JPH03191518A - Semiconductor device and manufacture thereof - Google Patents

Semiconductor device and manufacture thereof

Info

Publication number
JPH03191518A
JPH03191518A JP33202489A JP33202489A JPH03191518A JP H03191518 A JPH03191518 A JP H03191518A JP 33202489 A JP33202489 A JP 33202489A JP 33202489 A JP33202489 A JP 33202489A JP H03191518 A JPH03191518 A JP H03191518A
Authority
JP
Japan
Prior art keywords
contact hole
film
melting point
interlayer insulating
point metal
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Pending
Application number
JP33202489A
Other languages
Japanese (ja)
Inventor
Toshiyuki Shimizu
俊行 清水
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
NEC Corp
Original Assignee
NEC Corp
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by NEC Corp filed Critical NEC Corp
Priority to JP33202489A priority Critical patent/JPH03191518A/en
Publication of JPH03191518A publication Critical patent/JPH03191518A/en
Pending legal-status Critical Current

Links

Landscapes

  • Electrodes Of Semiconductors (AREA)
  • Internal Circuitry In Semiconductor Integrated Circuit Devices (AREA)

Abstract

PURPOSE:To prevent a high melting point metal buried in a contact hole from being released to fall off by a method wherein the high melting point metal layer is buried in the contact hole on whose sidewall a conductor film or a semiconductor film is formed. CONSTITUTION:An interlayer insulating film 3 is formed on a semiconductor substrate 1 and then a contact hole 4 is made in the interlayer insulating film 3. A conductor film or a semiconductor film covering the sidewall of the contact hole 4 is formed and then a tungsten layer 7 as a high melting point metal to be an electrode is selectively deposited by chemical vapor deposition process in the contact hole 4 so as to be buried therein. At this time, since the contact hole 4 is exposed to the single crystal silicon of the polysilicon film 5 and the silicon substrate 1, the tungsten layer 7 is entirely in contact with the silicon in the contact hole 4 so that the bonding strength may be increased while lowering the resistance in comparison with the contact with the interlayer insulating film 3. Through these procedures, a high melting point metal buried in the contact hole 4 as a connecting electrode can be prevented from being released to fall off.

Description

【発明の詳細な説明】 〔産業上の利用分野〕 本発明は半導体装置およびその製造方法番二関し、特に
配線等の導体層を低抵抗で接続するコンタクト穴内の電
極およびその形成方法番こ関する。
[Detailed Description of the Invention] [Field of Industrial Application] The present invention relates to a semiconductor device and a method for manufacturing the same, and particularly relates to an electrode in a contact hole for connecting a conductor layer such as a wiring with low resistance, and a method for forming the same. .

〔従来の技術〕[Conventional technology]

半導体基板、特にシリコン基板上に形成される集積回路
は高密度化、高集積化の一途を辿り、特にMO9型ス型
子タテイックメモリ装置集積度が1Mビットから4Mビ
ットへと進もうとして!/Xる。この様な装置の高集積
化においては、チ・ylのコストと歩留りの観点から、
−素子当りの占有面積を低減することが最も有効な方法
である。
Integrated circuits formed on semiconductor substrates, especially silicon substrates, are becoming increasingly dense and highly integrated, and in particular, the density of MO9 type vertical memory devices is about to advance from 1Mbit to 4Mbit! /Xru. In order to increase the integration of such devices, from the viewpoint of cost and yield of chi-yl,
- The most effective method is to reduce the area occupied by each element.

MO3型スタティックメモリにおける1Mビ・7)RA
Mでは、1セル当たりの占有面積が40〜50μm2で
あったのに対し、4Mと・y)RAMでは15〜25μ
m2であることが要請される。
1M Bi・7) RA in MO3 type static memory
In M, the occupied area per cell was 40 to 50 μm2, whereas in 4M and RAM, it was 15 to 25 μm.
m2 is required.

1セル当たりの占有面積の低減に伴〜)、配線層と配線
層を電気的につなぐコンタクト穴の占有面積も小さくす
ることが必要であり、このコンタクト六の微細化に伴い
コンタクト抵抗の上昇が問題となる。即ち、メモリ装置
の様な集積回路装置では、高集積化と共に高速度化が要
求され、動作速度には各種容量成分と共に、配線及びコ
ンタクト抵抗の上昇が大きく悪影響を及ぼすからである
With the reduction in the area occupied by each cell, it is necessary to reduce the area occupied by the contact hole that electrically connects the wiring layers, and as the contact hole becomes smaller, the contact resistance increases. It becomes a problem. That is, in integrated circuit devices such as memory devices, high integration and high speed are required, and the increase in wiring and contact resistance as well as various capacitance components have a large negative effect on the operating speed.

従ってコンタクト穴は微細になってもコンタクト抵抗は
低いことが要求される。
Therefore, even if the contact hole becomes fine, it is required that the contact resistance be low.

高速化が要求される一方、低消費電力であることも要求
されるので、半導体集積回路ではCMO8化が一段と進
みつつある。従ってCMO3化に対応する工程の少ない
導体層間の接続方法も同時に要求されるところである。
While high speed is required, low power consumption is also required, so CMO8 is becoming more and more popular in semiconductor integrated circuits. Therefore, there is a need for a connection method between conductor layers that requires fewer steps and is compatible with CMO3.

これらの三者の要請を同時に満たす導体層間の接続方法
として第3図に示す様に、選択的にコンタクト穴内に接
続用の電極として高融点金属を埋設する技術が検討され
ている。
As a method for connecting conductor layers that satisfies these three requirements at the same time, a technique is being considered in which a refractory metal is selectively buried as a connection electrode in a contact hole, as shown in FIG.

即ち、シリコン基板1に形成されたN型拡散層2と上部
のアルミニウム配線8とを接続するために層間絶縁膜3
にコンタクト穴4を開口し、タングステン7等の金属を
、シリコン基板又は、配線層上のみに選択的に成長する
化学気相成長技術を用い、コンタクト穴4内のみに選択
的に埋設する方法である。
That is, an interlayer insulating film 3 is used to connect the N-type diffusion layer 2 formed on the silicon substrate 1 and the upper aluminum wiring 8.
A contact hole 4 is opened in the contact hole 4, and a metal such as tungsten 7 is selectively buried only in the contact hole 4 using a chemical vapor deposition technique that selectively grows only on the silicon substrate or wiring layer. be.

この方法は、低抵抗で導体層間を接続できるばかりでな
く、層間の平坦化も同時に行なえるので、微細化、高密
度化、高集積化する集積回路の導体層間の接続技術とし
て極めて有効である。
This method not only connects conductor layers with low resistance, but also flattens the layers at the same time, making it extremely effective as a connection technology between conductor layers in integrated circuits that are becoming smaller, more dense, and more highly integrated. .

又CMO3型O3回路においても、N型およびP型の不
純物拡散層も同じ工程で接続することも可能になるため
、工程を減少させることができ、コストの低減、歩留り
の向上の点でも極めて有効な手段である。
In addition, in CMO3 type O3 circuits, it is also possible to connect N-type and P-type impurity diffusion layers in the same process, which reduces the number of processes and is extremely effective in reducing costs and improving yield. It is a method.

〔発明が解決しようとする課題〕[Problem to be solved by the invention]

しかし、上述した従来の高融点金属を埋設する導体層間
の接続方法では、コンタクト穴側壁の絶縁膜と高融点金
属の接着性が悪く、コンタクト穴に接続用の電極として
埋設した高融点金属がはがれて抜けてしまい、良好な導
体層間の接続が損なわれてしまうという問題があった。
However, in the conventional connection method between conductor layers in which a high-melting point metal is buried, the adhesion between the insulating film on the side wall of the contact hole and the high-melting point metal is poor, and the high-melting point metal buried as a connection electrode in the contact hole peels off. There was a problem in that the conductor layer could be easily connected to the other conductor layers and the conductor layer could be easily connected to the conductor layer.

この原因は特にコンタクト穴内壁の二酸化ケイ素と埋設
した金属との間に化合物が生成しないことが主な原因で
あると思われる。例えばタングステンと二酸化ケイ素の
熱膨張係数は、タングステンでは4 、5 X 10−
6T−1であるのに対し、二酸化ケイ素では0 、4 
X 10−6T−1であるので、化学結合の弱いこれら
物質間では熱工程を加えることにより更にはがれやすく
なるという問題点もあった。
The main reason for this seems to be that no compound is formed between the silicon dioxide on the inner wall of the contact hole and the buried metal. For example, the coefficient of thermal expansion of tungsten and silicon dioxide is 4,5 x 10-
6T-1, whereas silicon dioxide has 0,4
Since it is X 10-6T-1, there is also a problem that these substances, which have weak chemical bonds, become more likely to separate when a thermal process is applied.

本発明の目的は、この様なコンタクト穴内に埋設した高
融点金属のはがれや抜は落ちることを防止した信頼性お
よび歩留りの高い半導体装置の製造方法を提供すること
にある。
An object of the present invention is to provide a method of manufacturing a semiconductor device with high reliability and yield, which prevents the high melting point metal buried in such a contact hole from peeling off or falling off.

〔課題を解決するための手段〕[Means to solve the problem]

本発明の半導体装置は、半導体基板上に設けられた層間
絶縁膜と、この層間絶縁膜に設けられたコンタクト穴と
、このコンタクト穴の側壁面に設けられた導体膜または
半導体膜と、導体膜または半導体膜が設けられた前記コ
ンタクト穴内に埋設された高融点金属層とを含んで構成
される。
A semiconductor device of the present invention includes an interlayer insulating film provided on a semiconductor substrate, a contact hole provided in the interlayer insulating film, a conductor film or a semiconductor film provided on a side wall surface of the contact hole, and a conductor film provided on a side wall surface of the contact hole. Alternatively, the contact hole may include a high melting point metal layer buried in the contact hole provided with a semiconductor film.

また本発明の半導体装置の製造方法は、半導体基板上に
層間絶縁膜を形成する工程と、前記層間絶縁膜にコンタ
クト穴を形成する工程と、このコンタクト穴の側壁面を
覆う導体膜または半導体膜を形成する工程と、側壁面に
導体膜または半導体膜が形成された前記コンタクト穴に
高融点金属層を埋設する工程とを含んで構成される。
Further, the method for manufacturing a semiconductor device of the present invention includes a step of forming an interlayer insulating film on a semiconductor substrate, a step of forming a contact hole in the interlayer insulating film, and a conductive film or a semiconductor film covering the side wall surface of the contact hole. and a step of embedding a high melting point metal layer in the contact hole in which a conductive film or a semiconductor film is formed on the sidewall surface.

〔実施例〕〔Example〕

次に、本発明について図面を参照して説明する。 Next, the present invention will be explained with reference to the drawings.

第1図(a)〜(e)は本発明の第1の実施例を説明す
るための工程順に示した半導体チップの断面図である。
FIGS. 1(a) to 1(e) are cross-sectional views of a semiconductor chip shown in order of steps for explaining a first embodiment of the present invention.

まず、第1図(a)に示すように、半導体基板1上にN
型拡散層2を形成したのち全面にSiOからなる層間絶
縁膜3を形成する。次に衆知のリソグラフィー工程と反
応性イオンエツチング法等により、N型拡散層2上の層
間絶縁膜3にコンタクト穴4を形成する。
First, as shown in FIG. 1(a), N
After forming the type diffusion layer 2, an interlayer insulating film 3 made of SiO is formed on the entire surface. Next, a contact hole 4 is formed in the interlayer insulating film 3 on the N-type diffusion layer 2 by a well-known lithography process and a reactive ion etching method.

次に第1図(b)に示すように、コンタクト穴4の側壁
面を覆うポリシリコン膜5を形成する。
Next, as shown in FIG. 1(b), a polysilicon film 5 is formed to cover the side wall surface of the contact hole 4.

形成する物質は、層間絶縁膜と密着性の良いものであれ
ばよく、タングステンシリサイドを用いても良い。
The material to be formed may be any material as long as it has good adhesion to the interlayer insulating film, and tungsten silicide may be used.

ポリシリコンM5の形成方法はスパッタリング方を用い
ても良いし化学気相成長法等登用いても良い。膜厚はコ
ンタクト穴4を埋設しない100〜2000人程度形成
する。このポリシリコン膜5には、イオン注入や拡散等
の方法により不純物をドープしておいても良い。次に、
ポリシリコン膜5をエッチバックし、層間絶縁膜3上の
ポリシリコン膜5を除去し、コンタクト穴4の側壁面の
にのみポリシリコン膜5を残す。
The polysilicon M5 may be formed by sputtering, chemical vapor deposition, or the like. The film thickness is approximately 100 to 2000 without burying the contact hole 4. This polysilicon film 5 may be doped with impurities by a method such as ion implantation or diffusion. next,
The polysilicon film 5 is etched back to remove the polysilicon film 5 on the interlayer insulating film 3, leaving the polysilicon film 5 only on the side wall surface of the contact hole 4.

次に第1図(c)に示すように、イオン注入法又は拡散
法によりコンタクト穴4の底部に高濃度不純物と導入し
N+型型数散層6形成する。不純物の濃度は1020〜
8 X 1.021011−3程度が望ましい。不純物
濃度が高い程、コンタクト穴内に形成する高融点金属と
シリコン基板上に形成されるN“型拡散層6のショット
キー障壁による抵抗が低下するからである。
Next, as shown in FIG. 1(c), a high concentration impurity is introduced into the bottom of the contact hole 4 by ion implantation or diffusion to form an N+ type scattering layer 6. The concentration of impurities is 1020 ~
Approximately 8 x 1.021011-3 is desirable. This is because the higher the impurity concentration, the lower the resistance due to the Schottky barrier between the refractory metal formed in the contact hole and the N'' type diffusion layer 6 formed on the silicon substrate.

N+型型数散層濃度が1021cm4以上であれば接触
抵抗は10−7Ω・cT112以下にできる。この際コ
ンタクト穴4の側壁面に形成されているポリシリコン膜
5にも不純物がドープされるのが望ましい。
If the N+ type scattering layer concentration is 1021 cm4 or more, the contact resistance can be made 10-7Ω·cT112 or less. At this time, it is desirable that the polysilicon film 5 formed on the side wall surface of the contact hole 4 is also doped with impurities.

次に第1図(d)に示すように、化学気相成長法により
コンタクト穴4内に電極として高融点金属であるタング
ステン層7を選択的に成長し、コンタクト穴4を埋設す
る。コンタクト穴4内はポリシリコン膜5及びシリコン
基板1の単結晶シリコンが露出しているので、タングス
テン層7はコンタクト穴4内で全てシリコンと接してお
り、層間絶縁膜3と接触するよりも接着強度が強くなり
かつ、抵抗も低減される。
Next, as shown in FIG. 1(d), a tungsten layer 7, which is a high melting point metal, is selectively grown as an electrode in the contact hole 4 by chemical vapor deposition to fill the contact hole 4. Since the polysilicon film 5 and the single crystal silicon of the silicon substrate 1 are exposed inside the contact hole 4, the tungsten layer 7 is entirely in contact with the silicon inside the contact hole 4, and is bonded rather than being in contact with the interlayer insulating film 3. Strength is increased and resistance is reduced.

次に第1図(e)に示すように、上部配線としてアルミ
ニウム配線8を形成する。
Next, as shown in FIG. 1(e), an aluminum wiring 8 is formed as an upper wiring.

このように第1の実施例によれば、タングステン層7か
らなる電極はポリシリコン膜5を介して層間絶縁膜3と
良好に接着されているため、はがれて抜けることはなく
なる。
As described above, according to the first embodiment, since the electrode made of tungsten layer 7 is well bonded to interlayer insulating film 3 via polysilicon film 5, it will not come off or come off.

第2図(a)〜(e)は本発明の第2の実施例を説明す
るための半導体チップの断面図である。
FIGS. 2(a) to 2(e) are cross-sectional views of a semiconductor chip for explaining a second embodiment of the present invention.

まず第2図(a)に示すように、半導体基板1上にN型
拡散層2を形成し、次でpt又は1゛i等の金属を形成
したのち熱処理を加えて自己整合的にN型拡散層2上に
金属シリサイド層9を形成する。
First, as shown in FIG. 2(a), an N-type diffusion layer 2 is formed on a semiconductor substrate 1, and then a metal such as PT or 1゛i is formed, and then heat treatment is applied to form an N-type diffusion layer in a self-aligned manner. A metal silicide layer 9 is formed on the diffusion layer 2.

N型拡散層2は、金属シリサイド層9を形成した後に金
属シリサイド層9中に不純物をイオン注入等の方法で導
入し、高不純物濃度となった金属シリサイド層9がら熱
処理によりシリコン基板1に不純物を拡散させ、N型拡
散層2を形成しても良い。
The N-type diffusion layer 2 is formed by introducing impurities into the metal silicide layer 9 by a method such as ion implantation after forming the metal silicide layer 9, and then heat-treating the metal silicide layer 9, which has a high impurity concentration, to introduce the impurity into the silicon substrate 1. The N-type diffusion layer 2 may be formed by diffusing .

次に第2図(b)に示すように、第1の実施例と同様に
操作し、コンタクト穴4の側壁面にポリシリコン膜5を
形成する。
Next, as shown in FIG. 2(b), a polysilicon film 5 is formed on the side wall surface of the contact hole 4 in the same manner as in the first embodiment.

ポリシリコン膜の反応性イオンエツチングにCF4等の
ガスを用いた場合のエツチング速度は、金属シリサイド
の3〜10倍であるので、コンタクト穴4の側壁面にポ
リシリコン膜5を残す工程に於いて、コンタクト穴4底
部の金属シリサイド層9を残すことが出来るため、コン
タクト内部では金属シリサイド層9と高融点金属の接触
となり、第1の実施例よりも更に抵抗が低下し、1/2
0〜115程度に抵抗値が下がる利点もある。
When a gas such as CF4 is used for reactive ion etching of a polysilicon film, the etching speed is 3 to 10 times that of metal silicide. , since the metal silicide layer 9 at the bottom of the contact hole 4 can be left, the metal silicide layer 9 and the high melting point metal come into contact inside the contact, and the resistance is further reduced to 1/2 compared to the first embodiment.
There is also the advantage that the resistance value is reduced to about 0 to 115.

次に第2図(c)に示すように、イオン注入法等により
金属シリサイド層9中にN型不純物をドープする。濃度
はl Q 20〜I Q 22co!−3あれば良い次
で熱処理を行ない金属シリサイド層9がらシリコン基板
へ不純物を拡散させ、N+型型数散層6形成する。この
工程は前記ポリシリコン膜5のエッチバックの際、]−
分に金属シリサイド層9が残存していれば省いてもよい
Next, as shown in FIG. 2(c), N-type impurities are doped into the metal silicide layer 9 by ion implantation or the like. The concentration is l Q 20 ~ I Q 22 co! -3 is sufficient. Then, heat treatment is performed to diffuse impurities from the metal silicide layer 9 into the silicon substrate to form an N+ type scattering layer 6. This step is carried out during the etching back of the polysilicon film 5.
If the metal silicide layer 9 remains, it may be omitted.

次に第2図(d)に示すように、コンタクト穴4内に電
極としての高融点金属を選択的に成長させる。高融点金
属としてはタングステン層7を用いる。
Next, as shown in FIG. 2(d), a high melting point metal as an electrode is selectively grown in the contact hole 4. Tungsten layer 7 is used as the high melting point metal.

次に第2図(e)に示すように、上部配線としてアルミ
ニウム配線8を形成する。
Next, as shown in FIG. 2(e), an aluminum wiring 8 is formed as an upper wiring.

尚、上記実施例においては拡散層と配線層とをタングス
テン層からなる電極を用いて接続する場合について説明
したが、これに限定されるものではなく、拡散層間また
は配線層間の接続であってもよい。また、高融点金属と
してタングステンを用いたが、モリブデン等地の金属で
あってもよい。
In the above embodiment, the case where the diffusion layer and the wiring layer are connected using an electrode made of a tungsten layer has been described, but the invention is not limited to this, and even if the connection is between diffusion layers or wiring layers. good. Further, although tungsten is used as the high melting point metal, other metals such as molybdenum may be used.

〔発明の効果〕〔Effect of the invention〕

以上説明したように本発明は、コンタクト穴の側壁面に
、埋没する高融点金属と接着強度の強い導体膜または半
導体膜を形成することにより、信頼性および歩留りの高
い半導体装置が得られるという効果がある。
As explained above, the present invention has the effect that a semiconductor device with high reliability and high yield can be obtained by forming a conductive film or a semiconductor film with strong adhesive strength to the buried high melting point metal on the side wall surface of a contact hole. There is.

【図面の簡単な説明】[Brief explanation of drawings]

第1図及び第2図は本発明の第1及び第2の実施例を説
明するための半導体チップの断面図、第3図は従来例を
説明するための半導体チップの断面図である。 l・・・シリコン基板、2・・・N型拡散層、3・・・
層間絶縁膜、4・・・コンタクト穴、5・・・ポリシリ
コン膜、6・・・Nゝ型型数散層7・・・タングステン
層、8・・・アルミニウム配線、9・・・金属シリサイ
ド層。
1 and 2 are cross-sectional views of a semiconductor chip for explaining first and second embodiments of the present invention, and FIG. 3 is a cross-sectional view of a semiconductor chip for explaining a conventional example. l...Silicon substrate, 2...N-type diffusion layer, 3...
Interlayer insulating film, 4... Contact hole, 5... Polysilicon film, 6... N-type scattering layer 7... Tungsten layer, 8... Aluminum wiring, 9... Metal silicide layer.

Claims (1)

【特許請求の範囲】 1、半導体基板上に設けられた層間絶縁膜と、この層間
絶縁膜に設けられたコンタクト穴と、このコンタクト穴
の側壁面に設けられた導体膜または半導体膜と、導体膜
または半導体膜が設けられた前記コンタクト穴内に埋設
された高融点金属層とを含むことを特徴とする半導体装
置。 2、半導体基板上に層間絶縁膜を形成する工程と、前記
層間絶縁膜にコンタクト穴を形成する工程と、このコン
タクト穴の側壁面を覆う導体膜または半導体膜を形成す
る工程と、側壁面に導体膜または半導体膜が形成された
前記コンタクト穴に高融点金属層を埋設する工程とを含
むことを特徴とする半導体装置の製造方法。
[Claims] 1. An interlayer insulating film provided on a semiconductor substrate, a contact hole provided in the interlayer insulating film, a conductor film or a semiconductor film provided on the side wall surface of the contact hole, and a conductor. and a high melting point metal layer buried in the contact hole provided with a film or a semiconductor film. 2. A step of forming an interlayer insulating film on a semiconductor substrate, a step of forming a contact hole in the interlayer insulating film, a step of forming a conductive film or a semiconductor film covering the side wall surface of the contact hole, and a step of forming a conductive film or a semiconductor film on the side wall surface. A method for manufacturing a semiconductor device, comprising the step of embedding a high melting point metal layer in the contact hole in which a conductive film or a semiconductor film is formed.
JP33202489A 1989-12-20 1989-12-20 Semiconductor device and manufacture thereof Pending JPH03191518A (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP33202489A JPH03191518A (en) 1989-12-20 1989-12-20 Semiconductor device and manufacture thereof

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP33202489A JPH03191518A (en) 1989-12-20 1989-12-20 Semiconductor device and manufacture thereof

Publications (1)

Publication Number Publication Date
JPH03191518A true JPH03191518A (en) 1991-08-21

Family

ID=18250286

Family Applications (1)

Application Number Title Priority Date Filing Date
JP33202489A Pending JPH03191518A (en) 1989-12-20 1989-12-20 Semiconductor device and manufacture thereof

Country Status (1)

Country Link
JP (1) JPH03191518A (en)

Cited By (6)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US6860210B2 (en) * 1997-11-05 2005-03-01 Michael Baier Rail vehicle system
US10833199B2 (en) 2016-11-18 2020-11-10 Acorn Semi, Llc Nanowire transistor with source and drain induced by electrical contacts with negative Schottky barrier height
US10872964B2 (en) 2016-06-17 2020-12-22 Acorn Semi, Llc MIS contact structure with metal oxide conductor
US10879366B2 (en) 2011-11-23 2020-12-29 Acorn Semi, Llc Metal contacts to group IV semiconductors by inserting interfacial atomic monolayers
US10937880B2 (en) 2002-08-12 2021-03-02 Acorn Semi, Llc Method for depinning the Fermi level of a semiconductor at an electrical junction and devices incorporating such junctions
US11043571B2 (en) 2002-08-12 2021-06-22 Acorn Semi, Llc Insulated gate field effect transistor having passivated schottky barriers to the channel

Cited By (14)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US6860210B2 (en) * 1997-11-05 2005-03-01 Michael Baier Rail vehicle system
US11355613B2 (en) 2002-08-12 2022-06-07 Acorn Semi, Llc Method for depinning the Fermi level of a semiconductor at an electrical junction and devices incorporating such junctions
US10937880B2 (en) 2002-08-12 2021-03-02 Acorn Semi, Llc Method for depinning the Fermi level of a semiconductor at an electrical junction and devices incorporating such junctions
US10950707B2 (en) 2002-08-12 2021-03-16 Acorn Semi, Llc Method for depinning the Fermi level of a semiconductor at an electrical junction and devices incorporating such junctions
US11018237B2 (en) 2002-08-12 2021-05-25 Acorn Semi, Llc Method for depinning the fermi level of a semiconductor at an electrical junction and devices incorporating such junctions
US11043571B2 (en) 2002-08-12 2021-06-22 Acorn Semi, Llc Insulated gate field effect transistor having passivated schottky barriers to the channel
US11056569B2 (en) 2002-08-12 2021-07-06 Acorn Semi, Llc Method for depinning the fermi level of a semiconductor at an electrical junction and devices incorporating such junctions
US10879366B2 (en) 2011-11-23 2020-12-29 Acorn Semi, Llc Metal contacts to group IV semiconductors by inserting interfacial atomic monolayers
US11610974B2 (en) 2011-11-23 2023-03-21 Acorn Semi, Llc Metal contacts to group IV semiconductors by inserting interfacial atomic monolayers
US11804533B2 (en) 2011-11-23 2023-10-31 Acorn Semi, Llc Metal contacts to group IV semiconductors by inserting interfacial atomic monolayers
US10872964B2 (en) 2016-06-17 2020-12-22 Acorn Semi, Llc MIS contact structure with metal oxide conductor
US11843040B2 (en) 2016-06-17 2023-12-12 Acorn Semi, Llc MIS contact structure with metal oxide conductor
US10833199B2 (en) 2016-11-18 2020-11-10 Acorn Semi, Llc Nanowire transistor with source and drain induced by electrical contacts with negative Schottky barrier height
US11462643B2 (en) 2016-11-18 2022-10-04 Acorn Semi, Llc Nanowire transistor with source and drain induced by electrical contacts with negative Schottky barrier height

Similar Documents

Publication Publication Date Title
KR0175206B1 (en) Semiconductor device comprising composite barrie
US5243220A (en) Semiconductor device having miniaturized contact electrode and wiring structure
JPH07183302A (en) Formation of metal layer and bonding method therefor
JPH08330505A (en) Integrated circuit interconnection part
JP3240725B2 (en) Wiring structure and its manufacturing method
JPH03191518A (en) Semiconductor device and manufacture thereof
JPH07130682A (en) Method of manufacturing semiconductor device
JPH10106973A (en) Semiconductor device and its manufacture
JPS6160580B2 (en)
JP3337758B2 (en) Method for manufacturing semiconductor device
JPH02134848A (en) Semiconductor device
JP3190715B2 (en) Semiconductor device and method of manufacturing the same
JP2779186B2 (en) Method for manufacturing semiconductor device
JPH05217940A (en) Manufacture of semiconductor device
JP2950620B2 (en) Semiconductor device
JP2985218B2 (en) Semiconductor device and manufacturing method thereof
JPH10135153A (en) Semiconductor circuit device and its manufacture
JPH09246378A (en) Semiconductor integrated circuit device and manufacture thereof
JPH10223569A (en) Semiconductor device and its manufacture
JPH11135629A (en) Wiring structure of semiconductor device and its forming method
JPH06244187A (en) Manufacture of semiconductor device
JPS63198357A (en) Semiconductor device
JPH0730094A (en) Semiconductor device and manufacture thereof
JPH0851087A (en) Manufacture of semiconductor device and structure of semiconductor wafer
JPH04165675A (en) Semiconductor device