JPH0319623A - Farm crop cultivation system - Google Patents

Farm crop cultivation system

Info

Publication number
JPH0319623A
JPH0319623A JP15489789A JP15489789A JPH0319623A JP H0319623 A JPH0319623 A JP H0319623A JP 15489789 A JP15489789 A JP 15489789A JP 15489789 A JP15489789 A JP 15489789A JP H0319623 A JPH0319623 A JP H0319623A
Authority
JP
Japan
Prior art keywords
amount
growth
nutrients
fuzzy
crops
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Pending
Application number
JP15489789A
Other languages
Japanese (ja)
Inventor
Seiichi Shitama
舌間 誠一
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Omron Corp
Original Assignee
Omron Corp
Omron Tateisi Electronics Co
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Omron Corp, Omron Tateisi Electronics Co filed Critical Omron Corp
Priority to JP15489789A priority Critical patent/JPH0319623A/en
Publication of JPH0319623A publication Critical patent/JPH0319623A/en
Pending legal-status Critical Current

Links

Landscapes

  • Cultivation Of Plants (AREA)

Abstract

PURPOSE:To accelerate the growth of farm crops and increase their quality by combining a growth detector, a nutrition amount detector, a nutrition supplier and a fuzzy inference means so that they act specifically. CONSTITUTION:In the vinyl house 1, the 3 major nutrients, namely nitrogen, phosphorus and potassium in the soil 3 where farm crops 2 are cultivated are detected by sensors S2 through S4. Additionally, the growth of the crops 2 is detected with the sensor S1. The results detected by theses sensors are input into the fussy controller 7. The fuzzy controller 7 does fuzzy inference on the basis of the results to determine the amounts of the nutrients to be supplied and the amounts are output to the valve-opening unit 8. The vinyl house is provided with sprinklers 4 for supplying fertilizers in tank 6 to the soil 3 and the valve-opening unit 8 opens the valves 5 of the sprinklers 4 to feed a needed amount of fertilizers to the crops 2 and the soil 3.

Description

【発明の詳細な説明】 (al産業上の利用分野 この発明は、生花、果実および野菜などの作物に対して
必要量の栄養素を供給する農作物栽培装置に関し、特に
ファジィ推論を用いて栄養素量を決定する農作物栽培装
置に関する。
DETAILED DESCRIPTION OF THE INVENTION (Al Industrial Field of Application) The present invention relates to an agricultural crop cultivation device that supplies necessary amounts of nutrients to crops such as fresh flowers, fruits, and vegetables. Regarding crop cultivation equipment to be determined.

(bl従来の技術 農作物を栽培する場合において、温度、照明、空気中の
炭酸ガス濃度、および土壌の栄養素量などの外部環境が
農作物の生長状態に大きな影響を与える。そこで、従来
より農作物をビニールハウス内において栽培し、このビ
ニールハウス内の温度や照明を管理して収穫時期を調整
することが一般的に行われていた。
(bl) Conventional technology When cultivating crops, the external environment such as temperature, lighting, carbon dioxide concentration in the air, and the amount of nutrients in the soil have a large effect on the growth state of the crops. It was common practice to cultivate in a greenhouse and adjust the harvest time by controlling the temperature and lighting inside the greenhouse.

tel発明が解決しようとする課題 しかしながら、上記従来のビニールハウスでは、温度や
照度を一定範囲内に保持する程度の管理がなされていた
だけで、農作物の栄養素となる空気中の炭酸ガスや土壌
中の肥料の量を制御するようにしたものがなかった。一
般に農作物に必要な栄養素量はその成育期間や生長過程
において変化するが、収穫時期の調整によって戒育期間
が短縮化されると農作物に対する栄養素量が不足ぎみと
なり、農作物の品質の低下を招く問題があった。
Problems to be Solved by the Invention However, in the above-mentioned conventional greenhouses, the temperature and illuminance were only managed to the extent that they were kept within a certain range, and carbon dioxide in the air and soil, which are nutrients for crops, were There was no way to control the amount of fertilizer. Generally, the amount of nutrients required by crops changes during their growth period and growth process, but if the cultivation period is shortened by adjusting the harvest time, the amount of nutrients for the crops becomes insufficient, leading to a decline in the quality of the crops. was there.

この発明の目的は、農作物の生長過程に合わセて供給す
べき栄養素量をファジィ推論によって決供給“ごきるよ
)にして・生長を促進し、農作物の品質の向十,を実現
てき2,農作物栽培塾済を提供することにある。
The purpose of this invention is to use fuzzy reasoning to determine the amount of nutrients that should be supplied according to the growth process of agricultural crops, promote growth, and improve the quality of agricultural crops2. The aim is to provide crop cultivation training.

(d+課題を解決するための手段 この発明の農作物栽培装置は、農作物の生長度を検出す
る生長度検出手段と、農作物の生長環境中の栄養素量を
検出する栄養素量検出手段と、農作物のを1−長環境中
に栄養素を供給ずろ栄養素供紹J−段と、生長度検出千
段および栄養素量検11トF段の検出し2た生長度およ
び栄養素量を入力値としてファ:′7゛イtl論を行い
、栄養素{I(給丁段に出力する栄養素の供給量を決定
するファジィ推論手段と、から横或したことを特徴とす
る。
(d+ Means for Solving the Problems) The agricultural crop cultivation apparatus of the present invention comprises: a growth degree detection means for detecting the growth degree of the agricultural crops; a nutrient amount detection means for detecting the amount of nutrients in the growth environment of the agricultural crops; 1-Supply nutrients in a long environment, nutrient supply J-stage, growth degree detection 1,100 steps and nutrient amount detection 11-F step 2. Input the detected growth degree and nutrient amount as input values.F: '7゛The present invention is characterized by a fuzzy inference means for determining the supply amount of nutrients to be output to the feeding stage.

(elイ乍用 この発明においては、農作物の生長度とるt′長環境中
の栄養素量とに基づいてファジィ推論を行い、供給すべ
き栄養素量が決定される。
In the present invention, the amount of nutrients to be supplied is determined by performing fuzzy inference based on the growth rate of agricultural crops and the amount of nutrients in the environment for length t'.

ファジィ推論手段は、公知のようにファジィ演*を行う
ファジィ演算部と、確定稙演算を行うデファンイファイ
部とて構威されている。ファジィ演算部は予め定められ
たファジィルールに従ったメンハシソプ関数発l1一器
を備え、人力される変数乙こ対するメンハシソブ値を演
算するととノ〕に、その結果に基づいて演算した推論値
をデファジィファ・イ部に対して出力する。このファン
イルールはif(x+  −A and x2−8  
−)then(y  =Z)の形式で表され、(xl 
 .:a and x2−tl−)は前件部、(y=Z
)は後件部とIIJIばれろ。
As is well known, the fuzzy inference means is composed of a fuzzy operation unit that performs fuzzy operations* and a defiant-if unit that performs deterministic operations. The fuzzy calculation unit is equipped with a function generator that follows predetermined fuzzy rules, and calculates the value of a manually input variable, and then calculates the inferred value calculated based on the result using a defuzzifier.・Output to section A. This fun rule is if(x+ -A and x2-8
−) then (y = Z), and (xl
.. :a and x2-tl-) is the antecedent part, (y=Z
) is known as the consequent part.

第6図は」二記のファジィルールに従ってHl 89 
結果を出力する公知の手法を説明するための口である。
Figure 6 is Hl 89 according to the fuzzy rules in ``2''.
This is an explanation of a known method for outputting results.

同図(A).  (B)は入力値である前件部の2つの
変数(Xl.X.2)に刻応ずるメンハシノブ関数を示
し、同図(C)は出力値である後{71部に対応ずるノ
ンバシソブ関数を表す。ここでるよ前件部のメンハシノ
プ関数を2つ示しているが、前件部の変数の種類が増え
ればメンバシソブ関数もその分増加する。各図において
横軸は変数の値を表し、縦軸はメンハシノプの位置(所
属度)を表すいま、前件部の第1項の変数X,の値がX
であるとすると、そのときの所属度はO、5である(同
図(A)参照)。また、前件部の第2項目の変数x2の
{直がx2 ′であるとすると、そのときの所属度は0
.3である(同図(B)参照}。
Same figure (A). (B) shows the Menhashinobu function that corresponds to the two variables (Xl. represent. Here we show two Menhasinop functions for the antecedent part, but as the types of variables in the antecedent part increase, the number of member functions will increase accordingly. In each figure, the horizontal axis represents the value of the variable, and the vertical axis represents the position (degree of affiliation) of the menhasinop.Now, the value of the variable X, in the first term of the antecedent part is
If so, the degree of affiliation at that time is O.5 (see (A) in the same figure). Also, if the {direction of the variable x2 in the second item of the antecedent part is x2′, then the degree of membership is 0
.. 3 (see figure (B)).

このような場合ファジィ演算てはそれぞれの所属度の中
で最も小さな値をとる。すなわち、上記の例では所属度
0.3を選ぶ。次にZに対応するメンバシノブ関数を上
記の所属度0.3の所で頭切2・)を行い、下側の台形
部Sの重心位置y′を求める。そしてこのy′を}1t
論結果として出力する。
In such a case, the fuzzy operation takes the smallest value among the degrees of membership. That is, in the above example, a degree of affiliation of 0.3 is selected. Next, the member Shinobu function corresponding to Z is truncated at the above-mentioned degree of membership 0.3, and the center of gravity position y' of the lower trapezoidal part S is determined. And this y′}1t
output as a result.

1つのルールに対しては以」二のような推論を行・)が
、一般には?.3i数のルールを設定する。この場合に
は各ルール毎に第6図(C)に示す推論結果が出力され
る。そして各ルール毎に出力された台形部を論理和し、
その論理和した部分(第6図(I))の斜線領域)の重
心y ”を論理の確定値として出力する。このように、
第6図(A>および(B)のメンハシソプ関数の横軸に
示される人力値が中間値を取るように出力値が求められ
る。
For a single rule, the following inference is made, but in general? .. Set the 3i number rules. In this case, the inference results shown in FIG. 6(C) are output for each rule. Then, OR the trapezoid parts output for each rule,
The center of gravity y'' of the logically summed part (the shaded area in FIG. 6 (I)) is output as the determined value of the logic. In this way,
The output value is determined so that the human power value shown on the horizontal axis of the Menhashisop function in FIGS. 6 (A> and (B)) takes an intermediate value.

以上の論理手法において前件部に属する所属度の論理積
演算(小さい方の所属度を選ぶ演算)ルールと、後件部
に対する台形部の論理和演算ルールとをmini−ma
xルールと呼び、それぞれ前件部論理積回路および後件
部論理和回路において実行される。
In the above logical method, the logical product operation rule for the degree of belonging belonging to the antecedent part (operation to select the smaller degree of belonging) and the logical sum operation rule for the trapezoidal part for the consequent part are mini-ma
They are called x-rules and are executed in the antecedent logical product circuit and the consequent logical sum circuit, respectively.

この発明においては、第6図(D)の重心y〃を栄養素
の供給量として出力する。
In this invention, the center of gravity y in FIG. 6(D) is output as the amount of nutrients supplied.

(f)実施例 第1図は、この発明の実施例である農作物栽培装置の構
成を示す図である。
(f) Embodiment FIG. 1 is a diagram showing the configuration of an agricultural crop cultivation apparatus that is an embodiment of the present invention.

ビニールハウス1内において農作物2が栽培される土壌
3内の窒素、リンおよびカリウムの3大栄養素のそれぞ
れの含有量がセン−’:JS2〜S4によって検出され
る。また、農作物2の生長度はセンサS1により検出さ
れる。これらセンザS1〜S4の検出結果がファジィコ
ン1一ローラフに入力される。ファジィコン1・ローラ
7はこれらセンサS1〜S4の検出結果を入力値として
ファジィ推論を行い、供給すべき栄養素量を決定して弁
開閉部8に出力する。ビニールハウス1内にはタンク6
内の肥料を農作物2および土壌3に供給する噴霧装置4
が備えられている。面開閉部8はこの噴霧装置4の弁5
を開閉し、必要量の肥料を農作物2および土壌3に供給
する。
The contents of each of the three major nutrients, nitrogen, phosphorus, and potassium, in the soil 3 in which the agricultural products 2 are grown in the greenhouse 1 are detected by Sen-': JS2 to S4. Further, the degree of growth of the agricultural products 2 is detected by the sensor S1. The detection results of these sensors S1 to S4 are input to the fuzzy controller 1-low rough. The fuzzy controller 1/roller 7 performs fuzzy inference using the detection results of these sensors S1 to S4 as input values, determines the amount of nutrients to be supplied, and outputs it to the valve opening/closing section 8. Tank 6 in greenhouse 1
Spraying device 4 that supplies fertilizer to agricultural crops 2 and soil 3
is provided. The surface opening/closing part 8 is the valve 5 of this spray device 4.
is opened and closed to supply the required amount of fertilizer to the crops 2 and soil 3.

第2図は、上記農作物栽培装置のファジィコントローラ
の構或を示すブロソク図である。
FIG. 2 is a block diagram showing the structure of the fuzzy controller of the agricultural crop cultivation device.

ファジィコントローラ7はファジィ演算部40とデファ
ジファイ部41とを備えている。ファジィ演算部40は
第4図に示すファジィルールに従ってルール毎の推論結
果Xiを出力する。このファジィ演算部40は各ファジ
ィルール毎に設けられており、複数のファジィ演算部4
0の推論結果が並列にデファジィファイ部4工に出力さ
れる。
The fuzzy controller 7 includes a fuzzy calculation section 40 and a defuzzify section 41. The fuzzy calculation unit 40 outputs the inference result Xi for each rule according to the fuzzy rules shown in FIG. This fuzzy calculation section 40 is provided for each fuzzy rule, and a plurality of fuzzy calculation sections 4
The inference results of 0 are output in parallel to the defuzzifier 4.

例えば、第2図において最上部に位置するファジィ演算
部40は第4図に示すファジィルールのうち、 if(x+=NM and xz=NM and xs
=ZR and x4=ZR)then (y=PS) に対応ずる。
For example, among the fuzzy rules shown in FIG. 4, the fuzzy calculation unit 40 located at the top in FIG.
=ZR and x4=ZR) then (y=PS).

第4図に示すファジィルールにおいて、各ラベルは、 i生長度X NM:生長が少し不十分である NS:生長がやや不十分である ZR:適度に生長している ii窒素量x2 NM:土壌中の窒素量が少し不足しているNS:土壌1
1コの窒素量がやや不足しているZR:土壌中の窒素量
が適量である iiiリンMX2 NM:土壌中のリン量が少し不足しているNS:土壌中
のリン量がやや不足しているZR:土壌中のリン量が適
量である ivカリウム量 NM:土壌中のカリウム量が少し不足している NS:土壌中のカリウム量がやや不足していZR:土壌
中のカリウム量が適量であるを意味する。
In the fuzzy rules shown in Figure 4, each label is: i Growth degree NS with a slight lack of nitrogen content: Soil 1
The amount of nitrogen in the soil is slightly insufficient ZR: The amount of nitrogen in the soil is appropriate. ZR: The amount of phosphorus in the soil is appropriate.iv Potassium amount NM: The amount of potassium in the soil is slightly insufficient.NS: The amount of potassium in the soil is slightly insufficient.ZR: The amount of potassium in the soil is appropriate. It means something.

第3図(A)は、上記ファジィ演算部の構戊を示してい
る。ファジィ演算部40は5個の汎用メンバシソプ関数
発生器50〜54を備えている。
FIG. 3(A) shows the structure of the fuzzy operation section. The fuzzy operation unit 40 includes five general-purpose member function generators 50-54.

このメンバシソプ関数発生器50〜54のそれぞれには
、生長度X,とこれに対応するラベルNM、窒素量x2
とこれに対応するラベルNM、リン量x3とこれに対応
するラベルZR,カリウム量X4とこれに対応するラヘ
ルZR、および供給旦yに対応するラベルPSが入力さ
れる。各メンバシソプ関数発生器50〜54は、そのラ
ベルに対応したメンバシソプ関数を発生する。すなわち
、メンバシソプ関数発生器50内では第5図(A)に示
すNMのメンバシンプ関数が発生し、メンバシソプ関数
発生器5l内では同図(B)に示すNMのメンハシソブ
関数が発生し、メンバシソプ関数発生器52では同図(
C)に示すZRのメンバシソプ関数が発生し、メンバシ
ソプ関数発生器53では同図(D)に示すZRのメンバ
シ・ノブ関数が発生する。また、メンバシソプ関数発生
器54では同図(E)に示ずPSのメンバシソプ関数が
発生する。これら第5図(A)〜(E)に示したメンバ
シソプ関数は、栽培作物に対する各栄養素の供給量と生
長状態との関係に基づいて経験的に予め定められている
Each of the member function generators 50 to 54 has a growth degree X, a label NM corresponding thereto, and a nitrogen amount x2.
and the corresponding label NM, the phosphorus amount x3 and the corresponding label ZR, the potassium amount X4 and the corresponding Rahel ZR, and the label PS corresponding to the supply date y are input. Each member function generator 50-54 generates a member function corresponding to its label. That is, in the member function generator 50, the member function of NM shown in FIG. 5(A) is generated, and in the member function generator 5l, the member function of NM shown in FIG. In the same figure (
The ZR membership function shown in (C) is generated, and the member function generator 53 generates the ZR membership knob function shown in (D) of the same figure. Further, the member function generator 54 generates a member function of PS (not shown in FIG. 5E). The member functions shown in FIGS. 5(A) to 5(E) are empirically determined in advance based on the relationship between the amount of each nutrient supplied to the cultivated crop and the growth state.

メンハシノプ関数発生器50〜53の出力、すなわち、
ファジィルールの前件部の各項の所属度は前件部論理積
回路55に出力され、前述のminimaxルールのm
iniルールによって小さい方の所属度が選択される。
The outputs of the Menhasinop function generators 50 to 53, i.e.
The degree of membership of each term in the antecedent part of the fuzzy rule is output to the antecedent part AND circuit 55, and
The smaller degree of affiliation is selected by the ini rule.

その結果が後件部論理積回路56に送られる。この後件
部論理積回路56では、メンハシソプ関数発生器54で
発生したメンバシソプ関数に前件部論理積回路55から
の推論結果を当てはめて第6図<C>に示したような頭
切りを行い(論理積を通り)、台形部を推論結果として
出力する。
The result is sent to the consequent AND circuit 56. The consequent AND circuit 56 applies the inference result from the antecedent AND circuit 55 to the member function generated by the menhasisop function generator 54, and performs the head truncation as shown in FIG. 6 <C>. (passes the logical product) and outputs the trapezoidal part as the inference result.

第3図(B)はデファジィファイ部41の構或を示す図
である。同図に示すようにデファジィフ10 ァ・イ部41は論理和回路(後{’t部論理和回路)6
0と確定値演算回路61とで構或される。論理和回路6
 0 1:tmini−mayルールのmaxルールを
演算する部分てあり、複数のファソイ演算部4oからの
台形出力(推論結果)を論理和し、第6図(D)にハノ
ヂングを施したような領域を形威する。確定稙演算回路
61はこの領域から重心位置を求め、肥料の供給量の確
定値を出力する。
FIG. 3(B) is a diagram showing the structure of the defuzzifier 41. As shown in the figure, the defuzzifier 10 A/I section 41 is a logical sum circuit (later {'t section logical sum circuit) 6
0 and a definite value calculation circuit 61. OR circuit 6
0 1: There is a part that calculates the max rule of the tmini-may rule, and it is an area that is obtained by ORing the trapezoidal outputs (inference results) from a plurality of fasoi calculation units 4o and applying Hanozing to FIG. 6(D). to give form to. The deterministic calculation circuit 61 determines the center of gravity position from this area and outputs a determined value of the amount of fertilizer supplied.

以Lのようにしてこの実施例によれば、農作物の生長度
および土壌中の栄養素量に基づいてファシイ推論を行い
、肥f4の{』(給量を決定することができる。したが
って、農作物の生長度や土壌中の栄養素量に合わーせ゜
ζ農作物の成育にきめ細かく適合した量の肥料を供給す
ることができ、農作物の品質向上を図ることができる。
As described below, according to this embodiment, it is possible to perform facsimile inference based on the growth rate of agricultural crops and the amount of nutrients in the soil, and determine the amount of fertilizer f4 {'' (feeding amount). It is possible to supply fertilizer in an amount that is precisely suited to the growth of agricultural crops according to the degree of growth and the amount of nutrients in the soil, thereby improving the quality of agricultural crops.

なお、木大施例では,、    −二′.   一窒素
、リンおよびカリウムを念んだ肥料を供給することとし
たが、農作物の炭酸同化作用に係る空気中の炭酸ガスを
栄養素として供給することもできる。この場合には、農
作物の生長度および空気中の炭酸カス濃度を入力値とし
てファジィ:1ンI・ロラ乙こ入力ずることが考えられ
る。また、同様にして温度や照明の制御を行・)ように
しても良い。
In addition, in the Mokudai example, −2′. Although we decided to supply fertilizer with a focus on nitrogen, phosphorus, and potassium, it is also possible to supply carbon dioxide gas in the air, which is associated with the carbon assimilation of agricultural crops, as nutrients. In this case, it is conceivable to input the degree of growth of agricultural crops and the carbon dioxide concentration in the air as input values using a fuzzy algorithm. Further, temperature and lighting may be controlled in the same manner.

(g)発明の効果 この発明によれば、農作物の生長度おまひ生長環境中の
栄養素量乙こ基づいて栄養素の4Jt給璽を決定するこ
とができ、農作物の生長過程にきめ細かく適合さセた量
の栄養素を供給することができ、農作物の品質向上を犬
現てきる利点がある。
(g) Effects of the Invention According to this invention, it is possible to determine the 4Jt supply of nutrients based on the growth rate of agricultural crops and the amount of nutrients in the growing environment, and it is possible to determine the amount of nutrients to be supplied in a manner that is finely adapted to the growth process of agricultural crops. It has the advantage of being able to supply large amounts of nutrients and improving the quality of agricultural crops.

【図面の簡単な説明】[Brief explanation of the drawing]

第1図はこの発明のブこ施例である農1′[物栽培袋置
の構成を示す図、第2図は同農作物栽培袈置のファシイ
二lン1・ローラの構成を示す図、第3図(A)およひ
(B)は同ファジィコン1・ローラのそれぞれファジィ
推論部およびデファシイファイ部の構成を示す図、第4
図は同ファジィ:1ン} o −ラにおけるファシイル
ールの−例を示す図、第5図(A)〜(E)は同ファジ
ィ′X]ントローラにおLJるノンハシノブ関数を示ず
Iハ1てある。また、第11 6図は公知のファジィ推論の手法を説明する図である。 2−農作物、 S1−=センサく生長度検出手段)、 32〜S4−セン勺 (栄養素量検出手段)、4−噴霧
装置く栄養素供給手段)、 7−ファジィコン1・ローラ、 8−弁開閉部。
Fig. 1 is a diagram showing the configuration of a agricultural product cultivation bag holder, which is an embodiment of the present invention; FIGS. 3(A) and 3(B) are diagrams showing the configurations of the fuzzy inference section and the defacification section of the fuzzy controller 1 and roller, respectively.
The figure shows an example of the fuzzy rule in the same fuzzy controller. be. Further, FIG. 116 is a diagram for explaining a known fuzzy inference method. 2-Agricultural crops, S1-=sensor (growth detection means), 32-S4-sensor (nutrient amount detection means), 4-spraying device/nutrient supply means), 7-Fuzzy control 1 roller, 8-valve opening/closing Department.

Claims (1)

【特許請求の範囲】[Claims] (1)農作物の生長度を検出する生長度検出手段と、農
作物の生長環境中の栄養素量を検出する栄養素量検出手
段と、農作物の生長環境中に栄養素を供給する栄養素供
給手段と、生長度検出手段および栄養素量検出手段の検
出した生長度および栄養素量を入力値としてファジィ推
論を行い、栄養素供給手段に出力する栄養素の供給量を
決定するファジィ推論手段と、から構成したことを特徴
とする農作物栽培装置。
(1) Growth degree detection means for detecting the growth degree of agricultural crops, nutrient amount detection means for detecting the amount of nutrients in the growth environment of agricultural crops, nutrient supply means for supplying nutrients into the growth environment of agricultural crops, and growth degree. Fuzzy inference means performs fuzzy inference using the growth degree and nutrient amount detected by the detection means and the nutrient amount detection means as input values, and determines the amount of nutrients to be supplied to the nutrient supply means. Crop cultivation equipment.
JP15489789A 1989-06-16 1989-06-16 Farm crop cultivation system Pending JPH0319623A (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP15489789A JPH0319623A (en) 1989-06-16 1989-06-16 Farm crop cultivation system

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP15489789A JPH0319623A (en) 1989-06-16 1989-06-16 Farm crop cultivation system

Publications (1)

Publication Number Publication Date
JPH0319623A true JPH0319623A (en) 1991-01-28

Family

ID=15594350

Family Applications (1)

Application Number Title Priority Date Filing Date
JP15489789A Pending JPH0319623A (en) 1989-06-16 1989-06-16 Farm crop cultivation system

Country Status (1)

Country Link
JP (1) JPH0319623A (en)

Cited By (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US10832359B2 (en) 2014-02-25 2020-11-10 Pioneer Hi-Bred International, Inc. Environmental management zone modeling and analysis

Cited By (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US10832359B2 (en) 2014-02-25 2020-11-10 Pioneer Hi-Bred International, Inc. Environmental management zone modeling and analysis
US11341591B2 (en) 2014-02-25 2022-05-24 Pioneer Hi-Bred International, Inc. Environmental management zone modeling and analysis
US11625798B2 (en) 2014-02-25 2023-04-11 Pioneer Hi-Bred International, Inc. Environmental management zone modeling and analysis

Similar Documents

Publication Publication Date Title
Li et al. Automatic carbon dioxide enrichment strategies in the greenhouse: A review
US20210259163A1 (en) Control space operating system
KR101963508B1 (en) Plant cultivation system capable of self-control and romote control
Rodríguez et al. Adaptive hierarchical control of greenhouse crop production
Fuangthong et al. Automatic control of electrical conductivity and PH using fuzzy logic for hydroponics system
CN106292802A (en) A kind of Intelligent Prediction Control System for fish and vegetable symbiotic system and method
CN107390754A (en) Intelligent plant growth environment adjustment system and method based on Internet of Things cloud platform
Challa Crop growth models for greenhouse climate control.
Kumar et al. Opportunities and constraints in hydroponic crop production systems: A review
Fernando et al. Design of a fuzzy logic controller for a vent fan and growlight in a tomato growth chamber
JPH0319623A (en) Farm crop cultivation system
Kozai et al. Greenhouse environment control technologies for improving the sustainability of food production
JPH1098949A (en) Diversified cultivation system for mushroom and protected horticulture
Iliev et al. A fuzzy logic based approach for integrated control of protected cultivation
JPS6255025A (en) Plant culture apparatus
Van Straten On-line optimal control of greenhouse crop cultivation
Thazin et al. IoT based Hydroponic Temperature and Humidity Control System using Fuzzy Logic
Zelkind et al. Indoor production of tomatoes
CN110135403A (en) Houseplant cultural method, device, system, equipment and readable storage medium storing program for executing
RU2552033C1 (en) Control method of forming harvest in greenhouse and system for its implementation
Peng et al. Research on Efficient and Intelligent Regulation of Nutrients in Protected Soilless Culture
Choiniere et al. Root Monitoring of Valley Heart Lettuce in Hydroponics Systems
Jiang et al. Smart control system for the precision cultivation of black fungus.
KR102646109B1 (en) Artificial intelligence-based facility horticultural system and method for maximizing crop sales profit
Dayioglu et al. Management of greenhouse crop growth system.