JPH0317507A - Measuring apparatus for three-dimensional shape - Google Patents

Measuring apparatus for three-dimensional shape

Info

Publication number
JPH0317507A
JPH0317507A JP15306189A JP15306189A JPH0317507A JP H0317507 A JPH0317507 A JP H0317507A JP 15306189 A JP15306189 A JP 15306189A JP 15306189 A JP15306189 A JP 15306189A JP H0317507 A JPH0317507 A JP H0317507A
Authority
JP
Japan
Prior art keywords
lattice
light
pattern
dimensional shape
slit
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Pending
Application number
JP15306189A
Other languages
Japanese (ja)
Inventor
Yozo Yamada
陽三 山田
Satoshi Maeda
郷司 前田
Yoshihiro Ubusawa
生沢 佳弘
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Toyobo Co Ltd
Original Assignee
Toyobo Co Ltd
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Toyobo Co Ltd filed Critical Toyobo Co Ltd
Priority to JP15306189A priority Critical patent/JPH0317507A/en
Publication of JPH0317507A publication Critical patent/JPH0317507A/en
Pending legal-status Critical Current

Links

Landscapes

  • Length Measuring Devices By Optical Means (AREA)

Abstract

PURPOSE:To obtain a measuring apparatus being excellent in a measuring speed and resolution, easy to handle and of low cost by a construction wherein an optical slit having a function of rotation or a function of shift of a lattice pattern is provided in the direction of progress of a condenser lens. CONSTITUTION:For a lattice-shaped pattern irradiation element, a light source, a diffraction grating 1 and a condenser lens 2 are used by arranging them linearly sequentially. Moreover, a slit having a function of rotation of a lattice pattern or such a function of shift of the lattice pattern as to vary the lattice pattern is provided in the direction of progress of light of the condenser lens 2. A light proceeding from a focal plane forms an image analogous to the diffraction grating 1 on the conjugate plane of the diffraction grating 1. When a diffraction grating (b) having lattice spacing (d) is employed, the light is diffracted in a direction given by sin (u) = nl/d ((n) is the order and l a wavelength), and when only the light of the first order is passed by using the slit, a point image (c) on a spectral plane 3 turns to be (d). Thus, the lattice image can obtain twice as large resolutions as (b). Rotation of the lattice-shaped pattern and a change in the shape thereof can be controlled only by shifting or rotating the slit.

Description

【発明の詳細な説明】 (産業−1二の利用分野) 本発明は、3次元の形状(認識) iill+定装置に
関する。さらに詳しくは、格子パターンを用いた3次元
形状測定装置に関する。
DETAILED DESCRIPTION OF THE INVENTION (Field of Application of Industry-12) The present invention relates to a three-dimensional shape (recognition) device. More specifically, the present invention relates to a three-dimensional shape measuring device using a lattice pattern.

(従来の技術) 3次元形状測定装置に用いられる方式としては格rパタ
ーンを用いた方法のほかに、シルエッタ一方式、光切断
方式、モアレ●トポグラフィカ式、−七角測}.(力式
、オートフォーカス方式等がある。
(Prior Art) In addition to the method using a case r pattern, methods used in three-dimensional shape measuring devices include a silhouette method, a light cutting method, a moiré topographic method, and a heptagonal method. (There are power type, autofocus type, etc.

3次元形状測定装i,?,!を装置の持つ性能で分類す
ると、高分解能であるが,il/!lll所安時間が長
い物と■、低分解能で3;1測所要時間が短いもの■、
分解能、所要計測時間共に■、■の中間であるもの■に
分けることができる。
3D shape measuring device i,? ,! When classified by the performance of the device, it is high resolution, but il/! lllLong measurement time and ■, Low resolution and 3; 1 Short measurement time■,
Both the resolution and the required measurement time can be divided into two types: (1) and (2) which are intermediate between (2) and (2).

高分解能であるが計測所要+1.’7間が長い測定方式
のとして三角測量方式、オートフォーカス方式を、低分
解能で計測所要時間が短いもの■として、シルエッタ一
方式を、分解能、所費計測時問共に■、■の中間である
もの■として、格r・パターン投影法、モアレ●トポグ
ラフィ方式、光切断方式を早げることができる。
High resolution, but measurement required +1. '7 The triangulation method and autofocus method are the measurement methods with long intervals, and the silhouette method is the one with low resolution and short measurement time. As an example, it can speed up the case r pattern projection method, moiré topography method, and light cutting method.

■、■、■それぞれの測定方法についてlm Qj.に
説明する。
Regarding the measurement methods for ■, ■, and ■, Qj. Explain.

■の例として三コ,角i1111 咀方式について説明
する。
As an example of (2), we will explain the three-way, corner-i1111 chewing method.

二角?Illi fd方式は長さの分かったノ↓線の両
端において、測定点までの角度を計測すると、l1一弦
定pljから測定点までの距離をIE確に知ることがで
き、距離変動から3次元形状変動をサブミクロンの11
14位で求めることができる。しかし、測定梢度を1;
リ1−.させるためには)&線の長さを大きくとる必聾
がある・1fや、取り扱いが複雑である゛1『や、対環
境P1:能に劣るといろ欠点を何する。
Two corners? In the Illi fd method, if you measure the angle to the measurement point at both ends of the line whose length is known, you can accurately know the distance from the l1 chord constant plj to the measurement point, and from the distance variation you can calculate the three-dimensional Shape variation of submicron 11
It can be found in 14th place. However, the measured degree is 1;
Li1-. In order to do this, it is necessary to increase the length of the line.・1F, and the handling is complicated.

■の例としてシルエッタ一方式について説明する。As an example of (2), a single silhouette type will be explained.

シルエッタ一方式は被検物に光を11(1射し、物体の
シルエットを観察し3次元物体を認識する方式であり高
速計測が可能ではあるが、測定分解能はミ+) tp,
位と低く、被検物の四転、移動を行なうための機構を必
要とする。
The silhouette type one type is a method that irradiates the object with 11 (11) beams of light and observes the silhouette of the object to recognize the three-dimensional object, and although high-speed measurement is possible, the measurement resolution is 1.
It requires a mechanism to rotate and move the test object.

■の例として光切断方式について説明する。As an example of (2), the optical cutting method will be explained.

光切断方式はレーザー光万をスキャナーで直線状に走査
し、線状のスポット光を静止物体に!!(1射し、この
スポットの位置をボジンタンセンサーやテレビカメラ専
で測定し物体の3次元形状を認識する方式であり、数ミ
クロンの分解能を得ることができるが、梢密イ1′I.
置決めされた1iJ動部を必歩とし、さらに計7111
1に多くの時間を必聾とする欠点をイ1゛する。
The optical cutting method uses a scanner to scan ten thousand laser beams in a straight line, turning a linear spot into a stationary object! ! (This is a method that recognizes the three-dimensional shape of an object by emitting a single beam and measuring the position of this spot using a Bojin Tan sensor or a dedicated television camera. Although it is possible to obtain a resolution of several microns, it is possible to obtain a resolution of several microns.
A total of 7111 moving parts are required, and a total of 7111
1.Illustrate the disadvantage of having to spend a lot of time hearing.

(発明が解決しようとする課題) 前述したように、3次元形状測定装置に用いられる方式
には様々な方式が7t7「するがいずれの力式も測定ス
ピード、測定事,1度、袈置の取扱の簡格化、装置価格
専に問題があり、すべての条件を満足する3次元形状7
1111定装代の実現は、田雅である。
(Problem to be Solved by the Invention) As mentioned above, there are various methods used in three-dimensional shape measuring devices, but all of the force methods have problems with measurement speed, measurement, one-time measurement, and shank placement. Three-dimensional shape 7 satisfies all conditions, with problems mainly related to simplification of handling and equipment price.
The realization of the 1111 fixed cost is Tama.

本発明者はかかる状況に鑑み、鋭意研究を重ねた結果、
次なる発明に到辻した。
In view of this situation, the inventor has conducted extensive research and found that
We have arrived at our next invention.

(課題を解決するための手段) 本発明は、被検物体にレーザー等の光源を用いて格子状
パターンを照射し、異なる方向から撮像することで =
1i該被検物体の3次元形状を測定する3次元形状測定
裂置において、洛r状パターン!!6射部が、光源、同
析格゛r1コンデンサレンズを順次直線的に配列したも
のであり、さらに該コンデンサレンズの尤追行h’ l
iilに、格γパターンの101転機能、または洛rパ
ターンの間19Aを敦化させるような格子パターンの移
動機能を何する光学スリy}を配したことを特徴とする
3次元形状測定装置である。
(Means for Solving the Problems) The present invention irradiates a test object with a grid pattern using a light source such as a laser and images it from different directions. =
1i In the three-dimensional shape measurement device that measures the three-dimensional shape of the object to be tested, a raku-shaped pattern! ! The 6-ray part has a light source and a condenser lens linearly arranged in sequence, and furthermore, the 6-ray part has a light source and a condenser lens arranged linearly in sequence, and furthermore,
This is a three-dimensional shape measuring device characterized in that an optical slider is arranged in the il to perform a 101 rotation function of a case γ pattern or a movement function of a lattice pattern such as converting 19A between Raku r patterns. .

本発明における光源としては、特に眼定するものではな
いが、気体レーザー ゛l4導体レーザー、色素レーザ
ー、固体レーザー 甲已光源、白巴光源等を用いること
ができる。
The light source in the present invention is not particularly specified, but a gas laser, a 14 conductor laser, a dye laser, a solid laser, a white light source, a white light source, etc. can be used.

本発明における同析格rは反射+77、透過型いずれも
用いることができるが、打ましくは透過型である。
In the present invention, the isoptative r can be either a reflection +77 type or a transmission type, but a transmission type is preferable.

本発明における光学スリットは材料、構逍共に特に限定
するものではないが、光学スリット表面は光の乱反射を
1111さえるために特殊な塗料や繊維を施した物が好
ましい。
Although the material and structure of the optical slit in the present invention are not particularly limited, it is preferable that the surface of the optical slit be coated with a special paint or fiber to reduce diffused reflection of light.

本発明の原裡を第1図を参イに説明する。The origin of the present invention will be explained with reference to FIG.

(a)で明らかなようにレンズの光軸と平行な方向から
、同析格子に光が入射すると光はsin(u):nl/
d(nは次数、1は波長、dは格子間隔)で与えられる
方1;1Jにri’il析する。
As is clear from (a), when light enters the homogeneous lattice from a direction parallel to the optical axis of the lens, the light is sin(u):nl/
ri'il analysis is performed on the one given by d (n is the order, 1 is the wavelength, and d is the lattice spacing).

この光はレンズの焦点(スペクトル面)+(iに、【l
=0、n=+/ 一is n=十/−2−に対応した点
像群を生しる(e,h)。
This light is the focal point of the lens (spectral plane) + (i, [l
=0, n=+/ -is A point image group corresponding to n=10/-2- is generated (e, h).

さらに、j.li点而から迅んだ光は同析格子の』(段
而Lに同析格了と相似な像を生じる(b)。洛r間隔d
の同析格f’(b)を用いた場合スペクトル而には(C
)の点像が牛しるが、光学スリ,トを用いて、1次光の
みを透過させた1時の(d)、格r像は(e)となり、
(b)と比較して2倍の解像度を得ることができる。
Furthermore, j. The light that travels from the li point produces an image similar to the same analytical lattice at the point L (b).
When using the isotrotic case f'(b), the spectrum becomes (C
) is a point image, but using an optical slit and transmitting only the primary light, the 1 o'clock (d) and case r images are (e),
It is possible to obtain twice the resolution compared to (b).

今、同析格r−の複素振軸透過=’f< T.が、(1
)式のようなiE弦波振帽の同析格Yとする。
Now, the complex vibrational transmission of the isotrotic r- ='f<T. But (1
) is the apposition case Y of the iE sinusoidal cap.

T.=1+cos (2πSoξ)(1)So :格子
周波数  ξ:同析格=r+標(1)式は(2)に置き
換えることができる。
T. =1+cos (2πSoξ) (1) So: Lattice frequency ξ: Isoprotic case = r + standard Equation (1) can be replaced with (2).

T− = 1 + 0.5exp(2 w Soξ)+
0.5exp(−2πSoξ) (2)式の各項は0次、1次のスペクトルに相当する。
T- = 1 + 0.5exp (2 w Soξ) +
0.5exp(-2πSoξ) Each term in equation (2) corresponds to a 0th-order spectrum and a 1st-order spectrum.

同析格子像はIT,+2で表わされることになる。The isometric grid image will be represented by IT,+2.

l  T.  l 2 =3/2+2cos2πSo 
 ξ+0.  5cos4 πSn  ξ 0次のスペクトルを光学スリy}等で遮った場合を4え
ると、複素振幅透過率T,は(3)式となる。
l T. l 2 = 3/2 + 2cos2πSo
ξ+0. 5 cos4 πSn ξ When the 0th-order spectrum is blocked by an optical filter or the like, the complex amplitude transmittance T, becomes equation (3).

T,=cos (2πSo ξ)(3}同析格r像はI
T,+2で表わされることになる。
T, = cos (2πSo ξ) (3) The isometric r image is I
It will be expressed as T, +2.

l↑,I2 =1/2+0.5cos4πSo  ξ従
って、0次のスペクトルを光学スリット等で遮った場合
、回折格rの持つ基本周波数S。の倍周期の同析格了像
を得ることになる。
l↑, I2 = 1/2 + 0.5cos4πSo ξ Therefore, when the 0th order spectrum is blocked by an optical slit etc., the fundamental frequency S of the diffraction grating r. We will obtain an isoanalytic case image with a period twice that of .

また、(f)のような詐盤口状の格子を使えば、(h)
の様なスペクトルが得られるがこれに(i)の様な斜め
方向だけを残す光学スリットを用いた場合、格r像は(
g)となり格子スペクトルと屯111:な像を得ること
ができる。
Also, if you use a grid like the one in (f), you can get (h)
A spectrum like (i) is obtained, but if an optical slit that leaves only the oblique direction is used, the case r image becomes (
g) It is possible to obtain a grating spectrum and an image of 111:.

本発明によれば、分解能あるいは測定スピードの高速化
のための格Yパターンの同転、変形を光学スリットの移
動、I!j1転のみで;i,II glIがrIf能で
あり、格子パターン投影機構の簡略化、あるいは省略化
がi+}能であり複雑な調整機構をまったく必要としな
い。
According to the present invention, the rotation and deformation of the case Y pattern in order to increase resolution or measurement speed can be achieved by moving the optical slit, I! With only j1 rotation; i, II glI is rIf function, and the grating pattern projection mechanism can be simplified or omitted i+}, and a complicated adjustment mechanism is not required at all.

また、格子パターンの変化は、光学的作用を用いて行な
われるため、機械的な機構を用いた場合と比較して、安
定で高精度な格rパターンの変化を得ることができる。
Further, since the grating pattern is changed using an optical effect, it is possible to obtain a stable and highly accurate change in the case r pattern compared to a case where a mechanical mechanism is used.

以ド、実施例により本発明を具体的に説明するが、本発
明はこれらになんら限定されるものではない。
EXAMPLES Hereinafter, the present invention will be specifically explained with reference to Examples, but the present invention is not limited to these in any way.

(実施例) 以下に、図面に基づいて実施例を説明する。(Example) Examples will be described below based on the drawings.

第2図における3次元形状測定装許を用いて、直径1 
0 0 ミIJの球状物体の3次元形状認識を行ない、
分解能1ミクロン、測定所要時間30秒で良々rな結里
を得た。
Using the three-dimensional shape measurement equipment shown in Figure 2, a diameter of 1
Performing three-dimensional shape recognition of a spherical object of 0 0 mi IJ,
Good results were obtained with a resolution of 1 micron and a measurement time of 30 seconds.

装置の光源には光出力5 0 ミIJワソトのヘリウム
ーネオンレーザーを用いた。lLi+析格子は溝間隔1
ミクロン、大きさは!’X 5 0ミリ長さ50ミリの
物を用いた。
A helium-neon laser manufactured by IJ Wasotho with an optical output of 50 mm was used as the light source of the apparatus. lLi + lattice has a groove spacing of 1
Micron, the size! A piece with a length of 50 mm and a length of 50 mm was used.

光学スリノトとして、黒乙ユ具したアルミ板のスペクト
ル点像に対応する箇所に穴をあけた物をJl1いた。
As an optical slit, I used a black aluminum plate with holes drilled at locations corresponding to the spectral point images.

(発明の効果) 以上述べたように、本発明における3次元形状測疋装置
は/!む1定スピード、分解能、装置取り扱いの簡略化
の点において優れたI’ll冒)’tをn゛シ、ffi
i[産性に優れ低価格が01能で、対環境性能に優れる
などの特Ptを有することが判った。
(Effects of the Invention) As described above, the three-dimensional shape measuring device of the present invention is /! I'll give you an advantage in terms of constant speed, resolution, and ease of equipment handling.
It was found that it has special Pt properties such as excellent productivity, low cost, and excellent environmental performance.

【図面の簡単な説明】[Brief explanation of drawings]

第1図は本発明の原狸図である。 第2図は本発明装置の概格図である。 早 11!1 (Q) 1 ■f′r濁÷ 2 レン入゛ 3゛ スベフトル面 4. o*#J{& 特許出廓人 東洋紡績株式会社 (e) (f) (9) (h) (1) 2 図 FIG. 1 is an original raccoon diagram of the present invention. FIG. 2 is a schematic diagram of the apparatus of the present invention. Early 11!1 (Q) 1 ■ f'r turbidity ÷ 2 Enter the lens 3゛ Sveftle surface 4. o*#J{& Patent distributor: Toyobo Co., Ltd. (e) (f) (9) (h) (1) 2 figure

Claims (1)

【特許請求の範囲】[Claims] (1)被検物体にレーザー等の光源を用いて格子状パタ
ーンを照射し、異なる方向から撮像することで、当該被
検物体の3次元形状を測定する3次元形状測定装置にお
いて、格子状パターン照射部が、光源、回折格子、コン
デンサレンズを順次直線的に配列したものであり、さら
に該コンデンサレンズの光進行方向に、格子パターンの
回転機能、または格子パターンの間隔を変化させるよう
な格子パターンの移動機能を有する光学スリットを配し
たことを特徴とする3次元形状測定装置。
(1) In a three-dimensional shape measuring device that measures the three-dimensional shape of a test object by irradiating the test object with a grid pattern using a light source such as a laser and capturing images from different directions, the grid pattern The irradiation section has a light source, a diffraction grating, and a condenser lens linearly arranged in sequence, and a grating pattern that has a grating pattern rotation function or a grating pattern interval that changes the grating pattern interval in the light traveling direction of the condenser lens. A three-dimensional shape measuring device characterized by having an optical slit having a moving function.
JP15306189A 1989-06-15 1989-06-15 Measuring apparatus for three-dimensional shape Pending JPH0317507A (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP15306189A JPH0317507A (en) 1989-06-15 1989-06-15 Measuring apparatus for three-dimensional shape

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP15306189A JPH0317507A (en) 1989-06-15 1989-06-15 Measuring apparatus for three-dimensional shape

Publications (1)

Publication Number Publication Date
JPH0317507A true JPH0317507A (en) 1991-01-25

Family

ID=15554129

Family Applications (1)

Application Number Title Priority Date Filing Date
JP15306189A Pending JPH0317507A (en) 1989-06-15 1989-06-15 Measuring apparatus for three-dimensional shape

Country Status (1)

Country Link
JP (1) JPH0317507A (en)

Cited By (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
KR100455348B1 (en) * 2001-03-13 2004-11-06 주식회사 솔루션닉스 Apparatus And Method For Measuring Three Dimensional Shape With Multi-Stripe Patterns
KR100843621B1 (en) * 2006-08-08 2008-07-03 주식회사 거성기업 Charge coupled device for forming 3-dimensional image
CN106292144A (en) * 2015-06-23 2017-01-04 手持产品公司 Optical design projector
WO2020116028A1 (en) * 2018-12-04 2020-06-11 Ckd株式会社 Projection device and three-dimensional measurement apparatus

Cited By (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
KR100455348B1 (en) * 2001-03-13 2004-11-06 주식회사 솔루션닉스 Apparatus And Method For Measuring Three Dimensional Shape With Multi-Stripe Patterns
KR100843621B1 (en) * 2006-08-08 2008-07-03 주식회사 거성기업 Charge coupled device for forming 3-dimensional image
CN106292144A (en) * 2015-06-23 2017-01-04 手持产品公司 Optical design projector
CN106292144B (en) * 2015-06-23 2020-11-03 手持产品公司 Optical pattern projector
WO2020116028A1 (en) * 2018-12-04 2020-06-11 Ckd株式会社 Projection device and three-dimensional measurement apparatus

Similar Documents

Publication Publication Date Title
US6023338A (en) Overlay alignment measurement of wafers
KR101661090B1 (en) Illumination subsystems of a metrology system, metrology systems, and methods for illuminating a specimen for metrology measurements
US4714348A (en) Method and arrangement for optically determining surface profiles
US6469793B1 (en) Multi-channel grating interference alignment sensor
JP2005530144A (en) Single structure optical measurement
CN101231239A (en) System and method for measuring light spectrum bias ellipsoid imaging with changing incidence angle
US10036630B1 (en) Three-dimensional imaging using a multi-phase projector
US4744660A (en) Apparatus for measuring difference in shallow level
CN105333815B (en) A kind of super online interferometer measuration system of lateral resolution surface three dimension based on the scanning of spectrum colour loose wire
JPH11264714A (en) Interferometer of geometrically low sensitivity for measuring surface to be measured and adjusting method of interference depth
US6078393A (en) Phase shift mask inspection apparatus
CN100492180C (en) Projection objective detecting method
US5767523A (en) Multiple detector alignment system for photolithography
CN105333816B (en) A kind of super online interferometer measuration system of lateral resolution surface three dimension based on the spectral dispersion whole audience
CN100535760C (en) On-line testing apparatus of projection objective
CN201000428Y (en) Varied incident angle spectrum ellipsometric imaging device for nana film surface measurement
CN1700101A (en) Focusing and leveling sensor for projection photo-etching machine
US3533702A (en) Multipurpose optical measuring device for determining the position of an object in two coordinates
JPH0317507A (en) Measuring apparatus for three-dimensional shape
CN110907140A (en) Device and method for measuring grating period
US20230266233A1 (en) System for measuring thickness and physical properties of thin film using spatial light modulator
CN105372943B (en) A kind of alignment device for lithographic equipment
EP1644699B1 (en) Methods and apparatus for reducing error in interferometric imaging measurements
CN212180228U (en) Measuring device for grating period
JPH04313008A (en) Surface shape measuring instrument