effects of the Invention> As specifically explained above in conjunction with the embodiments, according to the present invention, positioning in the three dimensions of x, y, and z is generally performed using the X#V#z position and the rotation around each axis. The rotation of i? must be specified using a total of six variables and each joint angle must be determined. With the three x, y, and z positions with good ffIQ characteristics, it is not only possible to specify the fingertips of the humanoid robot with up to 4 degrees of freedom, but it is also expected to have an effect equal to or greater than the effect that takes into account the rotational posture. can.

【図面の簡単な説明】[Brief explanation of drawings]

第1図は本発明の実施例を適用する4自由度の人間形ロ
ボット指を示す説明図、第2図〜第5図は前記ロボット
指による作業を説明するための説明図、第6図(a)は
前記ロボット指で三角柱を回転させる場合の三角柱の把
持態様を示す説明図、第6図(blはその把持される三
角柱を示す斜視図、第7図偵L(b)は前記把持態様を
指先部分を対象に拡大して示す説明図、第8図は本発明
の実施例を適用するロボット指機構の駆動系の一例を示
す説明図である。 図 面 中、 1は第1関節、 2は第2関節、 3は第3関節、 4は第4関節、 θ1.θ2.θ5.θ4は関節角度である。 1 (al Ib) 第6 図 (O<a<+)
FIG. 1 is an explanatory diagram showing a humanoid robot finger with four degrees of freedom to which an embodiment of the present invention is applied, FIGS. a) is an explanatory diagram showing how the triangular prism is held when the robot fingers rotate the triangular prism, FIG. 6 is a perspective view showing the triangular prism being gripped, and FIG. FIG. 8 is an explanatory diagram showing an example of a drive system of a robot finger mechanism to which an embodiment of the present invention is applied. In the drawings, 1 is a first joint; 2 is the second joint, 3 is the third joint, 4 is the fourth joint, θ1.θ2.θ5.θ4 are the joint angles. 1 (al Ib) Figure 6 (O<a<+)

Claims (1)

【特許請求の範囲】[Claims] 力制御が可能なアクチュエータにより駆動され、最高4
自由度をもつ人間形ロボット指機構の制御方法であって
、人間形ロボット指における最も指先側の関節である第
1関節は関節剛性若しくは力覚、圧覚を制御するととも
に、残りの関節は仮想の指先を設定した位置制御を行な
うようにしたことを特徴とする人間形ロボット指機構の
制御方法。
Driven by a force-controllable actuator, up to 4
A method for controlling a humanoid robot finger mechanism with degrees of freedom, in which the first joint, which is the joint closest to the fingertip of the humanoid robot finger, controls the joint stiffness, force sense, and pressure sense, and the remaining joints control the virtual A method for controlling a humanoid robot finger mechanism, characterized in that position control is performed by setting fingertips.
JP33124589A 1989-12-22 1989-12-22 Control method of humanoid robot finger mechanism Expired - Fee Related JPH0673828B2 (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP33124589A JPH0673828B2 (en) 1989-12-22 1989-12-22 Control method of humanoid robot finger mechanism

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP33124589A JPH0673828B2 (en) 1989-12-22 1989-12-22 Control method of humanoid robot finger mechanism

Publications (2)

Publication Number Publication Date
JPH03196983A true JPH03196983A (en) 1991-08-28
JPH0673828B2 JPH0673828B2 (en) 1994-09-21

Family

ID=18241523

Family Applications (1)

Application Number Title Priority Date Filing Date
JP33124589A Expired - Fee Related JPH0673828B2 (en) 1989-12-22 1989-12-22 Control method of humanoid robot finger mechanism

Country Status (1)

Country Link
JP (1) JPH0673828B2 (en)

Cited By (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2006026875A (en) * 2004-07-21 2006-02-02 Toyota Motor Corp Gripping control device for robot hand
JP2006315128A (en) * 2005-05-12 2006-11-24 Toyota Motor Corp Shifting from one hand to the other hand control method for robot hand
EP1820610A1 (en) * 2006-02-11 2007-08-22 Deutsches Zentrum für Luft- und Raumfahrt e.V. Robot hand
JP2012096349A (en) * 2010-11-01 2012-05-24 GM Global Technology Operations LLC Robust operation of tendon-driven robot finger using force and position-based control law
JP2019010713A (en) * 2017-06-30 2019-01-24 ファナック株式会社 Hand control device, hand control method, and hand simulation device

Cited By (8)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2006026875A (en) * 2004-07-21 2006-02-02 Toyota Motor Corp Gripping control device for robot hand
JP2006315128A (en) * 2005-05-12 2006-11-24 Toyota Motor Corp Shifting from one hand to the other hand control method for robot hand
JP4715296B2 (en) * 2005-05-12 2011-07-06 トヨタ自動車株式会社 Robot hand holding and gripping control method.
EP1820610A1 (en) * 2006-02-11 2007-08-22 Deutsches Zentrum für Luft- und Raumfahrt e.V. Robot hand
JP2012096349A (en) * 2010-11-01 2012-05-24 GM Global Technology Operations LLC Robust operation of tendon-driven robot finger using force and position-based control law
US8489239B2 (en) 2010-11-01 2013-07-16 GM Global Technology Operations LLC Robust operation of tendon-driven robot fingers using force and position-based control laws
JP2019010713A (en) * 2017-06-30 2019-01-24 ファナック株式会社 Hand control device, hand control method, and hand simulation device
US10744654B2 (en) 2017-06-30 2020-08-18 Fanuc Corporation Gripper control device, gripper control method, and gripper simulation device

Also Published As

Publication number Publication date
JPH0673828B2 (en) 1994-09-21

Similar Documents

Publication Publication Date Title
JP5942311B2 (en) ROBOT, ROBOT CONTROL DEVICE AND CONTROL METHOD, AND ROBOT CONTROL PROGRAM
JP2013505147A (en) Humanoid robot
KR20110041950A (en) Teaching and playback method using redundancy resolution control for manipulator
JP2001287182A (en) Controller for multi-fingered hand device
Jacinto-Villegas et al. A novel wearable haptic controller for teleoperating robotic platforms
KR102239469B1 (en) Method and apparatus for controlling object
Osswald et al. Mechanical system and control system of a dexterous robot hand
JPH0550386A (en) Position instruction system for manipulator with seven degrees of freedom
Falck et al. DE VITO: A dual-arm, high degree-of-freedom, lightweight, inexpensive, passive upper-limb exoskeleton for robot teleoperation
JPH03196983A (en) Control method for human type robot finger mechanism
JPH01274987A (en) Gripper device
JP4797164B2 (en) Automatic open / close structure for open / close type tools
CN110545965A (en) Articulated robot and articulated robot system
JP3612085B2 (en) Master arm device for master / slave system
JPH11239988A (en) A singular point avoiding method in direct teaching of articulated robot
JPH0440870Y2 (en)
Fuentes et al. Experiments on dextrous manipulation without prior object models
Peters et al. Teleoperaton setup for wire-cutting application in the field
JP7022964B2 (en) How to hold the robot hand
JPH01310877A (en) Bilateral control system for two-finger hand
JPH0630862B2 (en) Finger manipulator
WO2024048285A1 (en) Articulated robot, articulated robot control method, robot system, and article manufacturing method
WO2024024258A1 (en) Robot system, device for controlling robot hand, and method for controlling robot hand
JPH0630861B2 (en) Finger manipulator
Williams et al. Three-cable haptic interface

Legal Events

Date Code Title Description
LAPS Cancellation because of no payment of annual fees